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Abstract

We apply Stein’s method for probabilistic approximation by a compound geometric
distribution, with applications to Markov chain hitting times and sequence patterns.
Bounds on our Stein operator are found using a complex analytical approach based on
generating functions and Cauchy’s formula.
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1. Introduction

Stein’s method for probabilistic approximation has been greatly developed in recent years
and applied in a wide variety of situations. See, for example, [1], [5], and [17] for further
detail. In this work we apply Stein’s techniques to calculate error bounds in approximations
by compound geometric distributions. The compound geometric distribution generalises the
geometric distribution, to which Stein’s method has already been applied in [2], [13], and [14].

We wish to bound the error in approximating some (discrete) random variable W by a
compound geometric random variable. We say that Y has a compound geometric distribution
if

Y
d=

N∑
i=1

Xi, (1.1)

where X1, X2, . . . are independent and identically distributed (i.i.d.) positive integer-valued
random variables and N ∼ Geom(p) has a geometric distribution that satisfies P(N = k) =
p(1 − p)k for k ≥ 0. Here, ‘

d=’ denotes equality in distribution. Such distributions arise
naturally in many situations. See [11] and the references therein.

We are mainly concerned with the approximation in the total variation distance, defined by

dTV(W, Y ) = sup
B⊆Z+

|P(W ∈ B) − P(Y ∈ B)|,

although our results may also be used to give bounds in other probability metrics.
In Section 2 we outline how Stein’s method may be applied in the compound geometric

case, and state bounds on the resulting Stein operator which we will need in the work that
follows. The proof of these bounds is deferred until Section 4. In Section 3 we consider
some applications of our results. In particular, we derive in Section 3.1 a compound geometric
approximation for Markov chain hitting times which generalises a result of [13].
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Compound geometric approximation 147

2. The Stein equation

We consider the problem of approximating our random variable W by our compound
geometric distribution Y defined by (1.1). We write p = 1 − q, µi = P(X = i), and qi = qµi .
Denote this distribution by Y ∼ CG(p, µ), where µ = (µ1, µ2, . . .).

Following Stein’s method, we need a linear operator A such that

W
d= Y ⇐⇒ E[Ag(W)] = 0 for all g ∈ F ,

for some suitable class of functions F . In this case we let F be the class of bounded functions
h : Z

+ �→ R. We call A our characterising operator. When applying Stein’s method to the
compound geometric distribution, we can choose the characterising operator A defined by

Ag(k) = q E[g(k + X)] − g(k). (2.1)

This choice can be established in the same way as the characterising operator for the compound
Poisson distribution considered in [4]. We denote by S the so-called Stein operator, defined
such that f = Sh solves the Stein equation

h(k) − E[h(Y )] = Af (k). (2.2)

We may then write E[h(W)] − E[h(Y )] = E[Af (W)]. Bounding |E[Af (W)]| thus yields a
bound on the error in our approximation.

In Section 4 we derive a representation of our Stein operator from which we establish the
bounds in Theorem 2.1, below. Note that this representation satisfies Sh(0) = 0 for all h

bounded. Furthermore, these bounds are applicable only when there is some l ∈ N such that
P(X ≤ l) = 1.

In the sequel we use ‖·‖∞ to denote the supremum norm, ‖g‖∞= supi∈Z+ |g(i)|. We write
� for the forward difference operator, so that �g(k) = g(k + 1) − g(k).

Theorem 2.1. Let Y ∼ CG(p, µ), where µ = (µ1, . . . , µl, 0, 0, . . .) for some l ∈ N. Let S

be the Stein operator corresponding to the characterising operator (2.1). For h : Z
+ �→ R

bounded and n ∈ N,

‖Sh‖∞ ≤ 1

p
‖h − E[h(Y )]‖∞, (2.3)

‖�nSh‖∞ ≤ 1

p
‖�nh‖∞, (2.4)

sup
j,k∈Z+

|Sh(j) − Sh(k)| ≤ 1

p

(
sup
i∈Z+

h(i) − inf
i∈Z+ h(i)

)
. (2.5)

The proof of Theorem 2.1 is given in Section 4, before which we consider some applications
of the compound geometric approximation.

