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K-theory of Furstenberg Transformation
Group C∗-algebras
Kamran Reihani

Abstract. This paper studies the K-theoretic invariants of the crossed product C∗-algebras associated
with an important family of homeomorphisms of the tori Tn called Furstenberg transformations. Using
the Pimsner–Voiculescu theorem, we prove that given n, the K-groups of those crossed products whose
corresponding n × n integer matrices are unipotent of maximal degree always have the same rank
an. We show using the theory developed here that a claim made in the literature about the torsion
subgroups of these K-groups is false. Using the representation theory of the simple Lie algebra sl(2,C),
we show that, remarkably, an has a combinatorial significance. For example, every a2n+1 is just the
number of ways that 0 can be represented as a sum of integers between−n and n (with no repetitions).
By adapting an argument of van Lint (in which he answered a question of Erdős), a simple explicit
formula for the asymptotic behavior of the sequence {an} is given. Finally, we describe the order
structure of the K0-groups of an important class of Furstenberg crossed products, obtaining their
complete Elliott invariant using classification results of H. Lin and N. C. Phillips.

1 Introduction

Furstenberg transformations were introduced in [9] as the first examples of homeo-
morphisms of the tori that under some necessary and sufficient conditions are mini-
mal and uniquely ergodic. In some sense, they generalize the irrational rotations on
the circle. They also appear in certain applications of ergodic theory to number the-
ory (e.g., in Diophantine approximation [8]), and are sometimes called skew product
transformations or compound skew translations of the tori. In this paper, the crossed
products associated with Furstenberg transformations are called “Furstenberg trans-
formation group C∗-algebras”, and are denoted by Fθ, f . There have been several
contributions to the computations of K-theoretic invariants for some examples of
these C∗-algebras in the literature (see [16, 18, 25, 30, 39] to name a few). However,
there has not been a more general study of such invariants for these C∗-algebras to
the best of our knowledge.

Remark 1.1 In independent (unpublished) work [16], R. Ji studied the K-groups of
the C∗-algebras Fθ, f (denoted by AF f ,θ there) associated with the descending affine
Furstenberg transformations (denoted by F f ,θ in there) on the tori. He comments
that “explicitly computing the K-groups of C(Tn) oK Z [AF f ,θ for θ = 0] is still not
an easy matter.” Moreover, he gives no information about the ranks of the K-groups
or the order structure of K0 in general, which are studied in this paper. As we shall
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see in Remark 1.7, the claim that he makes about the form of the torsion subgroup of
K∗(Fθ, f ) is, unfortunately, not correct.

From the C∗-algebraic point view, when a Furstenberg transformation is minimal
and uniquely ergodic, the associated transformation group C∗-algebra is simple and
has a unique tracial state with a dense tracial range of the K0-group in the real line.
Because of this, these C∗-algebras fit well into the classification program of G. El-
liott by finding their K-theoretic invariants. In fact, in the class of transformation
group C∗-algebras of uniquely ergodic minimal homeomorphisms on infinite com-
pact metric spaces, K-theory is a complete invariant. More precisely, suppose that X
is an infinite compact metric space with finite covering dimension and h : X → X is
a uniquely ergodic minimal homeomorphism, and put A := C(X) oh Z. Let τ be
the trace induced by the unique invariant probability measure. Then τ is the unique
tracial state on A. Let τ∗ : K0(A)→ R be the induced homomorphism on K0(A) and
assume that τ∗K0(A) is dense in R. Then the 4-tuple

(
K0(A),K0(A)+, [1A],K1(A)

)
is a complete algebraic invariant (called the Elliott invariant of A) [21, Corollary 4.8].
In this case, A has stable rank one, real rank zero, and tracial topological rank zero
in the sense of H. Lin [19]. The order on K0(A) is also determined by the unique
trace τ , in the sense that an element x ∈ K0(A) is positive if and only if either x =
0 or τ∗(x) > 0 [22, 29]. This implies, in particular, that the torsion subgroup of
K0(A) contributes nothing interesting to the order information. In other words, the
order on K0(A) is determined by the order on the free part. We will study the order
structure of K0(Fθ, f ) in Section 7.

In order to compute the K-groups of a crossed product of the form C(Tn) oα Z
in general, we make use of the algebraic properties of K∗(C(Tn)) in Section 2. More
precisely, K∗(C(Tn)) is an exterior algebra over Zn with a certain natural basis, and
the induced automorphism α∗ on K∗(C(Tn)) is in fact a ring automorphism, which
makes computations much easier. In fact, Theorem 2.1 shows that the problem of
finding the K-groups of the transformation group C∗-algebra of a homeomorphism
of the n-torus is completely computable in the sense that one only needs to calculate
the kernels and cokernels of a finite number of integer matrices. These K-groups are
finitely generated with the same rank (see Corollary 2.2). In the special case of An-
zai transformation group C∗-algebras An,θ associated with Anzai transformations on
the n-torus, we denote this common rank by an, which we will study in detail in this
paper. It is proved in Theorem 5.1 that an is the common rank of the K-groups of
a larger class of transformation group C∗-algebras, including the C∗-algebras associ-
ated with Furstenberg transformations on Tn. We describe an as the constant term
in a certain Laurent polynomial (Theorem 6.7). Then we study the combinatorial
properties of the sequence {an}, which leads to a simple asymptotic formula.

To present the results and proofs of this paper we need some definitions about
transformations on the tori and the corresponding C∗-crossed products. Throughout
this paper, Tn denotes the n-dimensional torus with coordinates (ζ1, ζ2, . . . , ζn).
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Definition 1.2 An affine transformation on Tn is given by

β(ζ1, ζ2, . . . , ζn) = (e2πit1ζb11
1 · · · ζb1n

n , e2πit2ζb21
1 · · · ζb2n

n , . . . , e2πitnζbn1
1 · · · ζbnn

n ),

where t := (t1, t2, . . . , tn) ∈ (R/Z)n and B := [bi j]n×n ∈ GL(n,Z). We identify the
pair (t,B) with β.

Note that any automorphism of Tn followed by a rotation can be expressed in such
a fashion. The set of affine transformations on Tn form a group Aff(Tn) that can be
identified with the semidirect product (R/Z)n o GL(n,Z). More precisely, for two
affine transformations β = (t,B) and β ′ = (t ′,B ′) on Tn, we have

β ◦ β ′ = (t + Bt ′,BB ′) and β−1 = (−B−1t,B−1).

(In the expression Bt , t is a column vector, but for convenience we write it as a row
vector.)

We remind the reader of an important fact before giving the next definition. Con-
sider homotopy classes of continuous functions from Tn to T. It is well known that
in each class there is a unique “linear” function (ζ1, . . . , ζn) 7→ ζb1

1 · · · ζbn
n for some

b1, . . . , bn ∈ Z. More precisely, every continuous function f : Tn → T can be written
as

f (ζ1, . . . , ζn) = e2πig(ζ1,...,ζn)ζb1
1 · · · ζbn

n ,

for some continuous function g : Tn → R and unique integer exponents b1, . . . , bn.
In particular, the cohomotopy group π1(Tn) is isomorphic to Zn. Following [8, p.
35], we denote the exponent bi , which is uniquely determined by the homotopy class
of f , as bi = Ai[ f ].

Definition 1.3 We define the following transformations in accordance with [16].

(i) A Furstenberg transformation ϕθ, f on Tn is given by

ϕ−1
θ, f (ζ1, ζ2, . . . , ζn) =

(
e2πiθζ1, f1(ζ1)ζ2, f2(ζ1, ζ2)ζ3, . . . , fn−1(ζ1, . . . , ζn−1)ζn

)
,

where θ is a real number, each fi : Ti → T is a continuous function with
Ai[ fi] 6= 0 for i = 1, . . . , n− 1, and f = ( f1, . . . , fn−1).

(ii) An affine Furstenberg transformation α on Tn is given by

α−1(ζ1, ζ2, . . . , ζn) = (e2πiθζ1, ζ
b12
1 ζ2, ζ

b13
1 ζb23

2 ζ3, . . . , ζ
b1n
1 ζb2n

2 · · · ζ
bn−1,n

n−1 ζn),

where θ is a real number, the exponents bi j are integers, and bi,i+1 6= 0 for
i = 1, . . . , n− 1.

(iii) An ascending Furstenberg transformation α on Tn is given by

α−1(ζ1, ζ2, . . . , ζn) = (e2πiθζ1, ζ
k1
1 ζ2, ζ

k2
2 ζ3, . . . , ζ

kn−1

n−1 ζn),

where θ is a real number, the exponents ki are nonzero integers, and ki | ki+1 for
i = 1, . . . , n− 2.
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(iv) In (iii), if ki = 1 for i = 1, . . . , n − 1, the transformation is called an Anzai
transformation σn,θ on Tn. Thus it is given by

σ−1
n,θ (ζ1, ζ2, . . . , ζn) = (e2πiθζ1, ζ1ζ2, . . . , ζn−1ζn),

where θ is a real number. We usually drop the indices n and θ and write only σ
for more convenience.

Note that one can easily verify that ϕθ, f is a homeomorphism. Also in the above
definition, we have converted “descending”, which is used in [16, Definition 2.16], to
“ascending”, since the order of coordinates in that paper is opposite to ours.

For certain Furstenberg transformations on Tn we have the following theorem.

