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Abstract
The design of a connected engineered system requires numerous design decisions that
influence one another. In a connected system that comprises numerous interacting deci-
sions involving concurrency and hierarchy, accounting for interactions while alsomanaging
uncertainties, it is imperative to make robust decisions. In this article, we present a method
for robust design using coupled decisions to identify design decisions that are relatively
insensitive to uncertainties. To account for the influence among decisions, design decisions
are modelled as coupled decisions. They are defined using three criteria: the types of
decisions, the strength of interactions and the decision levels. In order to make robust
decisions, robust design methods are classified based on sources of uncertainty, namely,
Type I (noise factors), Type II (design variables) andType III (function relationship between
design variables and responses). The design of a one-stage reduction gearbox is used as a
demonstration example. To illustrate the proposed method for robust design using coupled
decisions, we present the simultaneous selection of gear material and gearbox geometry in a
coupled decision environment while managing the uncertainties involved in designing
gearboxes.
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1. Frame of reference
While one aspect of this article is on modelling coupling in design decisions
required for designing connected systems, another aspect is to improve the validity
and usefulness of decisions undertaken by identifying and addressing the effect of
uncertainties. Designing a connected engineered system requires a designer to
ascertain critical decisions and model their interactions. It is crucial to ascertain
critical decisions and model their interactions, allowing for the coupled represen-
tation of connected engineered systems using the multiple interacting decisions.
Such a coupled representation simplifies the realisation of connected engineered
systems, which is crucial for designing such systems. Our view of a connected
engineered system consists of numerous interacting design decisions that cannot
be taken by disregarding the influence of one decision on other decisions. For
instance, a gearbox is a mechanical transmission unit containing integrated gears
that provide torque and speed conversion among rotating equipment. The design
process associated with a gearbox requires solving several problems through
several stages. In essence, these stages involve decision-making as a result of
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analysis involving design calculations (static, fatigue, thermal and vibration),
materials, manufacturing, economics, and so forth. The results of the analyses
govern the decisions, and the decisions in themselves are interrelated; that is, one
decision is likely to influence other decisions. To effect better decision-making in
the design of such engineered systems, it is imperative to:

(i) Identify critical decisions for designing such systems.
(ii) Identify analyses from various knowledge domains that govern the decisions.
(iii) Identify and model how these decisions interact.

However, to undertake such coupled decisions, we rely on the models that are
an abstraction of reality and are typically incomplete and inaccurate and incorpo-
rate different levels of fidelity. This requires identifying robust solutions away from
the boundary solutions (optimal) that are relatively insensitive to the effect induced
when the inherent assumptions in models do not hold. This is even more critical
when numerous interacting decisions ensure that the cumulative effects of incom-
pleteness and inaccuracies in each decision do not guide us to an infeasible
decision. On the other hand, design decisions that rely on computer simulations
do not account for uncertainties induced by noise factors (uncontrollable param-
eters), design variables (controllable parameters), the model approximations used
in creating simulation models or uncertainty propagation across different length
and time scales (Choi et al. 2005; Allen et al. 2006). Similarly, uncertainties in
experimental data arise as a result of strong dependencies on the environment,
methodology and equipment involved in the experiment. Therefore, uncertainty
management methods are critical to enable the development of robust design
methods. This necessitates studying the source of these uncertainties and devel-
oping appropriate methods to address them. To manage uncertainties and effect
robust decision-making, robust design principles are to be integrated. To enable
robust decision-making in a coupled decision environment, the gaps identified,
and relevant hypothesis are as follows:

Gap 1 A method to design using coupled design decisions is needed.

Hypothesis 1 By establishing criteria to classify design decisions, we develop a
method to study andmodel coupling in design decisions. As an outcome, a decision
classification scheme, Multilevel Decision Scenario Matrix (MDSM), is created.
Depending on the number and nature of decisions, decision interaction and levels
in decisions, different decision scenarios are created using MDSM to formulate a
specific design problem. In this article, one instance of a decision scenario is
demonstrated for the robust design of a one-stage gearbox.

Gap 2 A method to explore robust solutions to coupled design decisions that are
relatively insensitive to uncertainties by relying on typically incomplete and
inaccurate models and incorporate different levels of fidelity is needed. Managing
the effect of uncertainties is therefore critical to ensure the validity and usefulness
of the design decisions and, hence, improve the design’s quality and reliability.

Hypothesis 2 By incorporating robustness metrics [design capability index (DCI)
and/or error margin index (EMI)] as design goals and constraints in the coupled
decisions, we enhance the usefulness and validity of design decisions by managing
uncertainties.
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Before we present our approach, we discuss three papers that are foundational
to the work we are presenting: the design of coupled systems (see Table 1). Bi-level
integrated system synthesis (BLISS) applies a decomposition-based approach
whereby optimisation of a complicated engineered system is carried out by
separating system-level optimisation from numerous subsystem optimisations
(Sobieszczanski-Sobieski, Agte & Sandusky 1998; Sobieszczanski-Sobieski et al.
2002). The subsystem-level optimisationminimises the contribution to the system-
level objective under local constraints. In contrast, coordination between the
subsystems is guided by the derivatives of the behaviour and local design variables
with respect to shared design variables. Similarly, collaborative optimisation
(CO) applies a bi-level optimisation consisting of a system-level and subspace
optimisation (Kroo 2004). In this approach, a local objective related to the system
objective is satisfied while also satisfying constraints locally. On the other hand,
analytical target cascading (ATC) applies a hierarchical multilevel optimisation
formulation whereby the objective is to minimise the discrepancy between the
target and response at each level. The target at subsequent level is derived from the
optimal values calculated at the previous level. In recent years, Behtash & Alex-
ander-Ramos (2020) extended ATC and combined it with a co-design-centric
formulation ofmultidisciplinary dynamic system design optimisation. The authors
applied the extended formulation for designing strongly coupled plant and con-
troller parts. Nellippallil et al. (2020) present an inverse robust design method for
hierarchical process chains for the co-design of material, product and associated
manufacturing processes and demonstrate its efficacy on the hot rolling and
cooling process chain involved in producing a steel rod.

In this article, the method for robust design in a coupled decision environment
is developed using the decision support problem technique (DSPT) construct. The
DSPT, proposed by Mistree and co-authors, has been successfully applied in
engineering problems to identify design solutions that are relatively insensitive
to uncertainties (Chen, Allen & Mistree 1993; Karandikar & Mistree 1993; Choi
et al. 2005; Seepersad et al. 2006). Some merits that DSPT offers for the design of
coupled engineered systems are:

(i) The ability to partition an engineered system as a set of interacting design
decisions based on the decision types, nature of interaction and decision
levels.