3. Applications

Throughout this section, we let Y ∼ CG(p, µ) and W be a random variable supported
on Z

+. We write f = Sh, where S is defined as in Theorem 2.1. We assume that W satisfies

P(W = 0) = P(Y = 0) = p, (3.1)
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148 F. DALY

and define the random variable V such that

V + X
d= W | W > 0. (3.2)

Such coupling constructions are used in [5] for the Poisson approximation and in [13] for the
geometric case.

Assuming that W and X are independent, we use (2.1) and (2.2) to write

E[h(W)] − E[h(Y )] = E[Af (W)]
= q E[f (W + X)] − q E[f (W) | W > 0]
= q E[f (W + X) − f (V + X)], (3.3)

since f (0) = 0. Combining (3.3) with Theorem 2.1, we obtain the bounds in Propositions 3.1
and 3.2, below. In the following, we use W ≤st V to denote that the random variable W is
stochastically smaller than V .

Proposition 3.1. Let the random variables V , W , and Y be as above. Suppose that either
W ≤st V or V ≤st W . For h : Z

+ �→ R bounded,

|E[h(W)] − E[h(Y )]| ≤ ‖�h‖∞|E[W ] − E[Y ]|.
Proof. From (3.3) we immediately obtain the bound

|E[h(W)] − E[h(Y )]| ≤ q‖�f ‖∞ E |W − V | ≤ q

p
‖�h‖∞ E |W − V |,

using Theorem 2.1. If, say, V ≤st W then we can construct random variables V ∗ and W ∗ on
the same probability space such that W ∗ d= W , V ∗ d= V , and V ∗ ≤ W ∗ almost surely. See
[16, p. 5]. In this case E |W − V | = E[W − V ]. Using the definition of V to compute this
expectation yields the desired result. A similar argument holds if W ≤st V .

Proposition 3.2. Let the random variables V , W , and Y be as above. For h : Z
+ �→ R

bounded,

|E[h(W)] − E[h(Y )]| ≤ q

p
P(W 
= V )

[
sup
i∈Z+

h(i) − inf
i∈Z+ h(i)

]
,

and in particular dTV(W, Y ) ≤ (q/p)dTV(W, V ).

Proof. From (3.3) we have

|E[h(W)] − E[h(Y )]| ≤ q P(W 
= V ) sup
j,k∈Z+

|f (j) − f (k)|,

from which the first part of the result follows on applying Theorem 2.1. The final part follows
using the definition of the total variation distance and taking the supremum over all random
variables V satisfying the required condition.

Example 3.1. We consider an example from [14]. Suppose that m balls are placed randomly
in d ≥ 2 compartments, with all assignments equally likely. Let W be the number of balls in
the first compartment. Then W ∼ Pya(m, d) has a Pólya distribution with

P(W = k) =
(

d + m − k − 2

m − k

)/(
d + m − 1

m

)
, 0 ≤ k ≤ m.
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In line with (3.1), we compare Y to W ∼ Geom(p), where

p = P(W = 0) = d − 1

d + m − 1
.

In this case we have P(X = 1) = 1, and so using (3.2) we can check that V ∼ Pya(m − 1, d)

and that V ≤st W . Hence, by Proposition 3.1,

dTV(W, Y ) ≤ m

d(d − 1)
. (3.4)

In many cases this performs better than other bounds available. In [14], W is compared to
Z ∼ Geom(r), where r = d/(d + m). This approximating distribution is chosen such that
E[W ] = E[Z], and is therefore different to ours. It was shown in [14] that

dTV(W, Z) ≤ 2m(d + 2m)

d(d + 1)(d + m − 1)
. (3.5)

Comparing the bounds (3.4) and (3.5), our bound is sharper whenever m > (d − 1)2/(3d − 5).