Theorem 1.4 ([9, 2.3]) If θ is irrational, then ϕθ, f defines a minimal dynamical
system on Tn. If in addition, each fi satisfies a uniform Lipschitz condition in ζi for
i = 1, . . . , n − 1, then ϕθ, f is a uniquely ergodic transformation and the unique in-
variant measure is the normalized Lebesgue measure on Tn. In particular, every affine
Furstenberg transformation defines a minimal and uniquely ergodic dynamical system
if θ is irrational.

As a conclusion, we have the following result for the Furstenberg transformation
group C∗-algebra Fθ, f := C(Tn) oϕθ, f Z as introduced in [16].

Corollary 1.5 Fθ, f = C(Tn) oϕθ, f Z is a simple C∗-algebra for irrational θ. If in
addition, each fi satisfies a uniform Lipschitz condition in ζi for i = 1, . . . , n− 1, then
Fθ, f has a unique tracial state.

Proof For the first part, the minimality of the action as stated in the preceding the-
orem implies the simplicity of Fθ, f [4, 32]. For the second part, one can easily check
that since θ is irrational, the action of Z on Tn generated by ϕθ, f is free. So there
are no periodic points in Tn. This and the unique ergodicity of ϕθ, f yield the result
[38, Corollary 3.3.10, p. 91].

Remark 1.6 Using the preceding corollary and much like the proof of [33, Theo-
rem 2.1], one can prove that for irrational θ, Fθ, f is in fact the unique C∗-algebra
generated by unitaries U ,V1, . . . ,Vn satisfying the commutator relations

(CR) f [U ,V1] = e2πiθ, [U ,V2] = f1(V1), . . . , [U ,Vn] = fn−1(V1, . . . ,Vn−1),

where [a, b] := aba−1b−1, and all other pairs of operators from U ,V1, . . . ,Vn com-
mute.

Remark 1.7 In [16, Proposition 2.17], Ji claims to have proved the following:

(∗) If ϕθ, f is an ascending Furstenberg transformation on Tn with the ascending se-
quence {k1, k2, . . . , kn−1}, then the torsion subgroup of K∗(Fθ, f ) is isomorphic

to Zk1 ⊕ Z(m2)
k2
⊕ · · · ⊕ Z(mn−1)

kn−1
, where the group Z(mi )

ki
is the direct product of mi

copies of the cyclic group Zki = Z/kiZ.
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From this claim one would immediately deduce that the K-groups of the C∗-al-
gebra An,θ := C(Tn) oσ Z generated by an Anzai transformation σ on Tn should
be torsion-free. However, we will show that this is not true in general. This type of
example first appears for n = 6, which seems already beyond hand calculation. (We
admit that hand calculation would be the most convincing method to use; however,
it is not practicable.) As the first counterexample we obtained by computer, we will
see in Example 3.3 that K1(A6,θ) ∼= Z13 ⊕ Z2. In fact, the error in the proof of (∗)
is in [16, p. 29, l.2]; there it is “clearly” assumed that using a matrix S in GL(2n,Z),
one can delete all entries denoted by ?’s in K∗ − I, where K∗ is the 2n × 2n integer
matrix corresponding to Fθ, f that acts on K∗(C(Tn)) = Λ∗Zn with respect to a
certain ordered basis. This error arose originally from the general form of the matrix
K∗ in [16, p. 27], which is not correct. Ji went on to use the torsion subgroup in (∗)
as an invariant to classify the C∗-algebras generated by ascending transformations
and matrix algebras over them [16, Theorem 3.6]. We do not know whether those
classifications hold.

Question Do there exist two different ascending Furstenberg transformations with
the same parameter θ and with isomorphic transformation group C∗-algebras?

It is worth mentioning that explicit calculations of K-groups in terms of the pa-
rameters involved are possible in low dimensions (of the tori) and answer the ques-
tion raised above negatively. However, such calculations in terms of the given in-
teger parameters (exponents) of the ascending Furstenberg transformation quickly
become cumbersome and impossible in higher dimensions. We have used our com-
puter codes for several numerical values of the parameters in higher dimensions, and
we have not found any examples leading to the negative answer to this question.
The torsion subgroups of the K-groups are usually larger than what Ji claimed in
[16, Proposition 2.17]; however, it is likely that the torsion subgroups depend on the
parameters involved in such a way that Ji’s classification result is still true. We are
currently investigating this problem.

This paper is organized as follows. In Section 2, we review the general approach
of exterior algebras for finding K-groups of transformation group C∗-algebras of
homeomorphisms of the tori. In Section 3, we apply this method to the important
case of Anzai transformations and give the K-groups of their transformation group
C∗-algebras based on the tori of dimension up to 12 in Table 1 using the computer
codes we have developed for this particular purpose. In Section 4, we establish a
Poincaré type of duality for the cokernels of integer matrices that leads to some in-
teresting facts about the K-groups when the dimension of the underlying torus is
odd. In Section 5, we focus on the rank an of the K-groups of Anzai transformations
group C∗-algebras based on the n-torus, and we show that an is, in fact, the rank of
the K-groups of a large class of transformation group C∗-algebras including those
associated with Furstenberg transformations on the n-torus. In Section 6, we first
uncover an interesting connection between studying an and the irreducible represen-
tations of the Lie algebra sl(2,C). This leads to a formula for an in terms of certain
partitions of integers. Then we use this formula to show several interesting combina-
torial properties of the sequence {an}. In Section 7, we study the order structure of
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the K0-group of a class of simple Furstenberg transformation group C∗-algebras to
make their Elliott invariants more accessible. Section 8 contains some applications of
the results of this paper to our earlier work [33].

2 K-groups of C(Tn) oα Z
In this section we describe a general method to compute the K-groups of C(Tn)oαZ,
where α is an arbitrary homeomorphism of Tn. (By abuse of notation, the auto-
morphism α of C(Tn) is defined by α( f ) = f ◦ α−1 for f ∈ C(Tn).) To do this,
we will pay special attention to the algebraic structure of K∗(Tn) and how the in-
duced automorphisms on it can be realized. Note that it is sufficient to consider the
special case of “linear” homeomorphisms, since, as stated before Definition 1.3, ev-
ery continuous function f : Tn → T is homotopic to a unique “linear” function
(ζ1, . . . , ζn) 7→ ζb1

1 · · · ζbn
n for some integer exponents b1, . . . , bn. Moreover, the

K-groups of C(Tn) oα Z depend (up to isomorphism) only on the homotopy class
of α [3, Corollary 10.5.2].

It is well known that K∗(Tn) is a Z2-graded ring, and by the Künneth formula (see
[2, Corollary 2.7.15] or [36, Theorem 4.1]), it is an exterior algebra (over Z) on n
generators, where the elements of even degree are in K0(Tn), and those of odd degree
are in K1(Tn). The generators of this exterior algebra correspond to the generators of
the dual group Zn of Tn [37, p. 185]. Indeed, in this case the Chern character

ch : K∗(Tn) −→ Ȟ∗(Tn,Q)

is integral and gives the Chern isomorphisms

ch0 : K0(Tn) −→ Ȟeven(Tn,Z), ch1 : K1(Tn) −→ Ȟodd(Tn,Z),

where Ȟ∗(Tn,Z) ∼= Λ∗Z(e1, . . . , en) is the (Čech) cohomology ring of Tn under the
cup product, and Ȟk(Tn,Z) ∼= Λk

Z(e1, . . . , en). On the other hand, K∗(Tn) ∼=
K∗(C(Tn)). So by introducing ei := [zi]1, i.e., the class in K1(C(Tn)) of the coor-
dinate function zi : Tn → T given by

zi(ζ1, . . . , ζn) = ζi

as a unitary element of C(Tn) for i = 1, . . . , n, we have the isomorphisms
K∗(C(Tn)) ∼= Λ∗Z(e1, . . . , en) ∼= Λ∗Zn, which respect the canonical embedding of
Zn. Moreover, these isomorphisms are unique since only the identity automorphism
of the ring Λ∗Zn fixes each element of Zn.

Now we use the Pimsner–Voiculescu six term exact sequence [31] as the main tool
for computing the K-groups of C(Tn) oα Z. Let α∗(= K∗(α)) be the ring automor-
phism of K∗(C(Tn)) induced by α and let αi be the restriction of α∗ on Ki(C(Tn))
for i = 0, 1, and set A := C(Tn) oα Z. Then we have the following exact sequence:

(2.1)

K0(C(Tn))
α0−id
−−−−→ K0(C(Tn))

j0
−−−−→ K0(A)

exp

x y ∂

K1(A)
j1

←−−−− K1(C(Tn))
α1−id
←−−−− K1(C(Tn)).
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Here, j : C(Tn) → A is the canonical embedding of C(Tn) in A, j0 := K0(j) and
j1 := K1(j). Also, from now on id denotes the identity function on each underlying
set. As a result, we have the following short exact sequences

0 −→ coker(α0 − id) −→ K0(C(Tn) oα Z) −→ ker(α1 − id) −→ 0,(2.2)

0 −→ coker(α1 − id) −→ K1(C(Tn) oα Z) −→ ker(α0 − id) −→ 0.(2.3)

Since all the groups involved are abelian and finitely generated, and ker(αi − id) is
torsion-free (i = 0, 1), these short exact sequences split (since projective Z-modules
are precisely the free abelian groups), and we have

K0(C(Tn) oα Z) ∼= coker(α0 − id)⊕ ker(α1 − id),(2.4)

K1(C(Tn) oα Z) ∼= coker(α1 − id)⊕ ker(α0 − id).(2.5)

So it suffices to determine the kernel and cokernel of (α0− id) and (α1− id) acting as

endomorphisms on the finitely generated abelian groups Λeven
Z (e1, . . . , en) ∼= Z2n−1

and Λodd
Z (e1, . . . , en) ∼= Z2n−1

, respectively. Note that from the isomorphisms (2.4)
and (2.5), the K-groups of C(Tn) oα Z are finitely generated abelian groups. Now,
since α∗ is a ring homomorphism, it suffices to know the action of α∗ on e1, . . . , en.
In fact, for a general basis element ei1 ∧ ei2 ∧ · · · ∧ eir of K∗(C(Tn)) ∼= Λ∗Z(e1, . . . , en)
we have

α∗(ei1 ∧ ei2 ∧ · · · ∧ eir ) = α∗(ei1 ) ∧ α∗(ei2 ) ∧ · · · ∧ α∗(eir ).