(ii) The ability to model design decisions involving selection from a pool of
alternatives.

Table 1. Summary of papers on designing coupled systems

Paper
Decision
levels

Solutions
derived

Number of
solutions

Selection
problem

Uncertainty
management

Sobieszczanski-Sobieski
et al. (2002)

2 Optimal
values

Single point Not
considered

Not considered

Kroo (2004) 2 Optimal
values

Single point Not
considered

Not considered

Kim et al. (2003) Multiple Optimal
values

Single point Not
considered

Not considered
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(iii) The ability to manage uncertainties while addressing interaction among
design decisions.

(iv) The notion of identifying multiple satisficing1 solutions rather than single
point optimal solutions. Since models of nonlinear constraints and goals are
typically incomplete and inaccurate, optimal solutions are also sensitive to
uncertainties. This is even more critical in numerous interacting systems to
ensure that the cumulative effect of inaccuracies in each decision does not
guide us to an infeasible decision.

We use a design problem involving designing a one-stage reduction gearbox to
demonstrate the robust design of a coupled engineered system. The design problem
is formulated as a coupled decision problem with two coupled decisions, which are
gear decisions and shaft decisions. Gear decisions consist of coupled compromise-
selection decisions, while shaft decisions consist of one compromise decision. The
details on the design problem are discussed in Section 1.1 and the decision coupling
in Section 2. Though we intend to present a generalised approach in designing
coupled engineered systems, we also present relevant work involving the design of
gearboxes to enable readers to appreciate the proposed method in designing
gearboxes.

1.1. Introduction to the design problem

Designing a gearbox is a complex process. The American Gear Manufacturers
Association (AGMA) is an important authority responsible for disseminating
knowledge pertaining to the design and analysis of gearing. Themethods presented
by this organisation are in general use in the United States when strength and wear
are of primary concern. Although AGMA provides a systematic procedure for
designing gears, they also offer numerous correction factors associated with
modelling the geometry, materials, manufacturing process and operating condi-
tions. These correction factors have a huge impact on the design. It is critical to
accurately ascertain their values to ensure that the gears are safe and reliable but not
overdesigned. However, this requires comprehensive knowledge about operating
conditions, materials, design and manufacturing processes which are often chal-
lenging. The presence of uncertainties involved at various stages of making
gearboxes (see Table 2) adds to the challenge of designing safe and reliable
gearboxes. The two major decisions in the design of gearboxes are decisions about
the dimensions and thematerial. In addition, a gearbox designer is also expected to
fulfil a number of design constraints while also fulfilling multiple functional
requirements.

By relying on the AGMA guidelines and procedure, through a robust design
method, we offer an extension on the AGMA design procedure to support robust
decision-making for designing gearboxes using coupled decisions that has the
following salient features:

(i) Consideration of multiple design criteria.
(ii) Coupled decision approach for simultaneous material selection and geometry

exploration.

1Satisficing is a decision-making strategy that aims for satisfactory or adequate results rather than the
optimal solution (https://www.investopedia.com/terms/s/satisficing.asp).
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(iii) Robust decision-making to manage uncertainties.
(iv) Consideration of decision coupling formodelling concurrent and hierarchical

decisions.

The simplified flowchart to illustrate AGMA procedure (AD) and the proposed
robust design method for designing gears (RD) is shown in Figure 1. The design
procedure implemented in the two methods can be explained in a simplified way
with the following steps:

Steps in the AGMA design procedure (AD)

Step 1: Design input. In Step 1, the design inputs required to solve the design
problem are identified and defined. The information about power requirement
(torque and speed), design variables and their bounds, and constraints are clearly
defined.
Step 2: Select material. In Step 2, a suitable material is selected. This selection
involves making judgments using the information gathered in Step 1. Then, all
necessary correction factors as defined by AGMA are applied to the material.
Step 3: Determine design variables. In Step 3, suitable values for the design variables
are ascertained. This may involve some calculations and iterations.
Step 4: Satisfy design constraints.The values ascertained for the design variables and
the selected material are checked to determine whether the design constraints
identified in Step 1 are satisfied. If the constraints are satisfied, a design solution is
obtained, otherwise, Steps 1, 2 and/or 3 are iterated until a satisfactory solution is
obtained.

Table 2. Critical review of literature

Paper

Design focus

Single
criteria

Multiple
criteria

Material
selection

Uncertainty
management

Höhn, Michaelis &Hinterstoißer (2009) ✔

Bozca (2010) ✔

Goharimanesh, Akbari & Tootoonchi
(2014)

✔

Osyczka (1978) ✔

Deb & Jain (2003) ✔

Stefanović-Marinović, Troha &
Milovančević (2017)

✔

Terán, Martínez-Gómez & Milla (2020) ✔

Das, Bhattacharya & Sarkar (2016) ✔ ✔

Alemayehu & Ekwaro-Osire (2014) ✔ ✔

Gautham et al. (2017) ✔ ✔

Ognjanovic & Milutinovic (2013) ✔ ✔

Salomon et al. (2016) ✔ ✔
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Steps in the proposed robust design method (RD):

Step 1: Design input. In Step 1, design inputs required to solve the design problem
are identified and defined. The power requirement (torque and speed), design
variables and their bounds, and constraints are clearly defined.
Step 2: Coupled DSP. In Step 2, a coupled DSP is formulated. The coupled DSP
consists of two decisions defined in Steps 2a and 2b, which are implemented
concurrently. Step 2a is a compromise decision, and Step 2b is a selection decision
modelled as cDSPs and sDSPs. The implementation of the cDSP helps determine
the correct values for design variables, that is, the gear geometry. At the same time,
the sDSP is used to select a suitable gear material from a given pool of material
alternatives. The two decisions in Figure 1 are used for illustrative purposes, while
there could be multiple interacting decisions. In the gearbox example used in this
article, there are three interacting decisions. Two coupled decisions of gear design
interact with one decision about shaft design (see Section 2).

Uncertainties (A) and Multiple Design Criteria (B) are inputs to the coupled DSP.
The control factors, noise factors, responses and bounds are specified for the given
design problem for uncertainty management. In the example implemented in this
article, three types of uncertainties (Type I, Type II and Type III) are considered
(see Tables 3 and 4). For consideration of multiple design criteria, goals are defined
and implemented within the coupledDSP construct. By assigning different weights
for the multiple goals, several design scenarios are generated.

