
Canad. Math. Bull. Vol. 27 (3), 1984 

HOW GOOD IS HADAMARD'S INEQUALITY 
FOR DETERMINANTS? 

BY 

J O H N D . D I X O N 

ABSTRACT. Let A be a real nXn matrix and define the 
Hadamard ratio h (A) to be the absolute value of det A divided by 
the product of the Euclidean norms of the columns of A. It is shown 
that if A is a random variable whose distribution satisfies some 
simple symmetry properties then the random variable log h(A) 
has mean -\n — ̂ log n + 0(l) and variance \ log n + 0(1). In partic­
ular, for each e > 0 , the probability that h{A) lies in the range 
[ e x p ( - J n - ( i + e)log n), exp( -Jn - ( J - e ) l o g n)] tends to 1 as n 
tends to <». 

1. Introduction. Let A be a real n x n matrix with columns au . . . , an. If the 
columns are all nonzero, then we define the Hadamard ratio 
h(A): = |det A|/nr=illaill where || || denotes the Euclidean norm; and if some 
at = 0 put h(A): = 0. Hadamard's inequality states that h ( A ) < l for all A with 
equality if and only if the columns of A are mutually orthogonal and no 
column is 0. The object of this paper is to investigate the distribution of the 
values of the Hadamard ratio. This investigation has its origin in a comment in 
[1] which the present author interpreted (or perhaps misinterpreted) to imply 
that numerical evidence suggests that h (A) is close to 1 for "random" matrices. 
The theorem below shows that most values of h(A)1 /n are close to e~1/2. 

We must first specify how we shall define a "random" matrix. In fact, our 
results remain true for quite a wide class of probability distributions. The only 
conditions on the underlying density of the distribution which we shall need 
are: 

(Dl) the density of the distribution at A depends only on the values of 
||ai||,. . . , | |an | | ; and 

(D2) the probability that det A is nonzero equals 1. 
The following are examples of distributions satisfying (Dl) and (D2). 

EXAMPLE 1. The uniform distribution over the set of all nXn matrices A 
with llaiH^p!,. . . , ||Onll — Pn I o r specified constants pt > 0 . 
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EXAMPLE 2. The distribution obtained for n x n matrices A = [«„•] when the 
(Xij are independent random variables from a common normal distribution with 
mean 0. In this case it is easily seen that the density of the distribution at A 
depends only on Zo^Hl a i l l 2 + * * * +llanl|2-

We can now state our main result. 

THEOREM. Let Abe a random variable from a distribution satisfying (Dl) and 
(D2). Let |ULn and a2, respectively, denote the mean and variance of the random 
variable log h (A). Then 

(i) fxn = -\n-\\og n + 0(l) and c r ^ ^ l o g n + 0(l) as n^>^\ 
(ii) for each e > 0 , the probability that the inequality 

n-*-*e-*n <h(A)< n~*+ee^n 

is satisfied tends to 1 as n -> oo. 

REMARK. The mean of h(A)2 has been computed for various underlying 
probability distributions in the papers [3], [4] and [6] (see also [5]). For n x n 
matrices the mean is n\/nn in each case. (In [6] the expected value of h(A)4 for 
all matrices with entries 1 or —1 is also computed.) In contrast to these results, 
part (ii) of our Theorem shows much more: not only is the average of h(A)2 

near to n!/nn, but nearly all the values of h(A)2 are clustered close to this 
average. 

2. Basic lemmas. Let Sn-t denote the unit sphere consisting of all n-
dimensional columns of norm 1. 

LEMMA 1. Let A be a random variable from a distribution satisfying (Dl) and 
(D2). Then the random variables u1:=a1l\\a1\\9..., un\ = an/||an|| are indepen­
dent and uniformly distributed over Sn_x. 

REMARK. We use the convention that a/\\a\\ = 0 if a = 0, but (D2) shows that 
the at are nonzero with probability 1. 

Proof. By (D2) we know that (uu . . . , un)e(Sn_1)n with probability 1, and 
so it is enough to show that the probability density of (uu . . . , un) is constant 
on (Sn_x)n. Equivalently, we shall show that, for each e > 0 , if (cu . . . , cn)e 
(Sn^t)

n then Probflloi/H at ||—Cf||<e for each i) is independent of (c1?. . . , cn). 
Suppose (c[,. . . , c^) also lies in (Sn_i)n. Choose T l 5 . . . , Tn as orthogonal 
transformations of the n-dimensional space such that T ^ =c\ for each i. Since 
Tf preserves distances, \\aJW at 11-̂ 11 = 117̂ /11 T ^ ||—cj||. Now (Dl) shows that 
Probflloi/H Oi | | -c; | |<e for all i) =Prob(||T£«£/|| T& | | -c; | |<e for all i) = 
Prob(||ai/|| at \\—Ci||<e for all i) as required. 

LEMMA 2. Let x = ( |1 ? . . . , ^ n ) T be a random variable which is uniformly 
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distributed over Sn_1. For each r with l < r < n , the random variable T)nr: = 

Xi = i £i nas a beta distribution whose density function is 

fnM):-r{lI$f &-\l-t)*n-'" for 0<t<l. 
r(2r)r(2(n-r)) 

Moreover, the random variable conr : = \ log T]nr has mean - ^ ° g ( n / r ) + 

5(M ' — r 1) + 0(r~2) and variance | r _ 1 + 0(r~2) with implied constants indepen­
dent of n and r. 