Thus, if we consider {e1, . . . , en} as the canonical basis of Zn and take α̂ = α∗|Zn ,
we have α∗ = ∧∗α̂ =

⊕n
r=1 ∧rα̂, α0 = ∧evenα̂ =

⊕
r≥0 ∧2rα̂ and α1 = ∧oddα̂ =⊕

r≥0 ∧2r+1α̂, where ∧iα̂ is the i-th exterior power of α̂, which acts on ΛiZn for i =

0, 1, . . . , n. Now, let α−1 = ( f1, . . . , fn) and a ji := A j[ fi], or in other words, assume
that fi is homotopic to za1i

1 . . . zani
n : (ζ1, . . . , ζn) 7→ ζa1i

1 . . . ζani
n for i = 1, . . . , n. So we

can write

α∗(ei) = α∗[zi]1 = [α(zi)]1 = [zi ◦ α−1]1 = [ fi]1 = [za1i
1 . . . zani

n ]1

=

n∑
j=1

a ji[z j]1 =

n∑
j=1

a jie j .

Therefore α̂ acts on Zn via the corresponding integer matrix

A := [ai j]n×n ∈ GL(n,Z),

α∗ acts on Λ∗Zn via ∧∗A, and we have the isomorphisms

K0(C(Tn) oα Z) ∼= coker(α0 − id)⊕ ker(α1 − id)

= coker(⊕r≥0 ∧2r α̂− id)⊕ ker(⊕r≥0 ∧2r+1 α̂− id),
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so we can write

K0(C(Tn) oα Z) ∼=
⊕
r≥0

[
coker(∧2rα̂− id)⊕ ker(∧2r+1α̂− id)

]
,

and similarly

K1(C(Tn) oα Z) ∼=
⊕
r≥0

[
coker(∧2r+1α̂− id)⊕ ker(∧2rα̂− id)

]
.

We summarize the arguments discussed above in the following theorem.

Theorem 2.1 Let α be a homeomorphism of Tn and α̂ ∈ Aut(Zn) be the restriction
of α∗ to Zn (as above). Then α∗ = ∧∗α̂ =

⊕n
r=1 ∧rα̂ on K∗(Tn) = Λ∗Zn and

K0(C(Tn) oα Z) ∼=
⊕
r≥0

[
coker(∧2rα̂− id)⊕ ker(∧2r+1α̂− id)

]
,

K1(C(Tn) oα Z) ∼=
⊕
r≥0

[
coker(∧2r+1α̂− id)⊕ ker(∧2rα̂− id)

]
.

Therefore in order to compute the K-groups of C(Tn)oαZ, we must find the ker-
nel and cokernel of ∧rα̂− id as an endomorphism of ΛrZn for r = 0, 1, . . . , n. Note
that the matrix of ∧rα̂ − id with respect to the canonical basis {ei1 ∧ · · · ∧ eir |1 ≤
i1 < · · · < ir ≤ n} with lexicographic order is An,r := ∧rA− I(n

r), which is an integer
matrix of order

(n
r

)
(Ik is the identity matrix of order k - we often omit k whenever

it is clear). So by computing the kernel and cokernel of An,r for r = 0, 1, . . . , n with
appropriate tools (such as the Smith normal form), one can determine the K-groups
of C(Tn) oα Z. The author has written some codes in Maple to handle such compu-
tations.

Corollary 2.2 The K-groups of C(Tn)oαZ are finitely generated abelian groups with
the same rank. Moreover, this common rank equals

rank ker(∧∗α̂− id) =

n∑
r=0

rank ker(∧rα̂− id).

Proof Use the previous theorem and note that for any ϕ̂ ∈ End(Zn) one has
rank ker ϕ̂ = rank coker ϕ̂ by the Smith normal form theorem (see, for example,
[27, p. 26]).

Corollary 2.3 If α, β are homeomorphisms of Tn, whose corresponding integer ma-
trices A,B ∈ GL(n,Z) are similar over Z, then

K j(C(Tn) oα Z) ∼= K j(C(Tn) oβ Z), ( j = 1, 2).

Proof The assumption obviously implies that the automorphisms α̂ and β̂ are con-

jugate in Aut(Zn). This together with an easy application of the identity ∧r(φ̂ ◦ ψ̂) =

(∧rφ̂) ◦ (∧rψ̂) (see, for example, [11, (5.20)]) imply that ∧rα̂ and ∧rβ̂ (and therefore

∧rα̂ − id and ∧rβ̂ − id) are conjugate in Aut(ΛrZn) for r = 0, 1, . . . , n. The result
follows now from Theorem 2.1.
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3 Anzai Transformation Group C∗-algebras An,θ

The simplest case of a Furstenberg transformation on an n-torus is an Anzai transfor-
mation σ, which was defined in Definition 1.3(iv). To study the K-groups of Anzai
transformation group C∗-algebras An,θ = C(Tn) oσ Z using methods of the pre-
vious section, we will first need the “linearized” form of the corresponding affine
homeomorphism σ−1:

(ζ1, ζ2, . . . , ζn) 7−→ (ζ1, ζ1ζ2, . . . , ζn−1ζn).

So σ̂(ei) = ei−1 + ei for i = 1, . . . , n (e0 := 0). The matrix with respect to the
canonical basis {e1, . . . , en} of Zn that corresponds to σ̂ is the full Jordan block

Sn :=


1 1 0 · · · 0
0 1 1 0

0
. . .

. . .
. . . 0

0 0 1 1
0 · · · 0 0 1


n×n

.

The following examples illustrate the methods described in the previous section for
computing the K-groups of Anzai transformation group C∗-algebras An,θ.

Example 3.1 We compute the K-groups of A3,θ, which were computed in [39]
by another method (the C∗-algebra was denoted by A5,5

θ there). In fact, the Chern
character and noncommutative geometry were used in [39] to compute the kernel
and cokernel of σi − id for i = 0, 1. However, we compute the kernel and cokernel
of S3,r := ∧rS3 − I(3

r)
for r = 0, 1, 2, 3, where

S3 =

1 1 0
0 1 1
0 0 1


r = 0: S3,0 = ∧0S3 − I1 = [0]. So ker S3,0 = Z and coker S3,0 = Z/〈0〉 ∼= Z.

r = 1:

S3,1 = ∧1S3 − I3 =

1 1 0
0 1 1
0 0 1

−
1 0 0

0 1 0
0 0 1

 =

0 1 0
0 0 1
0 0 0


So

ker S3,1 =
{

(x, y, z) ∈ Z3| y = z = 0
}

= (Z, 0, 0) ∼= Z,

coker S3,1 = Z3/S3,1Z3 = Z3/〈e1, e2〉 ∼= Z.

r = 2:

S3,2 = ∧2S3 − I3 =

1 1 1
0 1 1
0 0 1

−
1 0 0

0 1 0
0 0 1

 =

0 1 1
0 0 1
0 0 0

 .
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So

ker S3,2 = {(x, y, z) ∈ Z3| y + z = z = 0} = (Z, 0, 0) ∼= Z,

coker S3,2 = Z3/S3,2Z3 = Z3/〈e1, e2〉 ∼= Z.

r = 3: S3,3 = ∧3S3 − I1 = [0]. So ker S3,3 = Z and coker S3,3 = Z/〈0〉 ∼= Z.
Now, using Theorem 2.1 we have

K0(A5,5
θ ) = K0(A3,θ) ∼= (coker S3,0 ⊕ coker S3,2)⊕ (ker S3,1 ⊕ ker S3,3)

∼= Z⊕ Z⊕ Z⊕ Z = Z4,

K1(A5,5
θ ) = K1(A3,θ) ∼= (coker S3,1 ⊕ coker S3,3)⊕ (ker S3,0 ⊕ ker S3,2)

∼= Z⊕ Z⊕ Z⊕ Z = Z4.

Notation 3.2 We let

an := rank K0(An,θ) = rank K1(An,θ),

an,r := rank ker(∧rSn − I)

for r = 0, 1, . . . , n. From Corollary 2.2 we have

an = rank ker(∧∗Sn − I) =

n∑
r=0

an,r.

Example 3.3 Using the methods described in Section 2, we have obtained the
K-groups of An,θ by computer for 1 ≤ n ≤ 12. The cases n = 1, 2, 3 have been calcu-
lated in the literature already: A1,θ = Aθ in [34], A2,θ = A4

θ in [25], and A3,θ = A5,5
θ

in [39]. However, there are no explicit computations for the higher dimensional cases
starting with A4,θ = A6,10

θ as in [24], since hand calculations of kernels and cokernels
of the maps quickly become impossible. Using the Maple codes we have developed
we can find the kernel and cokernel of

Sn,r := ∧rSn − I(n
r)

for r = 0, 1, . . . , n and n = 1, . . . , 12 by means of the Smith normal form theorem
(see, for example, [27, p. 26]), and therefore we can compute the K-groups. The
results are illustrated in Table 1, where Z(m)

k denotes the direct sum of m copies of the
cyclic group Zk = Z/kZ.