Step 3: Satisfy design constraints.The values ascertained for the design variables and
the material selected in Step 2 using coupled DSP are checked to determine
whether the design constraints identified in Step 1 are satisfied. If the constraints

Figure 1. Comparison of proposed design method with American Gear Manufacturers Association (AGMA)
for gear design.
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are satisfied, a design solution is obtained; otherwise, Steps 1 and/or 2 are repeated
until a satisfactory solution is obtained.

Some distinctive advantages of RD over AD for designing gears are as follows:

(i) Exploration of gear design space against multiple conflicting goals,
(ii) Simultaneous exploration of gear dimensions against available material alter-

natives and
(iii) Consideration of uncertainties enables the design of reliable and robust gears.

Table 4. Utility of three types of uncertainties in gearbox design

Types of
robust
design Types of uncertainty Example in gearbox design Quantification

I Natural uncertainty Uncertainty in the
operating (loads),
environmental
(temperature) conditions
and/or manufacturing
variations

Type I, II: Design Capability
Index (DCI), Monte Carlo
Simulation, Latin Hyper
Cube, First/Second
Moment Method, etc.

II Parameter uncertainty Uncertainty in the
material, design, and
manufacturing (see
Table 3)

III Model structural
uncertainty

Uncertainty in the
material, design, and
manufacturing (see
Table 3)

Type III: Error Margin Index
(EMI), Variance Function
Estimation, Prediction
Interval Approach, etc.

Table 3. Uncertainties involved in making of a gearbox

Stages Parameter uncertainty Model uncertainty Ramifications

Material
processing

Grain size, ferrite fraction
and cooling rate

Simulation or empirical
model mapping
parameters/variables to
material properties

Induces variability in the
material properties
values

Design Module, face width and
pitch circle diameter

Numerous design factors
(temperature factor,
shape and size factors,
reliability factor, surface
finish factor, etc.)

Induces variability in the
design performance
(Torque capability,
reliability, weight,
vibrations, etc.)

Manufacturing Gear and shaft machining accuracy, shaft taper angle,
surface finishes, tolerances, measurement accuracies and
residual stresses

Induces variability in the
design performance
(Torque capability,
reliability, weight,
vibrations, etc.)

7/31

https://doi.org/10.1017/dsj.2021.22 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.22


Although mechanical gearboxes are optimised for torque and speed, there are
numerous other functional requirements to be satisfied, such as efficiency (Höhn
et al. 2009), noise, vibration (Bozca 2010), volume and size (Osyczka 1978). The
available literature that addresses gearbox design as multicriteria design problem.
Höhn et al. (2009), Bozca (2010) and Goharimanesh et al. (2014) present a method
for designing gearboxes with a single criterion while Osyczka (1978), Deb & Jain
(2003) and Stefanović-Marinović et al. (2017) present a method for designing
gearboxes with multiple criteria. Suitable material selection is another critical
aspect of designing gearboxes. Multicriteria decision-making methods are com-
mon approaches applied in material selection. Terán et al. (2020) present multi-
criteria decision methods for selecting material by optimising surface fatigue in
gearbox while also increasing its resistance to wear. Das et al. (2016) showcase an
approach for simultaneous selection of material and geometric variables in gear
design using decision-based design. Designing gearboxes in the presence of uncer-
tainty has also received due attention among researchers. Alemayehu & Ekwaro-
Osire (2014) offer a probabilistic, multibody dynamic analysis (PMBDA) design
approach for designing wind turbine gearboxes by addressing the loading and
design parameter uncertainties while considering five performance functions.
Gautham et al. (2017) propose a robust design method for designing gears by
addressing the uncertainties associated with the introduction of numerous ‘cor-
rection factors’ by the AGMA. The authors introduce a method to eliminate two
correction factors from the AGMA design standards for designing a spur gear: the
factor of safety in contact and the reliability factor by introducing uncertainty in the
magnitude of the load and material properties. On the other hand, Ognjanovic &
Milutinovic (2013) adopt a reliability-based methodology to design an automotive
gearbox to operate under varying and random operation conditions. Salomon et al.
(2016) extend the gearbox design optimisation to consider uncertainties in load
demand. The authors utilise active robust (AR) optimisation to optimise the
number of transmissions and their gearing ratios for an uncertain load demand.
AR optimisation is a methodology to design products that attain robustness to
uncertain or changing environmental conditions through adaptation.

It has been established that uncertainties degrade a designer’s ability tomake an
informed decision. When applied, the design decisions do not account for uncer-
tainties induced by noise factors (uncontrollable parameters), design variables
(controllable parameters), model approximations used in the simulation models
and uncertainty propagation across different length and time scales. Therefore,
uncertainty management methods are critical to enable robust decision-making.
The body of literature on available robust design methods is discussed by Eifler,
Ebro &Howard (2013). The robust designmethod presented in this article is based
on the sources of uncertainties. In this article, three types of uncertainty are
managed, Types I, II and III. Type I is related to uncertainties due to noise factors;
Type II is related to uncertainties due to design variables and Type III is related to
uncertainties due to mathematical models. To manage these uncertainties, three
robust design methods are utilised, they are, Types I, II and III robust design
methods. The details are discussed in Chen et al. (1996) and McDowell et al.
(2009). In context of designing gearboxes, uncertainties and methods to deal with
the uncertainties are tabulated in Tables 3 and 4, respectively.

In Section 2, we describe the types of decisions required and the interactions
among these decisions. In Section 3, the robustness metrics, DCI and EMI, are
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described in detail. In Section 4, we present the robust formulation for the coupled
decision/problem in the context of designing a gearbox. The exploration of the
solution space to identify satisficing robust design solutions is covered in Section 5.
In Section 5, we present ternary plots as an approach to explore the robust solution
space. Finally, we close the article with our remarks in Section 6.

2. Decision coupling
In our previous work, we proposed a classification scheme for coupled decisions
using DSPs, called the decision scenario matrix (DSM) (Sharma, Allen & Mistree
2019). The DSMprovides a decision framework for classifying and representing an
engineered system as a coupled engineered system with numerous interacting
decisions. In this article, we extend the DSM to aMDSM formultilevel hierarchical
coupled decisions (see Figure 2). Before making any design exploration or design
tradeoff study, the system must be represented as a network of interacting deci-
sions. On one hand, MDSM gives a criteria-governed decision framework for
doing so. On the other hand, the MDSM decision framework supports the
development of predesigned templates for configuration and execution of decision
workflows (Ming et al. 2019, 2020).