We turn now to our main application, the approximation of Markov chain hitting times by
a compound geometric distribution. In this work we generalise a bound of [13]. For further
applications of Stein’s method to Markov chains, see, for example, [6].

3.1. Markov chain hitting times

Suppose that {ξi : i ≥ 0} is an ergodic discrete-time Markov chain started (at time zero)
according to its stationary distribution. Define W = min{i : ξi ∈ B}, the time of the first visit
to some set of states B. We denote the stationary distribution of this Markov chain by π , and
write πi = P(π = i). We also write

P
(n)
ij = P(ξn = j | ξ0 = i).

We let Bi denote the set of states from which a move to B requires a minimum time i. That is,

Bi = {j : P(ξi ∈ B | ξ0 = j) > 0 and P(ξk ∈ B | ξ0 = j) = 0 for k = 0, 1, . . . , i − 1}
for i = 0, 1, . . . . Note that B0 = B. In order to apply Theorem 2.1, we assume that there is
some l ∈ N such that Bi = ∅ for i > l.

We approximate W by Y ∼ CG(p, µ), choosing

p = P(W = 0) =
∑
j∈B

πj (3.6)

and

µi = P(ξ0 ∈ Bi | ξ0 
∈ B) =
∑

j∈Bi
πj∑

j 
∈B πj

=
∑

j∈Bi
πj

1 − p
. (3.7)

We then obtain the following bound.

Theorem 3.1. Let {ξi : i ≥ 0} be an ergodic Markov chain started according to its stationary
distribution π , and let W = min{i : ξi ∈ B} be the time of its first visit to a set of states B. Let
Y ∼ CG(p, µ), where p is defined by (3.6) and µi is defined by (3.7). Let X be the random
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variable with P(X = i) = µi , and assume that there is some l ∈ N such that µi = 0 for all
i > l. Then

dTV(W, Y ) ≤ 1

p
E

∑
i,j∈B

πi

∑
n≥0

|P (n+X)
ij − πj |.

Proof. The result follows from Proposition 3.2. Fix some k ≥ 1, and define a Markov chain
{Ẑ(k)

1 , . . . , Ẑ
(k)
k , ξ̂

(k)
0 , ξ̂

(k)
1 , . . .} with the same transition probabilities as our original chain, but

started according to π restricted to Bk and rescaled so as to sum to 1. Let

V (k) = min{i : ξ̂
(k)
i ∈ B}.

Given that X = k, letting V
d= V (k), we find that V satisfies (3.2).

We further define the Markov chain {Z(k)
1 , . . . , Z

(k)
k , ξ

(k)
0 , ξ

(k)
1 , . . .}, again with the same

transition probabilities as our original, and again started according to π . We define W(k) =
min{i : ξ

(k)
i ∈ B} so that, for each k ≥ 1, W(k) d= W . Hence, we obtain

P(W 
= V ) =
l∑

k=1

µk P(W(k) 
= V (k)). (3.8)

Following the argument of [13], for each k ≥ 1, we have

P(W(k) 
= V (k)) ≤
∑
j∈B

∑
n≥0

[P(ξ (k)
n = j, ξ̂ (k)

n 
= j) + P(ξ (k)
n 
= j, ξ̂ (k)

n = j)]. (3.9)

We couple our Markov chains using the maximal coupling of [8] and [15], so that P(ξ
(k)
n =

ξ̂
(k)
n = j) = πj ∧ P(ξ̂

(k)
n = j). Following calculations on [13, p. 709], we then obtain

P(ξ (k)
n = j, ξ̂ (k)

n 
= j) =
(

πj −
∑
i 
∈B

πi

q
P

(n+k)
ij

)
+

=
(

1

q

∑
i∈B

πi[P (n+k)
ij − πj ]

)
+
.