Due to computational limitations, we do not currently have any results for n > 12,
except for the sequence of ranks {an}, which we will study in detail in Sections 5 and
6. We will show the importance of this sequence in Section 5. Briefly, an is the com-
mon rank of the K-groups of a certain family of C∗-algebras including Furstenberg
transformation group C∗-algebras Fθ, f based on Tn. Also, we will prove that {an} is
a strictly increasing sequence (see Proposition 6.5). On the other hand, it seems that
the K-groups of An,θ have torsion in general. The first example is K1(A6,θ); this is
due to the fact that coker S6,3 = coker(∧3S6− I20) ∼= Z3⊕Z2 (see Remark 1.7). Also,
it is seen that the K0- and K1-groups are isomorphic for odd values of n in Table 1. In
fact, this is true for more general cases (see Theorem 4.3).
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4 A Poincaré Type of Duality

As stated in Theorem 2.1, the K-groups of a transformation group C∗-algebras of the
form C(Tn) oα Z are completely determined by the corresponding homomorphism
α̂ ∈ Aut(Zn) and its exterior powers. From a computational point of view, we only
need the cokernels of the maps involved, since we know that for any endomorphism
% on Zm, ker % ∼= coker % / tor(coker %), where tor(G) denotes the torsion subgroup
of the finitely generated abelian group G. When det α̂ = 1, we do not even need to
compute all the cokernels. This is due to the following proposition, which establishes
a Poincaré type of duality between cokernels of certain integer matrices.

Two endomorphisms α̂, β̂ ∈ End(Zm) are said to be equivalent over Z (and write
α̂ equiv β̂) if there exist û, v̂ ∈ Aut(Zm) such that û ◦ α̂ ◦ v̂ = β̂. Similarly, if A and
B are integer m × m matrices, A is equivalent to B if there exist U,V ∈ GL(m,Z)

such that UAV = B. We recall that α̂ equiv β̂ if and only if coker α̂ ∼= coker β̂ if

and only if α̂ and β̂ have the same Smith normal form. Also, A equiv B if and only if
B is obtainable from A by a finite number of elementary operations. An elementary
operation on an integer matrix is one of the following types: interchanging two rows
(or two columns), adding an integer multiple of one row (or column) to another, and
multiplying a row (or column) by−1 [27].

Proposition 4.1 (Poincaré duality) Let α̂ ∈ SL(n,Z) (i.e., det α̂ = 1). Then ∧rα̂−
id and ∧n−rα̂ − id are equivalent as endomorphisms of ΛrZn = Λn−rZn = Z(n

r).
Equivalently, coker(∧rα̂− id) is isomorphic to coker(∧n−rα̂− id) for r = 0, 1, . . . , n.

Proof We prove the equivalence of the endomorphisms for their corresponding in-
teger matrices with respect to a certain basis. Let E = {e1, . . . , en} be a basis for Zn

and set S = {1, 2, . . . , n}. For I = {i1, . . . , ir} ⊂ S with 1 ≤ i1 < · · · < ir ≤ n,
put eI = ei1 ∧ · · · ∧ eir ∈ ΛrZn. Then Er := {eI | I ⊂ S , |I| = r} is a basis for
ΛrZn. Let ω := e1 ∧ · · · ∧ en, which generates ΛnZn. We have ∧0α̂ − id = 0, and
∧nα̂(ω) = α̂(e1) ∧ · · · ∧ α̂(en) = (det α̂)(e1 ∧ · · · ∧ en) = ω, so ∧nα̂ − id = 0.
Now, fix an r ∈ {1, . . . , n − 1}. For an arbitrary subset I ⊂ S with |I| = r, take
J = E\ I = { j1, . . . , jn−r}, so | J| = n− r. Then eI ∧ e J = (sgnµ)ω, in which µ ∈ Sn

is the permutation that converts (1, 2, . . . , n) to (i1, . . . , ir, j1, . . . , jn−r). It is easily
seen that µ = µ1 . . . µr, where µk is the permutation that takes ik from its position
in (1, 2, . . . , n) to its new position in (i1, . . . , ir, j1, . . . , jn−r). One can see that µk is
the combination of ik − (r − k + 1) number of transpositions (k = 1, . . . , r). Thus

sgnµ =
r∏

k=1
(−1)ik−(r−k+1) = (−1)`(I)− r(r+1)

2 ,

where `(I) :=
∑r

k=1 ik. Now take m =
(n

r

)
=
( n

n−r

)
and let Er = {eI1 , . . . , eIm}

be a basis for ΛrZn. Write En−r = {e J1 , . . . , e Jm} as the basis for Λn−rZn such that
Jk = E \ Ik for k = 1, . . . ,m. From the above argument one can write

eIi ∧ e J j = (−1)`(Ii )− r(r+1)
2 δi jω,

since if i 6= j, then Ii ∩ J j 6= ∅ and eIi ∧ e J j = 0. Let A = [ai j]m×m and B = [bi j]m×m

be the corresponding integer matrices of ∧rα̂ and ∧n−rα̂ with respect to Er and En−r,
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respectively. So ∧rα̂(eIi ) =
∑m

p=1 apieIp and ∧n−rα̂(e J j ) =
∑m

q=1 bq je Jq . What we
want to show is that A− I is equivalent to B− I. We have

∧nα̂(eIi ∧ e J j ) = (−1)`(Ii )− r(r+1)
2 δi jω = ∧rα̂(eIi )

∧
∧n−rα̂(e J j )

=

m∑
p,q=1

apibq j(−1)`(Ip)− r(r+1)
2 δpqω.

Therefore one obtains

(4.1)
m∑

k=1

(−1)`(Ik)−`(Ii )akibk j = δi j .

Now, if we set

ci j := (−1)`(I j )−`(Ii )a ji and C := [ci j]m×m,

then ci j − δi j = (−1)`(I j )−`(Ii )(a ji − δ ji). Therefore C − I is obtained from A− I
by exchanging rows (and columns) and occasionally multiplying some rows (and
columns) by −1. This means that C − I is equivalent to A − I. On the other hand,
equation (4.1) says that CB = I. So C− I = C(B− I)(−I), and B− I is also equivalent
to C− I. Consequently, A− I is equivalent to B− I.

Corollary 4.2 If det α̂ = 1, then rank ker(∧rα̂ − id) = rank ker(∧n−rα̂ − id). In
particular, using Notation 3.2, we have an,r = an,n−r for r = 0, 1, . . . , n.

We are now ready to apply our Poincaré duality to a the following K-theoretic
result.

Theorem 4.3 Let A := C(T2m−1)oαZ be such that the corresponding homomorphism
α̂ satisfies det α̂ = 1. Then K0(A) ∼= K1(A) as abelian groups, and the (common) rank
of the K-groups of A is an even number. In particular, for every Furstenberg transfor-
mation group C∗-algebra Fθ, f based on an odd-dimensional torus (e.g., A2m−1,θ), one
has K0(Fθ, f ) ∼= K1(Fθ, f ).

Proof Combining Theorem 2.1 and Proposition 4.1, one obtains

K0(A) ∼= K1(A) ∼=
m−1⊕
k=0

[
coker(∧kα̂− id)⊕ ker(∧kα̂− id)

]
.

As a result, the rank of the K-groups of A is an even number, since the ranks of the
cokernel and kernel of an endomorphism coincide. Note that for Fθ, f the corre-
sponding integer matrix of α̂ is an upper triangular matrix with 1’s on the diagonal.
Thus det α̂ = 1.
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5 The Rank an of the K-groups of An,θ

In this section, we study some general properties of an, the (common) rank of the
K-groups of Anzai transformation group C∗-algebras based on Tn. We specify a
family of C∗-algebras whose ranks of K-groups are given by the same sequence {an}.
As an application, we characterize the rank of the K-groups of Furstenberg trans-
formation group C∗-algebras Fθ, f . This will, in particular, provide some applica-
tions in Section 8 to the classification of simple infinite dimensional quotients of the
Heisenberg-type group C∗-algebras C∗(Dn), which were studied in an earlier work
[33].

We compare the ranks of the K-groups of a class of C∗-algebras of the form
C(Tn) oα Z in the following theorem, which shows that the rank an of the K-groups
of An,θ is somehow generic. We remind the reader that a square matrix A is called
nilpotent (respectively, unipotent) if An = 0 (respectively, (A − I)n = 0), for some
positive integer n, and the least such n is called the degree of A, denoted by deg(A).

Theorem 5.1 Let A = C(Tn)oαZ, in which α is a homeomorphism of Tn, whose cor-
responding integer matrix A ∈ GL(n,Z) is unipotent of maximal degree (i.e., deg(A) =
n). Then

rank K0(A) = rank K1(A) = an = rank K0(An,θ) = rank K1(An,θ).

In particular, the rank of the K-groups of any Furstenberg transformation group C∗-al-
gebra Fθ, f = C(Tn) oϕθ, f Z is equal to the rank of the K-groups of An,θ, namely, to
an.

Proof Let α̂ denote the restriction of α∗ to Zn and A be the corresponding matrix
of α̂ acting on Zn. Also, let Sn be the corresponding matrix for An,θ as denoted in
Section 3. Since A is unipotent of maximal degree by assumption, and Sn is unipotent
of maximal degree too, the matrices A and Sn are similar over C. In fact, the Jordan
normal form of A − I is precisely Sn − I. On the other hand, we know by Corollary
2.2 that the rank of the K-groups of A is equal to rank ker(∧∗A− I). Note that by the
Smith normal form theorem, rank ker(∧∗A− I) = dimC ker(∧∗A− I). The similarity
of A and Sn implies the similarity of∧∗A−I and∧∗Sn−I as matrices acting on Λ∗Cn.
So dimC ker(∧∗A− I) = dimC ker(∧∗Sn − I) = an, which yields the result.