The MDSM is created by identifying and classifying decision scenarios based
on three criteria: (i) decision types (selection or compromise), (ii) strength of
interaction, and (iii) decision levels. Three axes are used to represent these

Figure 2. Multilevel decision scenario matrix (MDSM) (Sharma 2020).
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criteria. The Y-axis represents the type of coupled decisions whichmay take three
forms:

(i) Both design decisions involve compromise.
(ii) Both design decisions involve selection.
(iii) Design decisions involving a combination of selection and compromise.

The X-axis represents the strength of interaction which is coupled through
horizontal coupling. Horizontal coupling defines the influence of one DSP over
the other at the same level. This also may take three forms:

(i) No interaction exists.
(ii) Weak or one-way interaction exists.
(iii) Strong or two-way interaction exists.

Finally, the Z-axis represents the hierarchy in decisions, and the levels assigned
represent the order in which hierarchical decisions must be executed. These
levelled decisions are executed in a hierarchy and are coupled to previous decisions
made. Level 1 decisions have the highest priority and so on. The decisions at
various levels are coupled with adjacent levels defined through vertical coupling.
Vertical coupling defines the influence of decisions among adjacent levels.

Defining decision levels and interactions depend on the nature of the design
problem and the designers’ judgement. For the design problem presented in the
article, the decision levels and interactions considered are shown in Figure 3. Level
1 involves identifying decisions involving gear. Gear decisions involve two deci-
sions that are coupled:

(i) The compromise decisions, the gear dimensions.
(ii) The selection decision, the gear material.

Gear decisions are coupled to shaft decisions and executed at Level 2. Gear
decisions are modelled as coupled selection-compromise DSPs with strong inter-
action while shaft decisions as compromise DSPs with weak interaction to gear

Figure 3. Coupled representation and modelling of gearbox design problem by three
interacting decisions.

10/31

https://doi.org/10.1017/dsj.2021.22 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.22


decisions. The weak formulation defines an interaction in which there is one-way
flow of information between DSPs. The strong formulation defines an interaction
in which there is a two-way flow of information between DSPs. These coupled
DSPs are modelled with a robust formulation. The details of the robust formula-
tions are discussed in Section 3. The concise mathematical form for multilevel
interaction with strong interactions between DSPs (selection and compromise) on
Level 1 and weak interaction between DSPs at two decision levels is shown in
Table 5. It is worth noting that system variables (X1) from compromise DSP

Table 5. Simplified mathematical form for demonstrating a robust coupled selection – compromise
decision using DSPs. The shared variables are in bold type.
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influence selection goal (MF) in selection DSP and selection alternatives (Y) from
selection DSP influence compromise constraints Ai(X1,Y) and goals Gi(X1,Y) in
compromise DSP. Further, the compromise goals at Level 1 have influence on the
constraints and goals in Level 2. The nature of the information that flows between
the DSPs is specific to a particular design problem. In the example presented in this
article, information about torque flows from Level 1 to Level 2.

3. Robustness formulation
The robust formulation is implemented by incorporating twometrics, theDCI and
the EMI, as design goals and constraints. The concept used to measure process
capability is extended into design to derive these metrics as the measurements for
performance variations caused by manufacturing variations and performance
variations corresponding to a range of solutions in a design system are similar
(Chen et al. 1999). However, these designmetrics are applicable to the evaluation of
design capability when the deviation of design performance cannot be quantified
by a statistical distribution as opposed to process capability metrics used to
measure performance variations caused by manufacturing variations.

3.1. Design capability index

DCIs represent the safety margin against system failure due to uncertainty in
design variables. In particular,DCIs represent the degree of reliability bymeasuring
the capability of design decisions:

(i) To satisfy the design requirements.
(ii) To tolerate the effect of uncertainty in design variables.

In Figure 4, the mean response (μy) for the model is illustrated by a solid curve.
At x, for the variation of þΔx in a design variable, the expected variation in the
response given by the mean response model is ΔY. This lets us calculate the
maximum expected deviation in response for any given value of x and Δx. In
Figure 5, we show the mathematical formulations for implementingDCIs as a goal
in DSPs. ‘Smaller is better’ signifies that we are looking to minimise the targeted
function, while ‘Larger is better’ signifies maximising the targeted function. Fur-
ther, ‘Nominal is better’ means we are interested in obtaining a value near to the
target set. That is, we want to avoid underachievement as well as overachievement.

Steps for formulating goals as DCIs

Step 1: Using a first-order Taylor series expansion, estimate the response variation
due to variation in the design variable vector x = {x1, x2, …, xn}. The response
variation (Δy) for small variations in design variables is:

ΔY =
Xn
i= 1

∂f
∂xi

����
���� �Δxi: (1)

Step 2: Using the mean response (μy) obtained from the mean response model
(f0(x)) and the response variation due to variation in design variables (ΔY),
calculate the DCIs. For a ‘Larger is Better’ case, the DCI is calculated as:
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DCI=
μy�LRL

ΔY
: (2)

The DCI is a mathematical metric representing the safety margin against system
failure due to uncertainty in design variables. A DCI < 1 is a mean of the system
performance which falls outside the systems requirement range. A DCI ≥ 1 means
that the ranged set of design specifications satisfies a ranged set of design require-
ments, and the system is robust against uncertainty in design variables. Therefore, a
designer aims to force DCI to unity so that a more significant portion of perfor-
mance deviation falls within the design requirements range. The higher the value
forDCI, the higher themeasure of safety against failure due to uncertainty in design
variables (Choi et al. 2005).

Figure 4. Formulation of uncertainty bounds due to variations in a design variable (Choi et al. 2005).

Figure 5. Mathematical constructs for design capability indexes (DCIs).
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3.2. Error margin index

EMIs represent the amount of safety margin against system failure due to uncer-
tainty in the designmodel. In particular, EMIs represent the degree of reliability by
measuring the capability of design decisions:

(i) To satisfy the design requirements.
(ii) To tolerate the effect of uncertainty in design models.