This is bounded to obtain

P(ξ (k)
n = j, ξ̂ (k)

n 
= j) ≤ 1

q

∑
i∈B

πi(P
(n+k)
ij − πj )+.

A similar argument yields

P(ξ (k)
n 
= j, ξ̂ (k)

n = j) ≤ 1

q

∑
i∈B

πi(πj − P
(n+k)
ij )+.

Combining these with (3.9) we obtain

P(W(k) 
= V (k)) ≤ 1

q

∑
i,j∈B

πi

∑
n≥0

|P (n+k)
ij − πj |.

Applying (3.8) gives us

P(W 
= V ) ≤ 1

q

l∑
k=1

µk

∑
i,j∈B

πi

∑
n≥0

|P (n+k)
ij − πj | = 1

q
E

∑
i,j∈B

πi

∑
n≥0

|P (n+X)
ij − πj |.

The result then follows on application of Proposition 3.2.
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Example 3.2. We again follow [13] and apply our Theorem 3.1 to sequence patterns. Let
η0, η1, . . . be a sequence of i.i.d. Bernoulli trials, and let Ij be the indicator of the event that a
given k-digit pattern appears in ηj , . . . , ηj+k−1. We let W be the number of trials before the
first occurrence of our pattern, so that W = min{j : Ij = 1}.

Define cj = P(Ij = 1 | I0 = 1) for j = 1, . . . , k − 1. Following [13] we define a 2k state
Markov chain such that at time n our Markov chain gives the outcome of the k Bernoulli trials
starting at time n. Let B denote the state corresponding to our given k-digit pattern. We define
our approximating compound geometric distribution Y using (3.6) and (3.7).

Since

P
(n)
BB =

{
cn if 1 ≤ n ≤ k − 1,

p otherwise,

Theorem 3.1 gives

dTV(W, Y ) ≤
k−1∑
i=1

i∑
n=1

µn|ci − p|. (3.10)

This gives a sharper bound than the geometric approximation considered in [13]. Theorem 3
of [13] shows that

dTV(W, Z) ≤
k−1∑
i=1

|ci − p|, (3.11)

where Z ∼ Geom(p). Since
∑i

n=1 µn < 1 for each 1 ≤ i ≤ k − 1, (3.10) does indeed give a
tighter bound.

For example, let k = 3 and consider the time until the appearance of the pattern 010 in
a sequence of i.i.d. Bernoulli trials with P(ηi = 1) = 1 − P(ηi = 0) = r for each i. The
state space of our Markov chain consists of all eight three-digit binary patterns. Following
the construction of our approximating compound geometric distribution, we partition this state
space into the disjoint sets B, B1, B2, and B3 given by

B = {010}, B1 = {001, 101}, B2 = {000, 100, 110}, B3 = {011, 111}.
Using definition (3.6), we have p = P(W = 0) = r(1 − r)2. We also note that∑

i∈B1

πi = r(1 − r)2 + r2(1 − r) = r(1 − r).

Similar calculations for B2 and B3 then give, using (3.7),

µ1 = r(1 − r)

1 − p
, µ2 = (1 − r)(1 − r + r2)

1 − p
, µ3 = r2

1 − p
.

We may also check, from the definition above, that c1 = 0 and c2 = r(1 − r). Letting
Y ∼ CG(p, (µ1, µ2, µ3)), bound (3.10) may be evaluated to give

dTV(W, Y ) ≤ r2(1 − r)2(2 − r + r2)

1 − r(1 − r)2 .