For the second part, note that the corresponding integer matrix of a Furstenberg
transformation ϕθ, f on Tn is of the form

(5.1)



1 b12 b13 · · · b1n

0 1 b23

...

0
. . .

. . .
. . . bn−2,n

... 0 1 bn−1,n

0 · · · 0 0 1


n×n

,

which is unipotent of maximal degree since bi,i+1 6= 0 for i = 1, . . . , n − 1 (see
Definition 1.3). Now, the proof of the first part yields the result.
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Remark 5.2 In the preceding theorem, the basis for Zn for the matrices involved is
{e1, . . . , en}, where ei := [zi]1 as introduced at the beginning of Section 2. It is inter-
esting to know that if α̂ is an arbitrary unipotent automorphism of Zn, then there is
a basis for Zn with respect to which the integer matrix A of α̂ is of the form (5.1) (but
not necessarily with bi,i+1 6= 0 for i = 1, . . . , n − 1, unless α̂ is of maximal degree)
[12, Theorems 16 and 18]. The unipotency of α̂ has also important effects on the
dynamics of the generated flow on Tn. For example, if α is an affine transformation
on Tn and α̂ is unipotent, then the dynamical system (Tn, α) has quasi-discrete spec-
trum [12, Theorem 19]. More generally, let α = (t,A) be an affine transformation
on Tn and take Zp(A) = ker(Ap − id) ⊂ Zn for p ∈ N and consider the following
conditions:

(a) Z1(A) = Zp(A), ∀p ∈ N;
(b) t is rationally independent over Z1(A), i.e., if k = (k1, . . . , kn) ∈ Z1(A) is such

that 〈t, k〉 :=
∑n

j=1 t jk j is a rational number, then k = 0;
(c) Z1(A) 6= {0};
(d) A is unipotent.

Then (Tn, α) is ergodic with respect to Haar measure if and only if α satisfies condi-
tions (a) and (b) [12]. Moreover, if α satisfies conditions (a) through (d), then the
dynamical system (Tn, α) is minimal, uniquely ergodic with respect to Haar measure,
and has quasi-discrete spectrum. Conversely, any minimal transformation on Tn

with topologically quasi-discrete spectrum is conjugate to an affine transformation
that must satisfy conditions (a) through (d) [13]. The C∗-algebras corresponding to
such actions are therefore simple and have a unique tracial state.

6 Combinatorial Properties of the Sequence {an}
As mentioned before, one of our main goals is to describe an, the rank of the
K-groups of An,θ. Since an =

∑n
r=0 an,r, it makes sense to first study an,r. So we begin

by finding some combinatorial properties of an,r, which is the rank of ker(∧rσ̂ − id)
for r = 0, 1, . . . , n, where σ̂ is the automorphism of Zn corresponding to the Anzai
transformation σ on Tn and is represented by the integer matrix Sn as in the begin-
ning of Section 3. In fact, we will show that an,r equals the number of partitions of
[r(n + 1)/2] to r distinct positive integers not greater than n. To do this, we will use
properties of the irreducible representations of the simple Lie algebra sl(2,C).

6.1 Connections with the Representation Theory of sl(2,C)

The automorphism σ̂ is realized through its action on the basis {e1, . . . , en} of Zn,
where ei := [zi] for i = 1, . . . , n as in Section 2, and we have σ̂(ei) = ei + ei−1 with
e0 := 0. Therefore, introducing a new endomorphism of Zn by ϕ̂ := σ̂ − id, we
will get ϕ̂(ei) = ei−1. This is precisely a relation that may be recognized as part of
the data of the canonical representation πn of the Lie algebra sl(2,C) on a complex
vector space V with basis {e1, . . . , en}. More precisely, if we still let ϕ̂ denote the
natural linear extension of ϕ̂ on V and let {h :=

(
1 0
0 −1

)
, e :=

(
0 1
0 0

)
, f :=

(
0 0
1 0

)
} be

the natural basis for the Lie algebra sl(2,C), then we observe that ϕ̂ = πn( f ), where
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the representation πn is defined by

(a) πn(h)ei = (2i − n− 1)ei ;
(b) πn(e)ei = i(n− i)ei+1, (en+1 := 0);
(c) πn( f )ei = ei−1, (e0 := 0).

It is well known that every n-dimensional irreducible representation of sl(2,C) is
equivalent to πn (see, for example, [15, Section II.7]); in particular, the image of h
under any finite dimensional irreducible representation is a diagonalizable operator.

The following lemma asserts that an,r can be realized as the nullity of a certain
linear mapping that is induced by ϕ̂ on the r-th exterior space ΛrV . This is, in fact,
a change of view from the level of Lie groups to the level of Lie algebras, which will
prove very useful in that we can invoke the representation theory of sl(2,C) for com-
puting an,r.

Lemma 6.1 Let ϕ̂ : V → V be defined as above, and let D∗ϕ̂ be the derivation
induced by ϕ̂ on the exterior algebra Λ∗V by the relations

D∗ϕ̂(v1 ∧ · · · ∧ vr) =

r∑
i=1

v1 ∧ · · · ∧ ϕ̂(vi) ∧ · · · ∧ vr,

D∗ϕ̂(1) = 0, and D∗ϕ̂(v) := ϕ̂(v). Then ∧rσ̂− id and Drϕ̂ are similar over C, where
Drϕ̂ is the restriction of D∗ϕ̂ to ΛrV . In particular, we have

an,r = rank ker(∧rσ̂ − id) = dim kerDrϕ̂.

Proof The first general observation to make is that Dr, viewed as a linear mapping,
is in fact a representation of the Lie algebra gl(V ) on ΛrV (cf. [11, (5.25)]), and is
the derivative at the identity transformation of the the representation ∧r of the Lie
group GL(V ) on ΛrV . Consequently, the exponential map intertwines the two repre-
sentations in the sense that we should have ∧r exp(φ̂) = exp(Drφ̂) for all φ̂ ∈ gl(V ).
This last equality may also be established directly. It suffices to see that the func-
tion s : R → GL(ΛrV ) defined by s(t) = ∧r exp(tφ̂) is indeed the 1-parameter sub-
group generated by Drφ̂ (i.e., s is a group homomorphism and ṡ(0) = Drφ̂), hence
exp(Drφ̂) = s(1) = ∧∗exp(φ̂).

Now, since ϕ̂ is nilpotent, it is easy to see that exp(ϕ̂) − id = ϕ̂ω, where ω is
a unipotent linear mapping that commutes with ϕ̂. In particular, exp(ϕ̂) − id is
nilpotent of the same degree as ϕ̂, and therefore they share the same Jordan form
over C, which implies exp(ϕ̂) − id ∼ ϕ̂ and σ̂ = ϕ̂ + id ∼ exp(ϕ̂). Moreover, a
straightforward calculation shows that Drϕ̂ is also nilpotent; for example, (ϕ̂)t =
0 implies (Drϕ̂)rt = 0. So for the same reason we have exp(Drϕ̂) − id ∼ Drϕ̂.
Therefore,

∧rσ̂ − id ∼ ∧r exp(ϕ̂)− id = exp(Drϕ̂)− id ∼ Drϕ̂.

In particular, rank ker(∧rσ̂ − id) = dim kerDrϕ̂.
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Notation 6.2 Let n, k, r be positive integers. Then P(n, r, k) denotes the number of
partitions of k to r distinct positive integers not greater than n. In other words,

P(n, r, k) = #
{

(i1, . . . , ir) | i1 + · · · + ir = k, 1 ≤ i1 < · · · < ir ≤ n
}
.

By convention, we set P(n, 0, 0) = 1 and P(n, r, 0) = P(n, 0, k) = 0 for r, k ≥ 1.

We are now ready to state the main theorem of this section.

Theorem 6.3 With the above notation, an,r = P(n, r, [r(n + 1)/2]), where [x] denotes
the greatest integer not greater than x. In particular,

an =

n∑
r=0

P
(

n, r,
[ r(n + 1)

2

])
.

Proof Let πn : sl(2,C) → gl(V ) be the canonical representation of the Lie al-
gebra sl(2,C) on the n-dimensional complex vector space V , and extend πn to
πr

n : sl(2,C) → gl(ΛrV ) with π1
n = πn. More precisely, for every X ∈ sl(2,C)

define

πr
n(X)(v1 ∧ · · · ∧ vr) = (πn(X)v1) ∧ v2 ∧ · · · ∧ vr + · · · + v1 ∧ · · · ∧ vr−1 ∧ (πn(X)vr).

In particular, Drϕ̂ = πr
n( f ), and an,r is the nullity of πr

n( f ) by Lemma 6.1. Follow-
ing Weyl’s complete reducibility theorem, since the Lie algebra sl(2,C) is semisimple
the representation πr

n has to be completely reducible. This means we should have a
decomposition ΛrV = ⊕N

p=1W p, where W p’s are some πr
n-invariant irreducible sub-

spaces of ΛrV . Moreover, by a corollary given in [15, Section 7.2], the number N of
the summands in such a direct sum decomposition is equal to dim E0 +dim E1, where
Eµ = {v ∈ ΛrV | πr

n(h) v = µ v}. On the other hand, we claim that the number N is
equal to the nullity of πn

r ( f ). In fact, since πn
r |W p is an irreducible representation of

sl(2,C) on W p, it is equivalent to the canonical representation πdim W p of sl(2,C) on
W p. But the image of f in every canonical representation has a 1-dimensional kernel.
So the nullity of πn

r ( f ) counts the number of W p’s. Therefore,

an,r = dim kerπr
n( f ) = dim E0 + dim E1.