In Figure 6, the model’s mean response (μy) is shown as a solid curve, and the
two adjacent dotted curves represent the uncertainty bounds associated with the
system model. At X, the variation of þΔX in the design variable, the expected
variation in the response given by themean responsemodel isΔY. Similarly, for the
same change in design variable at X, the expected variation in response for the two
uncertainty bounds areΔY1 andΔY2, respectively as shown in Figure 6. This lets us
calculate themaximum expected deviation in response for any given value ofX and
ΔX. In Figure 7, we show the mathematical formulations for implementing EMIs
as a goal in DSPs.

Steps for formulating goals as EMIs

Step 1: If a systemmodel has k uncertainty bounds, the response variation (Δyj) for
each of them for small variation in design variables is calculated as:

Δy j =
Xn
i= 1

∂y j

∂xi

����
���� �Δxi, (3)

where j = 0, 1, 2, …, k (number of uncertainty bounds).

Figure 6. Formulation of uncertainty bounds due to variations in a model (Choi et al. 2005).
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Step 2: After evaluating themultiple response variations ofmean response function
and the k uncertainty bound functions for variations in design variables, the
minimum and maximum responses by considering the variability in design vari-
ables and uncertainty bounds around the mean response are calculated as:

Ymax = xð ÞþΔyj
h i

, (4)

Ymin = ðxÞ�Δyj

h i
, (5)

where j = 0, 1, 2,…, k (number of uncertainty bounds), f0(x) is the mean response
function and f1(x) …. (x) are the uncertainty bound functions.

In Figure 6, we show a mean response function (solid black curve) and two
uncertainty bounds (dotted curves in black). At any x, we can calculate the value
of maximum (ymax), minimum (ymin) and mean response (μy) arising due to
uncertainty bounds. This will let us calculate the maximum expected deviation
in response for any given value of x.

Step 3: Calculate the upper and lower deviation of response at x as:

ΔYu =Ymax�ðxÞ, (6)

ΔYl = ðxÞ�Ymin: (7)

The deviations Δyu and Δyl are shown in Figure 5.

Step 4: Using the mean response (μy) obtained from the mean response model
(f0(x)) and the upper and lower deviations (Δyupper and Δylower), the EMIs are
calculated as shown in Figure 7. For a ‘Larger is Better’ case, the EMI is calculated:

EMI =
μy�LRL

ΔYl
: (8)

Figure 7. Mathematical constructs for EMIs.
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The EMI is a mathematical metric representing the safety margin against
system failure due to uncertainty in the design models. An EMI < 1 means that a
requirement limit may be violated due to uncertainty in the model. An EMI ≥ 1
means that the ranged set of design specifications satisfies a ranged set of design
requirements, and the system is robust against uncertainty in design models.
Therefore, a designer’s aim is to force EMI to unity so that an uncertainty bound
meets a requirement limit. The higher the value for EMI, the higher the measure of
safety against failure due to uncertainty in design models (Choi et al. 2005).

4. Coupled DSPs formulation for robust exploration of
gearbox decisions

We are required to design a one-stage reduction gearbox consisting of a gear-
pinion arrangement and shafts, one each at the input and output end of the gear-
pinion pair. Broadly, our task is to recommend the dimensions andmaterial for the
design. The design decisions are to be taken considering the following design
requirements:

(i) Satisficing solutions against multiple conflicting goals.
(ii) The influence of gear-pinion design on shaft design and vice versa.
(iii) The influence of selected material on dimensions and vice versa.
(iv) The expected variability in design variables, andmaterials including amethod

to manage the effect of such variability to effect robust decision-making.

4.1. Problem statement

The design of a one-stage reduction gearbox (see Figure 8) with a gear ratio of 4 is
required. The torque at input is at least 80 Nm@ 3500 rpm. The gears are required
to endure at least 107 fatigue cycles. The gears are cut using a rack cutter
arrangement with pressure angle (α) = 20°. The reliability for gears must be at
least 99%. The gearbox is to be designed for a uniform power source and moderate
shock in loads. Restrictions regarding themaximum allowable stresses on the gears
and shafts are specified. The design quality is measured in terms of design goals
that are to be achieved as much as possible. Specifically, we need a design that has
low weight and smaller height while achieving maximum torque. However, the
design must have a robust performance to minimise the impact of uncertainties
associated with design variables and material properties on performance. The task
is to select gear material from a given pool of materials and dimensions for gears
and to recommend shear strength for shaft material and shaft dimensions that give
a robust performance with respect to the constraints and the design quality
specified. The material properties for shafts are available for selection within the
specified bounds, while gear materials are available for selection.

4.2. Mathematical derivation for converting gearbox design goals
into robust design goals

Three goals are formulated as DCIs, these are, weight of gear pair (Wg), size of
gearbox (H) and weight of shaft (Ws). One goal is formulated as an EMI goal, that
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is, Torque. Themathematical derivation for the four compromise goals (three goals
for gear design and one goal for shafts design) as robustness goals are shown in
Equations (9)–(44) using Equations (1)–(8).

Goal 2: Weight of gear pair (Wg):

Wg = 13:35ðρ �b �m2 � z2Þ�10�9ðkgÞ, (9)

∂Wg

∂b
= 13:35ðρ �m2 � z2Þ�10�9, (10)

∂Wg

∂m
= 26:7ðρ �b �m � z2Þ�10�9, (11)

∂Wg

∂z
= 26:7ðρ �b �m2 � zÞ�10�9, (12)

ΔWg =
∂Wg

∂b

����
���� �Δbþ ∂Wg

∂m

����
���� �Δmþ ∂Wg

∂z

����
���� �Δz, (13)

ΔWg = 13:35ðρ �m � zÞ½ðm �ΔbÞþ2ðb � z �ΔmÞþ2ðb �m �ΔzÞ��10�9, (14)

DCIWg =
URLWg�Wg

ΔWg
, (15)

DCIWg =
URLWg �13:35ðρ �b �m2 � z2Þ�10�9

13:35ðρ �m � zÞ½ðm � z �ΔbÞþ2ðb � z �ΔmÞþ2ðb �m �ΔzÞ��10�9 , (16)

Figure 8. Schematic of a one-stage reduction gearbox.
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ΔH =
∂H
∂m

����
���� �Δmþ ∂H

∂z

����
���� �Δz, (17)

ΔH = 5½ðz �ΔmÞþðm �ΔzÞ�: (18)

Goal 3: Size of gearbox (H):

H = 5m � zðmmÞ, (19)

∂H
∂m

= 5z, (20)