REMARK. A special case of part of this result has been proved in [2]. 

Proof. Let z = (£1? . . . , £n)T be a random variable whose components & are 
independent random variables with a common normal distribution with mean 
0. Then the density of the distribution of z depends only on ||z||, and so z/||z|| is 
uniformly distributed over Sn_! (compare with proof of Lemma 1). Thus, if we 
put a: = Xi = i Cf a r ,d ]3: = YA=T+\ Ci then a/(a +18) has the same distribution as 
r)nr has. But a and |3 are random variables with gamma distributions with the 
parameters \r and \(n — r), respectively (see [7], p. 172). Therefore a/(a + j8) 
(and hence r\nr) has a beta distribution with the parameters |r, \{n — r) (see [7], 
p. 174), and so r\nr has the density function fnr given above. 

Now consider the characteristic function for conr. This is given by 

F(A) = exp(|A log t)fnr(t) at 
•'o 

n y f ' t i«^M-, ( 1_ t ) j < n - f , - l d r 
| r ) r ( i (n~r)) J0 

rGw)r(è(r+A)) 
r(ir)r(2~(n + A)) 

for all A>—r. 

Since 

r(f) / r( t ) = - 7 - f " 1 4 - X {fe-'-Cfc + O"1} for all f > 0 
k - 1 

we conclude that 

F(A)/F(A) = X {(n-fA + 2fc)- , - ( r + A + 2fe)-1} 

and 

F'(A)/F(A)-{F(A)/F(A)}2 = - £ {(n + A + 2fc) ~ 2 - ( r + A + 2fc) 2}. 
k = 0 

Now Euler's summation formula shows that for s > 0 and / > 0 we have 

m rm 

T (s + 2kr= (s + 2r) - ' dt+iU~i + (s + 2mri\ + Rm 
k=() 4) 
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where 

J r m 

I (t-[t]-e)(s + 2t)-'-1dt 
0 

2 m - l pl(k + l) 

= -/ I " (t-M-è)(s + 2t)-'-1dt. 
k=0 4k 

Since Km is an alternating sum whose terms are decreasing in absolute value, 
we deduce that 

o<Rm<jf2è(s+2tri-idt=è{s-i-(s+iri'}. 
Jo 

Thus, since F(0) = 1, we conclude that the mean F'(0) of <onr equals 

X { ( n + 2 k r 1 - ( r + 2 / c ) ~ 1 } = - è log (n / r )+ i (n - 1 - r - t ) + 0 ( r 2 ) 
k=0 

and similarly the variance F"(0)-F'(0)2 of conr equals ^r~1 + 0(r~2). 

3. Proof of the theorem. We first observe that h (A) is equal to the deter­
minant of the matrix with columns ai/HaJI,. . . , ajUaJI. Hence Lemma 1 shows 
that the distribution of the random variable h (A) is identical to the distribution 
of |det(w l 7 . . . , wn)| where uu . . . , un are independent random variables uni­
formly distributed over Sn^1. On the other hand, I d e t ^ , . . . , un)\ is equal to 
the volume of the n-dimensional parallelopiped with edges ul9. . . , un; and so 
|det(ul5 . . . , un)\ = 7T27r3 • • • 7rn where iri+l is the length of the projection of ui+1 

into the orthogonal complement of the subspace Vt spanned by uu . . . , ut. 
Suppose now that det(u1?. . . , un) ^ 0 (this occurs with probability 1). Then 
each Vi has dimension i, and there is an orthogonal transformation Tt of the 
n -dimensional space which maps Vt onto the subspace Wj consisting of all 
vectors whose first n — i components are 0. Now suppose w l 5 . . . , u{ are fixed. 
Since Tt is measure-preserving and distance-preserving, Tiui+l is a random 
variable which is uniformly distributed over Sn_! and the length of its projec­
tion into the orthogonal complement of T̂ Vj = Wt equals 7ri+1. Thus, for fixed 
w i?. . . , Mi, the distribution of irf+1 is identical to that of the variable Tjn>n_i 
defined in Lemma 2, and so log IT£+1 is distributed identically to con n _ j . 
However, the u{ are independent random variables, and so the distribution of 
log 77i+1 does not depend on u1,. . . , uh and the variables 7r2,. . . , 7rn are also 
independent. 

Thus, we have shown that the distribution of log h(A) is the same as the 
distribution of the sum YA=2 l°g ^ °f independent random variables where 
log 7ri+l is distributed like con n_t. Thus the mean of log h(A) is the sum of the 
means of a)nr (r = 1,. . . , n — 1) and the variance of log h(A) is the sum of the 
variances. 
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Hence Lemma 2 shows that 

* , = ï H l o g ( n / r ) + è n - 1 - è r - 1 + 0 ( r - 2 ) } = 4 n - 3 l o g n + 0 ( l ) 
r = l 

and 

o i = I %r~l + 0(r~2)} = \ log n + O(l) . 
r = l 

This proves part (i) of the Theorem. Part (ii) follows immediately using the 
Chebychev inequality. 
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