To compute the last two terms, note that the equality πn(h)ei = (2i−n−1)ei implies

πr
n(h)(ei1 ∧ · · · ∧ eir ) =

(
2(i1 + · · · + ir)− r(n + 1)

)
ei1 ∧ · · · ∧ eir .

So πr
n(h) is diagonal; for even r(n + 1) we have

E1 = {0} and dim E0 = P(n, r, r(n + 1)/2),

and for odd r(n + 1) we have

E0 = {0} and dim E1 = P(n, r, r(n + 1)/2− 1).

To summarize, we have established the following equalities:

an,r = dim kerDrϕ̂ = dim kerπr
n( f ) = N = dim E0+dim E1 = P

(
n, r, [r(n+1)/2]

)
.

The desired formula for an is immediate now by writing an =
∑n

r=0 an,r.
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Using the previous theorem, we can prove that {an} is a strictly increasing se-
quence. We need a lemma first.

Lemma 6.4 P(n + 1, r, k + s) ≥ P(n, r, k) for s = 0, 1, . . . , r.

Proof For s = 0, the proof is clear. Now, let 1 ≤ s ≤ r and suppose that ( j1, . . . , jr)
is a partition of k such that 1 ≤ j1 < · · · < jr ≤ n. Define iq := jq for 1 ≤ q ≤ r− s
and iq := jq + 1 for r − s + 1 ≤ q ≤ r. Then (i1, . . . , ir) is a partition of k + s and
1 ≤ i1 < · · · < ir ≤ n + 1. Thus P(n + 1, r, k + s) ≥ P(n, r, k).

Proposition 6.5 {an} is a strictly increasing sequence.

Proof First, note that an,0 = an,n = P(n, 0, 0) = P(n, n, n(n + 1)/2) = 1, and from
the previous theorem we have an =

∑n
r=0 P(n, r, [r(n + 1)/2]). Fix m ∈ N, and get

a2m+1 = 1 +
m∑

r=0

P(2m + 1, 2r, 2rm + 2r) +
m−1∑
r=0

P(2m + 1, 2r + 1, 2rm + 2r + m + 1),

a2m =

m∑
r=0

P(2m, 2r, 2rm + r) +
m−1∑
r=0

P(2m, 2r + 1, 2rm + m + r)

= 1 +
m−1∑
r=0

P(2m, 2r, 2rm + r) +
m−1∑
r=0

P(2m, 2r + 1, 2rm + m + r),

a2m−1 =

m−1∑
r=0

P(2m− 1, 2r, 2rm) +
m−1∑
r=0

P(2m− 1, 2r + 1, 2rm + m).

Applying the previous lemma to the terms of the sums expressed above implies that

a2m+1 > a2m > a2m−1.

6.2 Generating Functions for the Sequence {an}

In this part, we express the rank of the K-groups of An,θ as explicitly as possible. In
fact, we present them as the constant terms in the polynomial expansions of certain
functions. First of all, we need the following basic lemma.

Lemma 6.6 Let P(n, r, k) denote the number of partitions of k to r distinct positive
integers not greater than n. Then P(n, r, k) is the coefficient of urtk in the polynomial
expansion of Fn(u, t) :=

∏n
i=1(1 + ut i). In other words,

∑
r,k≥0

P(n, r, k)urtk =
n∏

i=1
(1 + ut i).
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Proof

n∏
i=1

(1 + ut i) = 1 +
n∑

r=1

∑
(i1,...,ir)

1≤i1<···<ir≤n

(ut i1 ) · · · (ut ir )

= 1 +
n∑

r=1

∑
k≥1

P(n, r, k)urtk =
∑
r,k≥0

P(n, r, k)urtk.

Now, we have the following result for the rank an of the K-groups of An,θ.

Theorem 6.7 Let an = rank K0(An,θ) = rank K1(An,θ). Then for a nonnegative
integer m we have

(i) a2m+1 is the constant term in the Laurent polynomial expansion of

m∏
j=−m

(1 + z j);

(ii) a2m is the constant term in the Laurent polynomial expansion of

(1 + z)
m∏

j=−m+1
(1 + z2 j−1).

Proof We know that an =
∑n

r=0 an,r and an,r = P(n, r, [r(n + 1)/2]) by Theorem 6.3.

We have a2m+1 =
∑2m+1

r=0 P(2m + 1, r, r(m + 1)). Now, take y = utm+1 and use the
preceding lemma to get

F2m+1(u, t) = F2m+1(yt−m−1, t) =
2m+1∏
i=1

(1+yt i−m−1) =
∑
r,k≥0

P(2m+1, r, k)yrtk−r(m+1).

In particular, we get the following identity for y = 1:

2m+1∏
i=1

(1 + t i−m−1) =
∑
r,k≥0

P(2m + 1, r, k)tk−r(m+1),

or equivalently, by setting z = t and j = i −m− 1, we have

m∏
j=−m

(1 + z j) =
∑
r,k≥0

P(2m + 1, r, k)zk−r(m+1).

In particular, the constant term in the Laurent polynomial expansion of∏m
j=−m(1 + z j) is obtained when we take the sum of those terms for which k =

r(m + 1) holds, namely

2m+1∑
r=0

P
(

2m + 1, r, r(m + 1)
)
,
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which is precisely the expression for a2m+1.
For part (ii), write

a2m =

2m∑
r=0

P

(
2m, r,

[
r
(

m +
1

2

)])

=

m∑
r=0

P
(

2m, 2r, r(2m + 1)
)

+
m−1∑
r=0

P(2m, 2r + 1, 2rm + m + r)

=: Am + Bm.

Let us determine Am first. Note that using Lemma 6.6 we have

1

2

{ 2m∏
i=1

(1 + ut i) +
2m∏
i=1

(1− ut i)
}

=
∑
r,k≥0

P(2m, r, k)
{ 1 + (−1)r

2

}
urtk

=
∑
r,k≥0

P(2m, 2r, k)u2rtk.

If we define y := u2t2m+1, we have the identity

1

2

{ 2m∏
i=1

(
1 + y

1
2 t i−(m+ 1

2 )
)

+
2m∏
i=1

(
1− y

1
2 t i−(m+ 1

2 )
)}

=
∑
r,k≥0

P(2m, 2r, k)yrtk−r(2m+1),

which for y = 1 yields

1

2

{ 2m∏
i=1

(
1 + t i−(m+ 1

2 )
)

+
2m∏
i=1

(
1− t i−(m+ 1

2 )
)}

=
∑
r,k≥0

P(2m, 2r, k)tk−r(2m+1).

Hence Am is the constant term in the polynomial expansion of

1

2

{ 2m∏
i=1

(
1 + t i−(m+ 1

2 )
)

+
2m∏
i=1

(
1− t i−(m+ 1

2 )
)}

.

Similarly, for Bm we have

1

2

{ 2m∏
i=1

(1 + ut i)−
2m∏
i=1

(1− ut i)
}

=
∑
r,k≥0

P(2m, r, k)
{ 1− (−1)r

2

}
urtk

=
∑
r,k≥0

P(2m, 2r + 1, k)u2r+1tk.

If we define y2 := u2t2m+1, we have the identities

1

2

{ 2m∏
i=1

(
1 + y

1
2 t i−(m+ 1

2 )
)
−

2m∏
i=1

(
1− y

1
2 t i−(m+ 1

2 )
)}

=
∑
r,k≥0

P(2m, 2r + 1, k)y2r+1tk−(2rm+r+m)− 1
2

= t−
1
2

∑
r,k≥0

P(2m, 2r + 1, k)y2r+1tk−(2rm+r+m),
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which for y = 1 yield

t
1
2

2

{ 2m∏
i=1

(
1 + t i−(m+ 1

2 )
)
−

2m∏
i=1

(
1− t i−(m+ 1

2 )
)}

=
∑
r,k≥0

P(2m, 2r + 1, k)tk−(2rm+r+m).

Hence Bm is the constant term in the polynomial expansion of

t
1
2

2

{ 2m∏
i=1

(
1 + t i−(m+ 1

2 )
)
−

2m∏
i=1

(
1− t i−(m+ 1

2 )
)}

.

Therefore, a2m = Am + Bm is the constant term in the polynomial expansion of

1

2

{ 2m∏
i=1

(
1 + t i−(m+ 1

2 )
)

+
2m∏
i=1

(
1− t i−(m+ 1

2 )
)

+
t

1
2

2

2m∏
i=1

(
1 + t i−(m+ 1

2 )
)
− t

1
2

2

2m∏
i=1

(
1− t i−(m+ 1

2 )
)}

,

or equivalently, the constant term in the polynomial expansion of

1

2

{
(1 + z)

2m∏
i=1

(
1 + z2i−(2m+1)

)
+ (1− z)

2m∏
i=1

(
1− z2i−(2m+1)

)}
,

which equals the constant term in the Laurent polynomial expansion of

(1 + z)
m∏

j=−m+1
(1 + z2 j−1).