∂H
∂z

= 5m, (21)

DCIH=
URLH �H

ΔH
, (22)

DCIH =
URLH �5mz

5½ðz �ΔmÞþðm �ΔzÞ� : (23)

Goal 5: Weight of shaft (Ws):

Ws = 6:129 D2
i þD2

o

� ��10�3 kgð Þ, (24)

∂Ws

∂Di
= 12:26Di�10�3, (25)

∂Ws

∂Do
= 12:26Do�10�3, (26)

ΔWs =
∂Ws

∂Di

����
���� �ΔDiþ ∂Ws

∂Do

����
���� �ΔDo, (27)

ΔWs = 12:26½ðDi �ΔDiÞþðDo �ΔDoÞ��10�3, (28)

DCIWs=
URLWs�Ws

ΔWs
, (29)

DCIWs=
URLWs�6:129ðD2

i þD2
oÞ�10�3

12:26½ðDi �ΔDiÞþðDo �ΔDoÞ�10�3 : (30)

Goal 4: Torque (Tu and Tm):

Tu =
Sc

18,348

� �2

ðb �m2 � z2ÞðNmÞ, (31)
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Tm =
St

10,760

� �
ðb �m2 � zÞðNmÞ, (32)

∂Tu

∂b
=

Sc
18,348

� �2

ðm2 � z2Þ, (33)

∂Tu

∂m
=

Sc
18,348

� �2

ð2 �b �m � z2Þ, (34)

∂Tu

∂z
=

Sc
18,348

� �2

ð2 �b �m2 � zÞ, (35)

ΔTu =
∂Tu

∂b

����
���� �Δbþ ∂Tu

∂m

����
���� �Δmþ ∂Tu

∂z

����
���� �Δz, (36)

ΔTu =
Sc

11,612

� �2

ðm � zÞ½ðm � z �ΔbÞþ2ðb � z �ΔmÞþ2ðb �m �ΔzÞ�, (37)

Tmax =TuþΔTu, (38)

Tmax = ð Sc
18,348

Þ
2

ðm � zÞ½ðb �m � zÞþðm � z �ΔbÞþ2ðb � z �ΔmÞþð2b �m �ΔzÞ�,
(39)

ΔTu =Tmax�Tm, (40)

ΔTupper=
Sc

18,348

� �2

m � zð Þ

½ðb �m � zÞþ m � z �Δbð Þþ2 b � z �Δmð Þþ2ðb �m �ΔzÞ�� St
10,760

� �
b �m2 � z� �

,

(41)

EMIT =
μy�LRL

ΔYl
=
Tm�LRLT

ΔTu
, (42)

EMIT =
ð St
10,760Þðb �m2 � zÞ�LRLT

ΔTu
, (43)
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EMIT =
St

10,760

� �
ðb �m2 � zÞ�LRLT

ð Sc
18,348Þ

2
m � zðb �m � zþm � z �Δbþ2b � z �Δmþ2b �m �ΔzÞ� St

10,760

� �
b �m2 � z

:

(44)

Following the steps outlined in Figure 1, Table 6 is formulated. The information
in Table 6 is defined using four keywords: Given, Find, Satisfy and Minimise. The
keyword ‘Given’ contains the design input, while ‘Find’ defines the coupled
decisions. The determination of compromise decisions (gearbox dimensions)
and selection decision (gear material) forms a coupled decision. The selection
decision involves the process of choosing among a number of possibilities consid-
ering several measures of merit or attributes, while compromise decision involves
the determination of the ‘right’ values (or combination) of design variables
(or parameters). Compromise and selection decisions are respectively modelled
with a cDSP and sDSP. The solution to the coupled cDSP–sDSP is explored by
considering multiple design criteria and uncertainties. The multiple design criteria
are defined by goals G1 to G5. The uncertainty is managed by modifying the
original design goals into robustness metrics (see Equations (9)–(44)). The key-
word ‘Minimise’ specifies iterating until a satisfactory result is obtained. A satis-
factory result is obtainedwhen the constraints are satisfied, and the deviations from
the predefined design targets are minimised. The mathematical foundation for
designing a gearbox is available in Budynas & Nisbett (2008). The mathematical
derivation for the four compromise goals (three goals for gear design and one goal
for shaft design) as robustness goals are shown in Equations (9)–(44) and sum-
marised in Table 6. Further information about this formulation is available in the
work of Sharma (2020).

5. Results and discussion
How are ternary plots created for solution space exploration?

A ternary plot is drawn using a triangle, as shown in Figure 9. Each side of the
triangle represents a goal. In a ternary plot, the values of the three goals usually,
this constant is represented as 1.0 or 100%. For solution space exploration, the
value of K = 1, and each side represents the weights assigned to the goal. Every
point on a ternary plot represents a different combination of weights for the goals.
The interior colour coding indicates the value achieved for a goal when a specific
combination of weights is assigned to the three goals. In Figure 9, the different
colours in the triangle’s interior indicate the values achieved for a particular goal
when different combinations of weights to the three goals are assigned. Similarly,
plots are drawn for the other remaining goals. In each plot, an acceptable region
for the particular goal is identified. Finally, a superimposed plot is made to
ascertain the region of overlap, that is, the region where all goals are met
simultaneously.

The Decision Scenario is solved for 11 different design scenarios. These
scenarios are selected based on a designer’s desire to capture the design space to
explore the solution space using different combinations of goal weights. Different
weights are assigned to different goals indicating a designer’s interest in achieving
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Table 6. Mathematical formulation for robust design of a gearbox (Additional information about
variables is available in the Nomenclarure section at the end of the article.)