For comparison, (3.11) gives dTV(W, Z) ≤ r − r2, where Z ∼ Geom(p).
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4. Proof of Theorem 2.1

Throughout this section, we use the notation in the statement of Theorem 2.1 and let ĥ =
h−E[h(Y )]. We begin by stating a representation of our operator S. Writing f = Sh, we have

f (j) = − E

[ ∞∑
r=0

qr ĥ(Wr)

∣∣∣∣ W0 = j

]
, (4.1)

where Wr = W0 + X1 + · · · + Xr and X1, X2, . . . are i.i.d. random variables as in (1.1). To
check that this satisfies our Stein equation, we note that

E E

[ ∞∑
r=0

qr+1ĥ(Wr)

∣∣∣∣ W0 = j + X

]
= E

[ ∞∑
r=1

qr ĥ(Wr)

∣∣∣∣ W0 = j

]
,

and, hence, with f as above, and recalling that we define Af (j) = q E[f (j + X)] − f (j),

Af (j) = E

[ ∞∑
r=0

qr ĥ(Wr)

∣∣∣∣ W0 = j

]
− E E

[ ∞∑
r=0

qr+1ĥ(Wr)

∣∣∣∣ W0 = j + X

]

= E[ĥ(W0) | W0 = j ]
= ĥ(j),

so that f satisfies (2.2).
We next use (4.1) to find another representation of f that we may bound to prove Theorem 2.1.

From (4.1) we may write

f (j) = −
∑
k≥0

ĥ(k)uk(j), where uk(j) =
∞∑

r=0

qr P(Wr = k | W0 = j). (4.2)

Consider a defective renewal process in discrete time, such that the first renewal occurs at
time W0. Given a renewal at time m, there is a renewal at time m + k with probability qk for
k = 1, 2, . . . . With probability p, there are no further renewals after time m. With this process
in mind we can write

uk(j) = P(renewal occurs at time k | first renewal occurs at time j).

We define the generating functions Uj(t) and Q(t) for t ∈ C by

Uj(t) =
∑
k≥0

uk(j)t−k and Q(t) =
∑
k≥0

qkt
−k.

Clearly, uk(j) = 0 for k < j and uj (j) = 1. For k > j , conditioning on the time of the
second renewal gives uk(j) = ∑

s≥1 uk−s(j)qs . Hence, we have Uj(t) = t−j + Q(t)Uj (t),
from which we obtain Uj(t) = t−j [1 − Q(t)]−1. See also, for example, Section 13.4 of [7].

We apply Cauchy’s formula to invert Uj(t). That is, we note that

uk(j) = 1

2π i

∫
�

Uj (t)t
k−1 dt = 1

2π i

∫
�

tk−j−1

1 − Q(t)
dt, (4.3)
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where � is a circular contour in C centred on the origin. Thus, combining (4.2) and (4.3),

f (j) = − 1

2π i

∞∑
k=0

ĥ(k)

∫
�

tk−j−1

1 − Q(t)
dt = 1

2π i

∞∑
k=0

ĥ(k)

∫
�

t l+k−j−1

−t l + ∑l
m=0 qmtl−m

dt, (4.4)

where we choose � to be a circle in C centred on the origin and with radius r for some q1/l <

r < 1. Cauchy’s formula is also employed in [3], in combination with Fourier techniques, to
derive a representation of a Stein operator for compound Poisson approximation.

Before proceeding, we state three results from complex analysis we will need in our proof.
Proofs of Lemmas 4.1–4.3 may be found in [9], [10], and [12], respectively. In the sequel, when
applying Lemmas 4.1 and 4.2, we need the fact that the integrands of (4.4) may be written as
ratios of polynomials (of finite degree). Without the existence of l ∈ N such that µj = 0 for
all j > l (as specified in the statement of Theorem 2.1), this would not be the case.

Lemma 4.1. Let R(t) = ant
n + an−1t

n−1 + · · · + a0 be a polynomial of degree n, and let
r > 0. If

|amrm| >

n∑
j=1
j 
=m

|aj r
j |

then R has m roots inside the circle of centre 0 and radius r in C.

Lemma 4.2. Let P and Q be polynomials, of degree m and n, respectively. Let P have leading
coefficient a and Q have leading coefficient b. Then

∫
�

P (t)

Q(t)
dt =

{
2π ia/b if n = m + 1,

0 if n ≥ m + 2,

where � is a smooth, closed contour in C with all the zeros of Q in its interior.