Thanks to this theorem, one can compute an for large values of n using a computer
algebra program. Many more terms are also available online at OEIS (The Online En-
cyclopedia of Integer Sequences at http://www.oeis.org). Moreover, as the following
corollaries suggest, such recognitions as constant terms of certain Laurent polynomi-
als opens the door to finding even more interesting combinatorial properties of the
sequence {an} that have been of interest to Erdős, J. H. van Lint, and R. C. Entringer,
to name a few (cf. [5, 6, 23]).

Corollary 6.8 Let n be a nonnegative integer.

(i) The integer a2n+1 is the number of solutions of the equation

k=n∑
k=−n

k εk = 0,

where εk = 0 or 1 for −n ≤ k ≤ n. In other words, a2n+1 is the number of ways
that a sum of integers between−n and n (with no repetitions) equals 0.
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(ii) The integer a2n is the number of solutions of the equation

k=n∑
k=−n+1

(2k− 1) εk = 0 or 1,

where εk = 0 or 1 for −n + 1 ≤ k ≤ n. In other words, a2n is the number of ways
that a sum of half-integers between −n + 1/2 and n − 1/2 (with no repetitions)
equals 0 or 1/2.

Proof Using Theorem 6.7, the number a2n+1 is the constant term in the Lau-
rent polynomial expansion of

∏n
k=−n(1 + zk), which is a finite sum of the form∑

A(n,m)zm. Obviously, the integer coefficient A(n,m) is the number of all pos-
sible combinations from the terms z−n, . . . , z0, . . . , zn, whose product makes a zm.
In other words, by putting εk = 1 when zk contributes to such a product making a
zm, and εk = 0 otherwise, we conclude that

A(n,m) = #
{

(ε−n, . . . , ε0, . . . , εn) ∈ {0, 1}2n+1 :
k=n∑

k=−n

k εk = m
}
.

In particular, the constant term of the Laurent polynomial expansion is A(n, 0), and
we have a2n+1 = A(n, 0). This proves part (i). Fort part (ii), we use the same idea for
the Laurent polynomial expansion of

(1 + z)
m∏

k=−m+1
(1 + z2k−1) =

m∏
k=−m+1

(1 + z2k−1) + z
m∏

k=−m+1
(1 + z2k−1)

as suggested by Theorem 6.7(ii).

In [23], van Lint answered a question of Erdős by determining the asymptotic
behavior of

A(n, 0) = #
{

(ε−n, . . . , ε0, . . . , εn) ∈ {0, 1}2n+1 :
k=n∑

k=−n

k εk = 0
}
.

The idea in his proof is as follows. Since A(n, 0) is the constant term of the Laurent
polynomial expansion of

∏n
k=−n(1 + zk), we can compute it as the Cauchy integral

1

2πi

∮
C

∏n
k=−n(1 + zk)

z
dz,

where C denotes the unit circle. By parameterizing C by z = e2ix for x ∈ [0, π],
applying the elementary identity (1 + e2ikx)(1 + e−2ikx) = 4 cos2 kx, and a simple
calculation we arrive at

A(n, 0) =
22n+2

π

∫ π
2

0

n∏
k=1

cos2 kx dx.
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We can then proceed by estimating the integrand near and far from 0 using
some elementary inequalities, which lead to the asymptotic formula A(n, 0) ∼
(3/π)

1
2 22n+1n−

3
2 [23]. This will immediately give the asymptotic behavior of the se-

quence {a2n+1} by the previous corollary. One can adapt the arguments used by van
Lint to obtain a similar asymptotic behavior for the sequence {a2n} by estimating the
corresponding integral

22n+2

π

∫ π
2

0
cos2 x

n∏
k=1

cos2(2k− 1)x dx,

which leads to the asymptotic formula a2n ∼ (3/π)
1
2 22nn−

3
2 . This gives rise to the

following result.

Corollary 6.9 an ∼
√

24
π 2nn−

3
2 when n→∞. In particular, limn→∞

an+1
an

= 2.

7 The Positive Cone of K0(Fθ, f )

In this section, we generalize a result of Kodaka on the order structure of the group
K0 of the crossed product by a Furstenberg transformation on the 2-torus [18, The-
orem 5.2]. However, our approach is different, and follows the general guidelines of
[30, Lemma 3.1]. We remind the reader that for a C∗-algebra A the positive cone of
K0(A) is the set K0(A)+ = {[q] ∈ K0(A) : q ∈ P∞(A)}, where P∞(A) is the set of
all projections in matrix algebras over A. Also, any positive trace τ on a C∗-algebra
A induces a group homomorphism τ∗ : K0(A) → R. As was indicated in the intro-
duction, when the Furstenberg transformation ϕθ, f is minimal and uniquely ergodic,
using the results of Lin and Phillips in [21] the transformation group C∗-algebra Fθ, f

is classifiable by its Elliott invariant, and the order of K0(Fθ, f ) is determined by the
unique tracial state τ on Fθ, f [22, 29]. The fact that τ∗K0(Fθ, f ) = Z + Zθ was first
proved in the unpublished thesis of Ji [16]. However, we will study the effect of the
trace on the order structure of K0 using R. Exel’s machinery of rotation numbers [7].

For a C∗-algebra A, we denote by U p(A) the set of unitary elements of Mp(A).
The following lemma is well known, but it is convenient to state and prove it for
completeness.

Lemma 7.1 Let A and B be unital C∗-algebras and let A⊗B denote their minimal ten-
sor product. Suppose that u ∈ U p(A) and v ∈ Uq(B), and let φ : C(T2)→ Mpq(A⊗ B)
be the unique homomorphism mapping the coordinate unitaries z1, z2 ∈ U (C(T2)) to
the commuting unitaries u ⊗ 1q, 1p ⊗ v ∈ U pq(A ⊗ B), respectively. Let b(u, v) ∈
K0(A⊗B) denote the Bott element of u, v defined by K0(φ)(b), where β = [z1]∧ [z2] is
the Bott element in K0(C(T2)) so that K0(C(T2)) = Z[1] + Zβ. Then τ∗(b(u, v)) = 0
for any tracial state τ on A⊗ B.

Proof Since τ ◦ φ is a trace on T2, there exists a Borel probability measure µ on T2

such that

(τ ◦ φ)( f ) =

∫
T2

f (x) dµ(x), f ∈ C(T2).
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Write β = [p] − [q], where p, q are appropriate projections in some matrix algebra
over C(T2), so we have

τ∗(b(u, v)) = τ∗
(

K0(φ)(β)
)

= (τ ◦ φ)∗(β) =

∫
T2

Tr(p(x))− Tr(q(x)) dµ(x).

It is well known that for the Bott element b we have Tr(p(x))−Tr(q(x)) = 0, namely,
the projections p(x) and q(x) have the same rank for all x ∈ T2, and this common
rank does not depend on x, since T2 is connected (in fact, they are rank one projec-
tions). This can be proved either by a calculation of the traces of the projections p(x)
and q(x) explicitly (cf. [1, p. 7]), or by using the naturality in the Künneth formula
for T2, which shows that the image under any point evaluation of β is zero. Briefly
speaking, the map x 7→ Tr(p(x))− Tr(q(x)) belongs to C(T2,Z), so it has to assume
a constant integer, which we call dimβ. In particular, dimβ is invariant under the
change of coordinate (ζ1, ζ2) 7→ (ζ1, ζ

−1
2 ), whereas the naturality of the Künneth ho-

momorphism α1,1 : K1(C(T))⊗ K1(C(T))→ K0(C(T2)), which maps [z]⊗ [z] to β,
implies that the Bott element β will transform into −β under this change of coordi-
nates since [z]⊗ [z−1] = [z]⊗ (−[z]) = −([z]⊗ [z]). This means dimβ = 0.

We denote by u the unitary in Fθ, f implementing the action generated by the
transformationϕθ, f on Tn with irrational parameter θ, and by z1 the unitary in C(Tn)
defined by z1(ζ1, . . . , ζn) = ζ1 as in Section 2. Then we have uz1u−1 = z1 ◦ ϕ−1

θ, f =

e2πiθz1, so that C∗(u, z1) ∼= Aθ, the irrational rotation algebra. Let pθ ∈ C∗(u, z1) be
a Rieffel projection of trace θ as in [34]. It is obvious that τ∗([1]) = 1. On the other
hand, since the restriction of τ on the C∗-subalgebra Aθ ⊆ Fθ, f has to be the unique
tracial state on Aθ, we have τ∗([pθ]) = θ. The main result of this section will show
that all the essential information about the order structure of K0(Fθ, f ) is encoded in
the embedding of Aθ in Fθ, f .

Theorem 7.2 Let ϕθ, f be a minimal uniquely ergodic Furstenberg transformation on
Tn with θ ∈ (0, 1) (e.g., when θ ∈ (0, 1) \ Q and each fi satisfies a uniform Lipschitz
condition in ζi for i = 1, . . . , n − 1). Let an and T 0

f denote, respectively, the rank and

the torsion subgroup of K0(Fθ, f ) so that K0(Fθ, f ) ∼= Zan ⊕T 0
f . Then the isomorphism

of K0(Fθ, f ) with this group can be chosen in such a way that

(i) the unique tracial state τ on Fθ, f induces the map

τ∗(a[1] + b[pθ], c, t) = a + b θ

on K0(Fθ, f ) for all (a[1] + b[pθ], c, t) ∈ (Z[1] + Z[pθ]) ⊕ Zan−2 ⊕ T 0
f
∼=

Zan ⊕T 0
f ;

(ii) the positive cone K0(Fθ, f )+ can be identified with{
(a[1] + b[pθ], c, t) ∈ (Z[1] + Z[pθ])⊕ Zan−2 ⊕T 0

f : a + b θ > 0
}
∪ {0}.