Math formulation for the robust design of gearbox – coupled decisions (sDSP and cDSP)
Given
Selection system parameters
Standard gear material alternatives: X1, X2, …., X5

Design variables Materials St (MPa) Sc (MPa)

X1 AISI 1018 184.24 599.6

X2 AISI 4140 G1 266.855 943.7

X3 AISI 4350 301.5 1088

X4 AISI 4140 G2 342.808 1034

X5 AISI 8620 380 1241

Compromise system parameters
Torque (T) ≥ 80 Nm
Gear reduction ratio (G) = 4
Pressure angle (α) = 20°
Density (ρ) = 7800 kg/m3

Speed (N) = 3500 rpm
System constants

Ko= Overload factor = 1
Kv= Dynamic factor = 1
Ks = Size factor = 1
KH = Load distribution factor = 1
KB = Rim thickness factor = 1
YJ = the geometry factor for bending strength (which includes root fillet stress-concentration
factor Kf) = 1
ZE = is an elastic coefficient, (√N/mm2) = 1
ZR = surface condition factor = 1.25
ZI = geometry factor for pitting resistance = 1
AGMA factor of safety for bending SF = 1
AGMA factor of safety for contact SH = 1
Stress cycle factor for bending stress YN = 1
Temperature factor Y = 1
Reliability factor YZ = 1
Stress cycle life factor for contact ZN = 1
Hardness ratio factor for pitting ZW = 1

Find
Selection system variables

Gear Material, X1, X2, X3, X4, X5
Compromise system variables

Gear design variables Shaft design variables

Module (m) Shear strength for shaft material (Sy)

Number of teeth (z) Input shaft diameter (Di)

Face width (b) Output shaft diameter (Do)
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Table 6. Continued

Deviation variables
e1

� = Underachievement of MF goal
d1

þ = Overachievement of gear weight robust design goal
d1

� = Underachievement of gear weight robust design goal
d2

þ = Overachievement of gear size robust design goal
d2

� = Underachievement of gear size robust design goal
d3

þ = Overachievement of gear torque robust design goal
d3

� = Underachievement of gear torque robust design goal
d4

þ = Overachievement of shaft weight robust design goal
d4

� = Underachievement of shaft weight robust design goal

Satisfy
Selection system constraints

Selection constraint for gear material alternatives

X5
i= 1

Xi = 1

Compromise design constraints
Minimum allowable face width

b�8m≥0
Maximum allowable face width

b�12m≤0
Maximum allowable bending stress constraint

1�10:76YZ
T

St �m2 � z2 �b ≥0

Maximum allowable contact stress constraint

1�186:42YZ
Sc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:88

T
m � z

� �
1

b �m � z
� �

≥0

s

Maximum allowable shear stress constraint for shafts/

1�25:46T

Di
3Sy

≥0

1�101:86T

D3
oSy

≥0

Robust solution constraint on DCIWg goal

DCIWg≥1
Robust solution constraint on DCIH goal

DCIH≥1
Robust solution constraint on EMIT goal

EMIT≥1
Robust solution constraint on DCIWg goal

DCIWs≥1

22/31

https://doi.org/10.1017/dsj.2021.22 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.22


the goal targets. Assigning 1 (Scenarios 1–3) to a goal means that a designer’s
interest is to achieve the goal target as closely as possible while ignoring the other
goals. For instance, assigningweightw1= 1 toweight wouldmean that the designer
wants to obtain the weight target as closely as possible while not considering the
other two goals. Assigning 0.5 (Scenarios 4–6) to 2 goals means that the designer is

Table 6. Continued

Compromise system constraints
Constraints on deviation variables
di
þ ≥ 0, di

� ≥ 0 and di
þ. di

� = 0 for i = 1, 2 and 3
Coupled selection goal
G1 – Maximise merit function (MF)

MFi m,b,zð ÞXiþ e1
�� e1

þ = 1

Coupled compromise goals – gears
G2 – Maximise robustness goal for weight (Gear)

DCIWg

DCIWg,Target
þd�1 �dþ1 = 1

G3 – Maximise robustness goal for size (Gear)

DCIH
DCIH,Target

þd�2 �dþ2 = 1

G4 – Maximise robustness goal for torque (Gear)

EMIT
EMIT ,Target

þd�3 �dþ3 = 1

Coupled compromise goal – shaft
G5 – Maximise robustness goal for weight (Shaft)

DCIWs

DCIWs,Target
þd�4 �dþ4 = 1

where, MFi (m, b, z) =
P4
j= 1

I jRij m,b,zð Þ System bounds

B1: 24 ≤ b ≤ 72 (mm) B4: 200 ≤ Sy ≤ 400 B7: 0 ≤ x1 ≤ 1 B10: 0 ≤ x4 ≤ 1

B2: 3 ≤ m ≤ 6 (mm) B5: 20 ≤ Di ≤ 40(mm) B8: 0 ≤ x2 ≤ 1 B11: 0 ≤ x5 ≤ 1

B3: 18 ≤ z ≤ 30 B6: 30 ≤ Do ≤50(mm) B9: 0 ≤ x3 ≤ 1

Minimise
Deviation functions (Preemptive form)

Z = e1
�,
X3
i= 1

wi � di
�þdi

þ� �
,d4

�
" #

,
X3
i= 1

wi = 1
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equally interested in achieving the target of the two goals while not considering the
third goal.With the design solutions obtained in different design scenarios, ternary
plots for each goal are drawn. The axes of the ternary plots are the weights assigned
to each goal and the coloured ternary space in the interior indicate the achieved
value of that specific goal. For example, the ternary plot for the weight goal shows
the value achieved for the weight goal within the ternary space when different
weights are assigned to the other goals. For the design example presented in this
article, the three goals of the compromise DSP at Level 1 (DCIWg, DCIH and EMIT)
are shown in ternary plots. Then an acceptable region within each ternary plot is
identified. Consequently, the acceptable regions identified from each ternary plot
are superimposed in one plot to determine feasible solution regions considering
these three goals. Finally, the coupled solutions, that are, gear material (sDSP at
Level 1) and shaft decision (cDSP at Level 2) when the three gear goals (cDSP at
Level 1) are satisfied, are obtained.

For the DCIWg goal (G2 in Table 6), our interest lies in identifying robust
solutions, that is, a higher value for DCIWg. The solution space in Figure 10 is
composed of robust solutions for gear weight ensuring robustness against param-
eter uncertainty. The red region contains the robust solutions that achieve the
maximum value for the DCIWg goal whereas the blue region contains the robust
solutions that achieves theminimumvalue forDCIWg goal. Themaximum attained
value for DCIWg goal is 40.82 while the minimum attained value is 18.69. An
acceptable region within the solution space is defined as DCIWg ≥ 22 and is
identified by the black dashed line. All solution points within this region are
acceptable as they satisfy the requirement for gear weight under parameter
uncertainty.