Lemma 4.3. Let z ∈ C. Suppose that g(z) = 0 and g′(z) 
= 0. The residue of 1/g at z is
1/g′(z).

Defining R(t) = −t l + ∑l
k=1 qkt

l−k , we can show that R((q + ε)1/l) < 0 for any ε > 0.
Applying Lemma 4.1, we note that in (4.4) all the poles of our integrands lie within our chosen
contour �. We may then immediately apply Lemma 4.2 to find that many of the integrals in
(4.4) are 0. We thus obtain the representation of f that we employ:

f (j) = 1

2π i

∞∑
k=j−l+1

ĥ(k)

∫
�

t l+k−j−1

−t l + ∑l
m=1 qmtl−m

dt. (4.5)

We will also need the following result.

Lemma 4.4. Let l ∈ N and m ∈ Z
+. Let q1, . . . , ql , and let the contour � be as above. We

have ∫
�

tm

−t l + ∑l
k=1 qkt l−k

dt = −ic

for some c ≥ 0 depending on l and m.
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Proof. When m < l, we apply Lemma 4.2 directly to obtain the result. When m ≥ l, we
write the integrand as the sum of a polynomial and a rational function to which Lemma 4.2
may be applied. The former is analytic and so has integral 0. We can check that Lemma 4.2
applied to the latter gives the required result.

Combining (4.5) and Lemma 4.4, we immediately obtain

|f (j)| ≤ − 1

2π i
‖ĥ‖∞

∞∑
k=0

∫
�

tk

−t l + ∑l
m=1 qmtl−m

dt

= − 1

2π i
‖ĥ‖∞

∫
�

1

(1 − t)(−t l + ∑l
m=1 qmtl−m)

dt. (4.6)

Using Lemma 4.2, if � were extended to include the point 1 in its interior, the integral in (4.6)
would be 0. Since � includes all other poles of the integrand, we use Cauchy’s residue formula
to note that (4.6) gives the bound |f (j)| ≤ C‖ĥ‖∞, where C is the residue of (1 − t)−1(−t l +∑l

m=1 qmtl−m)−1 at t = 1. Using Lemma 4.3, this residue is p−1. This completes the proof
of (2.3).

For (2.4), we need a generalisation of the representation (4.5), as in Lemma 4.5, below.

Lemma 4.5. Let n ≥ 1. With the notation above,

�nf (j) = 1

2π i

∞∑
k=j−l+1

�nh(k)

∫
�

t l+k−j−1

−t l + ∑l
m=1 qmtl−m

dt.

Proof. We proceed by induction on n. From (4.5) we can show that

�f (j) = 1

2π i

∞∑
k=j−l+1

ĥ(k)

∫
�

(1 − t)tj+k−j−2

−t l + ∑l
m=1 qmtl−m

dt. (4.7)

We note that

∞∑
k=−1

∫
�

(1 − t)tk

−t l + ∑l
m=1 qmtl−m

dt =
∫

�

1

t (−t l + ∑l
m=1 qmtl−m)

dt = 0, (4.8)

by Lemma 4.2. Hence, (4.7) gives

�f (j) = 1

2π i

∞∑
k=j−l+1

h(k)

∫
�

(1 − t)tj+k−j−2

−t l + ∑l
m=1 qmtl−m

dt. (4.9)

We write h(k) = h(0) + ∑k−1
m=0 �h(m). Substituting this into (4.9) and using (4.8) to note that

the term involving h(0) is 0, we interchange the order of summation in the resulting expression
to obtain

�f (j) = 1

2π i

[ j−l∑
m=0

�h(m)

] ∞∑
k=j−l+1

∫
�

(1 − t)t l+k−j−2

−t l + ∑l
s=1 qst l−s

dt

+ 1

2π i

∞∑
m=j−l+1

∞∑
k=m+1

�h(m)

∫
�

(1 − t)t l+k−j−2

−t l + ∑l
s=1 qst l−s

dt. (4.10)

https://doi.org/10.1239/jap/1269610822 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1269610822


Compound geometric approximation 155

Again, using (4.8), the first term of (4.10) is 0. Interchanging the integration and summation
over k in the second term gives us the required representation when n = 1.

