
JFP 24 (4): 523–527, 2014. c© Cambridge University Press 2014 523

Book reviews

Practical Foundations for Programming Languages, by Robert Harper,

Cambridge University Press, New York, December 2012, English, ISBN-10:

1107029570, Hardcover, 487 pp.

doi: 10.1017/S095679681400015X

In this book, Robert Harper comprehensively surveys the concepts that underlie the design of

programming languages. The book’s organising principle is type theory, and it convincingly

demonstrates the central role of types in language design.

The book consists of 50 (short!) chapters, grouped into 18 broad topics such as function

types, finite data types (products and sums), infinite data types, variable types (including

abstract types), subtyping, classes and methods, exceptions and continuations, state, laziness,

parallelism, concurrency, and modularity. A typical chapter explains a particular concept in

the context of a little language; presents the language’s formal syntax, static, and dynamic

semantics; and often proceeds to prove fundamental language properties such as type safety.

This approach illuminates deep issues in language design. One such issue is the expressive-

ness of polymorphic types (“theorems for free”). Another is the importance of distinguishing

between mobile types (whose values can safely be passed out of scope) and immobile types

(such as the type of scoped references).

The book’s title is little misleading. The book is certainly about the foundations of

programming languages – their syntax, their semantics, and properties derivable from the

semantics. But it offers few insights into the pragmatics of these languages – how they might

be implemented, and how they would be used by programmers in practice.

The index is patchy, and there is no glossary. The book inevitably introduces a lot

of notation, but it is hard to find where a particular notation is introduced. There is a

bibliography, of course, but it is hard to find where a particular researcher’s work is cited.

Harper airily dismisses the notion that dynamically typed languages are in any way

distinctive. He points out that a dynamically typed language can be seen as a degenerate

statically typed language with a single type, namely the sum of a number of “classes,” with

each value tagged to indicate its class; dynamic type-checks are therefore just class-checks.

But this is sophistry: If the summands of the single sum type are not themselves types, what

are they? This reductionist view of a dynamically typed language is theoretically convenient,

but does not reflect the way that programmers think of their language (pragmatics).

The most disappointing part of the book is its inadequate treatment of object-oriented

language concepts. The book explains how a dispatch matrix can be extended incrementally

by adding new classes and new methods, but conspicuously fails to illuminate the key concept

of inheritance. Harper downplays its importance by pointing out that the behaviour of the

methods of a subclass could be completely different from the behaviour of the methods of a

superclass, but that is true only for methods that are not inherited! (Here again the language’s

pragmatics are ignored.)

The book appears to be aimed at experienced researchers in the theory of programming

languages, who will find it invaluable for consolidating their understanding of this fascinating

field. Research students in this field will find it challenging but ultimately rewarding.

DAVID WATT

School of Computing Science, University of Glasgow

https://doi.org/10.1017/S095679681400015X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681400015X