For the DCIH goal (G3 in Table 6), our interest lies in identifying robust
solutions with a higher value forDCIH.The solution space in Figure 11 is composed
of robust solutions for gear height, ensuring robustness against parameter

Figure 9. Ternary plot for solution space exploration.
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uncertainty. The red region contains the robust solutions that achieve the maxi-
mum value for the DCIH goal. In contrast, the blue region contains the robust
solutions that achieve the minimum value for the DCIH goal. The maximum
attained value for the DCIH goal is 7.97, while the minimum attained value is
5.33. An acceptable region within the solution space is defined asDCIH≥ 6.5 and is
identified by the grey dashed line. All solution points lying within this region are
acceptable as they satisfy the requirement for gear height under parameter uncer-
tainty.

For the EMIT goal (G4 in Table 6), our interest lies in identifying robust
solutions, that is, those with higher values of EMIT. The solution space in
Figure 12 is composed of robust solutions for gear torque, ensuring robustness
against model and parameter uncertainty. The red region contains the robust
solutions that achievemaximumvalues for theEMIT goal. The blue region contains
the robust solutions that achieve the minimum value for the EMIT goal. The
maximum attained value for the EMIT goal is 1.58, while the minimum value
attained is 0.87. An acceptable region within the solution space has EMIT≥ 1 and is
delineated by the white dashed line. All solution points lying within this region are
acceptable as they satisfy the requirement for gear torque under both model and
parameter uncertainty.

As our interest lies in identifying a satisficing robust solution region against
multiple conflicting goals, we derive a superimposed robust solution space as
discussed earlier and shown in Figure 13. The overlapping region in Figure 13 is
the search space for identifying robust design solutions that meet the conflicting
needs of minimising gear weight and height while maximising gear torque. One

Figure10. Solution space for theweight goal when various weights are assigned to the
other goals.
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Figure 12. Solution space for torque when various weights are assigned to the other
goals.

Figure 11. Solution space for size when various weights are assigned to the other
goals.
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design scenario (Scenario 10) lies within the overlap region. The design variables
corresponding to this design solution are shown in Table 7.

Level 1 decisions (coupled cDSP–sDSP shown in Table 7) pertaining to gear
decisions are vertically coupled to Level 2 (shaft decisions). The functional cou-
pling occurs because the shaft torque transmission capability must match the
torque transmission capability for which the gears are designed. After selecting the
design solution for the gear, the design variables for shafts that are compatible with
the gear are selected. The design variables for the shaft in Scenario S10 (see Table 8)
is the shaft design corresponding to the gear designed.

6. Closure
Uncertainties and decision coupling are prevalent in connected systems. There-
fore, addressing uncertainties and decision interactions is critical for designing
connected systems. In this article, a method for robust design using coupled

Figure 13. Superimposed satisficing solution space.

Table 7. Coupled gear decisions – robust exploration

Design
scenario

Design variables-gear Gear design goals

Module
(mm)

Width
(mm)

Number of
teeth (z) Material

Weight
(kg)

Height
(mm)

Torque
(Nm)

S10 4 45.51 18 X1 24.57 360 224.42

Note: X1 = AISI 1018.
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decisions to support decision-making of design decisions in a coupled decision
environment while managing the uncertainties involved is presented. Two major
gaps are identified, (Gap 1) themethod to design using coupled decisions and (Gap
2) themethod tomanage uncertainties in a coupled decision environment. Gap 1 is
addressed by developing criteria to couple and model interacting decisions using
DSPs (see Section 2). Gap 2 is addressed by incorporating robustness metrics
(DCI/EMI) as goals and constraints in coupled DSPs (see Section 3). Decision
coupling is modelled by introducing the concept of vertical coupling and horizon-
tal coupling. Through horizontal coupling, concurrent decisions are modelled and
through vertical coupling, hierarchical decisions are modelled. To manage uncer-
tainties, the robustness metric (DCI) is incorporated as design goals and con-
straints. The decision interaction and uncertainty management is implemented
using a cDSP construct. The example involving the design of a one-stage reduction
gearbox is used to demonstrate the robust design method.

To improve the quality and reliability of design decisions, we assert that it is
critical to consider the coupling in decisions and simultaneously manage uncer-
tainties about design decisions. By accounting for coupling in decisions, we expand
our search space with the possibility of finding higher quality design solutions. By
managing uncertainties, we improve the validity and usefulness of the undertaken
decisions, therefore, improving the quality and reliability of the design by produc-
ing design solutions whose performance are insensitive to different sources of
uncertainties. The proposed robust design method is illustrated through an exam-
ple involving the design of a one-stage reduction gearbox. The proposed method is
generalisable to engineering design problems, especially when there is dependence
among the design decisions and prevalent uncertainties in such decisions are likely
to invalidate the design solutions. Our approach is to determine the compromise
among design requirements that is most effective at increasing the overall perfor-
mance. However, it is critical to explore different robustness management strat-
egies (Sigurdarson, Eifler & Ebro 2019) that may be more suitable for considering
robustness and/or optimality. To sum up, our contribution in this article is a
method for robust design when the design decisions are coupled.
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Table 8. Coupled gear shaft decisions – robust exploration

Design scenario

Design variables-gear Shaft design goal

Di (mm) Do (mm) Yield strength (MPa) Weight (kg)

S10 27.79 43.35 264.84 16.25
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Nomenclature
b gear face width
cDSP compromise decision support problem
Di input shaft diameter
Do output shaft diameter
DCI design capability index
EMI error margin index
Ij relative importance of attribute j
LRL lower requirement limit
m gear module
MDSM multilevel decision scenario matrix
MFi merit function for alternative i
Rij normalised rating of alternative i for attribute j
Sc maximum allowable contact stress
St maximum allowable bending stress
sDSP selection decision support problem
Tm mean function for torque
Tu upper limit function for torque
URL upper requirement limit
z number of teeth in input gear
ρ density of gear material

Glossary
Compromise
decision

The decision requires the ‘right’ values (or combination)
of design variables (or parameters) to be determined.

Design capability
index (DCI)

Amathematical metric that represents the safety margin
against system failure due to uncertainty in design
variables.

Error margin index
(EMI)

Amathematical metric that represents the safety margin
against system failure due to uncertainty in the design
models.

Selection decision The process of choosing among possibilities considering
several measures of merit or attributes.

Type I robust design Type I robust design is used to identify values of a
control factor (design variable) that satisfy a set of
performance requirements despite variations in noise
factors.

Type II robust design Type II robust design is used to identify values of a
control factor (design variable) that satisfy a set of
performance requirements despite variations in control
factors themselves.

Type III robust
design

Type III robust design is used to obtain design solutions
that are insensitive to variability or uncertainty
embedded within themodel that defines the relationship
among design variables and response.
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