For the inductive step, we proceed similarly to the above. We assume our representation of
�n−1f , and, thus, obtain an analogue of (4.7):

�nf (j) = 1

2π i

∞∑
k=j−l+1

�n−1h(k)

∫
�

(1 − t)t l+k−j−2

−t l + ∑l
m=1 qmtl−m

dt. (4.11)

Writing �n−1h(k) = �n−1h(0) + ∑k−1
m=0 �nh(m) and proceeding as we did for n = 1 gives

us our lemma.

To complete the proof of (2.4), we bound the representation of Lemma 4.5 in the same way
as (4.5) above. To see (2.5), we define

ck(j) = − 1

2π i

∫
�

t l+k−j−1

−t l + ∑l
m=1 qmtl−m

dt.

By Lemma 4.4, ck(j) ∈ R
+ for all j ∈ Z

+ and k ≥ j − l + 1. Using (4.5), we can show that
f (r) − f (s) = ∑

k≥s−l+1 h(k)ck(s) − ∑
k≥r−l+1 h(k)ck(r) for any r, s ∈ Z

+. Thus, for any
bounded, nonnegative function h : Z

+ �→ R, we have

|f (r) − f (s)| ≤ max

{ ∑
k≥r−l+1

h(k)ck(r),
∑

k≥s−l+1

h(k)ck(s)

}

≤ ‖h‖∞
∑

k≥j−l+1

ck(j)

= 1

p
‖h‖∞,

where the integrals are evaluated as above. It remains only to remove the restriction that h

must be nonnegative. To this end, we define, for any h : Z
+ �→ R, the function H given by

H(k) = h(k) − infm∈Z+ h(m). Since H is nonnegative, we apply the above to note that, for
r, s ∈ Z

+,

|SH(r) − SH(s)| ≤ 1

p
‖H‖∞ = 1

p

(
sup

m∈Z+
h(m) − inf

m∈Z+ h(m)
)
.

Finally, it is straightforward to check that SH(r) − SH(s) = Sh(r) − Sh(s). This completes
the proof of Theorem 2.1.

Remark 4.1. We note that the bounds of Theorem 2.1 are sharp. To see this for (2.4), take
h : Z

+ �→ R such that �nh(j) = 1 for all j . Using the representation in Lemma 4.5 and
evaluating the integrals as above gives us our result.

For (2.3) and (2.5), define hn(j) = I{j≥n}, so that supi hn(i)− inf i hn(i) = 1 and ‖ĥn‖∞ =
max{P(Y ≥ n), P(Y < n)} → 1 as n → ∞. By (4.5) we have

Shn(l + n − 1) = 1

2π i

∞∑
k=n

P(Y < n)

∫
�

tk−n

−t l + ∑l
m=1 qmtl−m

dt.
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We interchange the summation and integration and evaluate the remaining integral as we did
in (4.6) to obtain Shn(l + n − 1) = −p−1 P(Y < n) → −p−1 as n → ∞. This means that
(2.3) is sharp. Recalling that Sh(0) = 0 for all bounded functions h (and in particular for hn),
we also find that (2.5) is sharp.

Remark 4.2. The techniques employed above may also be used to prove other bounds for our
Stein operator S. For example, we can rearrange (4.11) to obtain, for n ≥ 1,

�nf (j) = 1

2π i

∞∑
k=j−l+1

�n−1h(k)

[∫
�

ptl+k−j−2

q − t
dt +

∫
�

t l+k−j−2 dt

]
.

Applying Lemmas 4.2, 4.3, and 4.4, we proceed as in the proof of Theorem 2.1, bounding this
representation to obtain |�nf (j)| ≤ 2‖�n−1h‖∞.
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