Proof The idea of the proof is to show that there exists a generating set for the finitely
generated abelian group K0(Fθ, f ) including [1] and [pθ] such that the induced ho-
momorphism τ∗ vanishes at all generators, except for [1] and [pθ] for which we
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have τ∗([1]) = 1 and τ∗([pθ]) = θ. Using Theorem 2.1 and setting α = ϕθ, f
and α j = K j(α) for j = 1, 2 we have

K0(Fθ, f ) ∼= coker(α0−id)⊕ker(α1−id) =
⊕
r≥0

[
coker(∧2rα̂−id)⊕ker(∧2r+1α̂−id)

]
,

where α̂ is the restriction of α1 to the subgroup Z[z1] + · · · + Z[zn] of K1(C(Tn))
as in Section 2, and z j(ζ, . . . , ζn) = ζ j of C(Tn) for j = 1, . . . , n. Note that by
Definition 1.3, f = ( f1, . . . , fn−1) consists of continuous functions f j−1 : T j−1 →
T for j = 2, . . . , n. First, we “linearize” each f j−1 by finding the unique “linear”
function

(ζ1 . . . , ζ j−1) 7→ ζ
b1 j

1 · · · ζ
b j−1, j

j−1 , (b j−1, j 6= 0)

in the homotopy class of f j−1. This allows us to calculate α̂([z j]) by writing

α̂([z1]) = [z1 ◦ ϕ−1
θ, f ] = [e2πiθz1] = [z1],

α̂([z j]) = [z j ◦ ϕ−1
θ, f ] = [ f j−1(z1, . . . , z j−1)z j]

= [z
b1 j

1 · · · z
b j−1, j

j−1 z j] = b1 j[z1] + · · · + b j−1, j[z j−1] + [z j]

for j = 2, . . . , n. In other words, the integer matrix of α̂ with respect to the basis
{[z1], . . . , [zn]} of Zn is precisely in the form (5.1) as in the proof of Theorem 5.1.
Now, we can realize α0 = ∧evenα̂ and α1 = ∧oddα̂ to calculate the K-groups of Fθ, f

as in Section 2.
It is important to note that, by referring to the exact sequences (2.1), (2.2) and

(2.3), the isomorphic image of coker(α0 − id) in K0(Fθ, f ) is precisely the image
im j0 of K0(C(Tn)) and an isomorphic image of ker(α1 − id) in K0(Fθ, f ) is ob-
tained by finding the image of a splitting (injective) homomorphism s : ker(α1 −
id) → K0(Fθ, f ) for the exact sequence (2.2) so that ∂ ◦ s = id on ker(α1 − id).
Any such splitting homomorphism is obtained as follows: fix a basis {γ1, . . . , γq}
for the free finitely generated group ker(α1 − id) of rank q, and find elements
ν(0)

1 , . . . , ν(0)
q ∈ K0(Fθ, f ) such that ∂ν(0)

j = γ j for j = 1, . . . , q. Then define

s(
∑

j m jγ j) =
∑

j m jν
(0)
j for m j ∈ Z. Clearly, K0(Fθ, f ) = im j0 ⊕ im s.

Now, since ∧0α̂ = id on Λ0Zn = Z and ∧1α̂ = α̂ on Λ1Zn = Zn, we can write
the isomorphism

K0(Fθ, f ) ∼= Z⊕ ker(α̂− id)⊕
⊕
r≥1

[
ker(∧2r+1α̂− id)⊕ coker(∧2rα̂− id)

]
.

In fact, a single generator for the isomorphic image of Z in K0(Fθ, f ) is [1], and since
b j−1, j 6= 0 for j = 2, . . . , n, we have ker(α̂− id) = Ze1 = Z[z1]. It is easy to see that
∂([pθ]) = [z1] (see the proposition in the appendix of [31]). Therefore there exists
a basis {γ1, . . . , γq} for ker(α1 − id) =

⊕
r≥0 ker(∧2r+1α̂− id) with γ1 = [z1] and a

splitting homomorphism s : ker(α1 − id)→ K0(Fθ, f ) with s([z1]) = [pθ]. Hence a
single generator for the image of ker(α̂− id) in K0(Fθ, f ) is [pθ].

It remains to study the effect of τ∗ on the isomorphic image of⊕
r≥1 coker(∧2rα̂− id), which contains the the torsion subgroup T 0

f , and on
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the image of
⊕

r≥1 ker(∧2r+1α̂− id) in K0(Fθ, f ). For more convenience, set
e j := [z j] for j = 1, . . . , n as in Section 2. First, we study the isomorphic
image of

⊕
r≥1 coker(∧2rα̂ − id). We show that τ∗ vanishes on this whole

subgroup by showing, equivalently, that τ∗ vanishes on the image of the sub-
group

⊕
r≥1 Λ2r

Z (e1, . . . , en) ⊂ K0(C(Tn)) in K0(Fθ, f ) under the map j0. Let
η = ei1 ∧ · · · ∧ ei2r ∈ K0(C(Tn)) for some r ≥ 1 and 1 ≤ i1 < · · · < i2r ≤ n. We
want to show that τ∗(j0(η)) = 0, where j0 := K0(j) and j : C(Tn) → Fθ, f is the
natural embedding in the structure of the crossed product Fθ, f = C(Tn) oα Z. By
Künneth formula we have η = b(u, z), where u is a unitary in some matrix algebra
over C(Tn−1) with [u] = ei1 ∧ · · · ∧ ei2r−1 ∈ K1(C(Tn−1)) and z is the canonical
unitary in C(T) with [z] = ei2r ∈ K1(C(T)). By Lemma 7.1, we have

τ∗
(

j0(η)
)

= τ∗
(

K0(j)(η)
)

= (τ ◦ j)∗(η) = (τ ◦ j)∗
(

b(u, z)
)

= 0.

Now, we study the isomorphic image of
⊕

r≥1 ker(∧2r+1α̂− id) in K0(Fθ, f ). We will
show that τ∗ assumes only integer values on this whole subgroup. In other words,
if {γ1, . . . , γq} is a basis for the ker(α0 − id) as above such that γ1 = [z1] is a
basis for ker(α̂ − id) and {γ2, . . . , γq} is a basis for

⊕
r≥1 ker(∧2r+1α̂ − id), then

τ∗(ν
(0)
1 ) = θ, and τ∗(ν

(0)
j ) = k j for some k j ∈ Z for j = 2, . . . , q, where ν(0)

j ’s

are chosen in K0(Fθ, f ) so that ∂(ν(0)
j ) = γ j for j = 1, . . . , q and ν(0)

1 = [pθ] as
above. To demonstrate this, we prove that the determinant of any unitary repre-
senting an element in the subgroup

⊕
r≥1 Λ2r+1

Z (e1, . . . , en) is the constant function
1. Then the rotation number homomorphism ρµα : ker(α1 − id) → T defined by
Exel is the constant 1 on the subgroup

⊕
r≥1 ker(∧2r+1α̂ − id) [7, Theorem VI.11],

hence the trace will be integer-valued on this subgroup because exp(2πiτ∗(η)) =
ρµα ◦ ∂(η) for all η ∈ K0(Fθ, f ) [7, Theorem V.12]. To calculate the determinant on⊕

r≥1 Λ2r+1
Z (e1, . . . , en), let γ = ei1 ∧ · · ·∧ ei2r+1 ∈ K1(C(Tn)), set η = ei1 ∧ · · ·∧ ei2r ∈

K0(C(Tn−1)), and write η = [p] − [q] as above. Then ei2r+1 = [z] for the canonical
unitary z of C(T), and using the Künneth formula we have

γ = η ⊗ [z] = ([p]− [q])⊗ [z] = [p]⊗ [z] + [q]⊗ [z−1]

=
[

((1− p)⊗ 1 + p ⊗ z)((1− q)⊗ 1 + q⊗ z−1)
]
.

So, γ = [ω1ω2], where ω1 := (1− p)⊗ 1 + p⊗ z and ω2 := (1− q)⊗ 1 + q⊗ z−1 are
unitaries in some matrix algebra of the same size over C(Tn). Since for all x ∈ Tn−1

the projections p(x) and q(x) have the same rank ρ as in the proof of Lemma 7.1, we
have the following equivalence of projections in some matrix algebra Ml(C):

p(x) ∼ 1ρ ⊕ 0l−ρ ∼ q(x),

where 1m, 0m denote the identity and the zero matrix of order m, respectively, and
⊕ is the direct sum of matrices. This implies the following unitary equivalence of
projections in M2l(C):

p(x)⊕ 0l ∼u 1ρ ⊕ 02l−ρ ∼u q(x)⊕ 0l.
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In particular, we conclude the following unitary equivalence of unitary matrices
for all (x, ζ) ∈ Tn−1 × T

ω1(x, ζ)⊕ 1l ∼u ζ1ρ ⊕ 12l−ρ, ω2(x, ζ)⊕ 1l ∼u ζ
−11ρ ⊕ 12l−ρ.

Therefore Detω1(x, ζ) = ζρ and Detω2(x, ζ) = ζ−ρ, hence Det(ω1ω2)(x, ζ) = 1,
for all (x, ζ) ∈ Tn−1 × T. This implies that Det∗(γ) = 1 ∈ [Tn,T], where [Tn,T]
denotes the set of homotopy classes of continuous functions from Tn to T (see [7,
Definition VI.8 and Proposition VI.9]).

Finally, by setting ν1 := ν(0)
1 = [pθ] and νk := ν(0)

j −k j[1] for j = 2, . . . , q so that
τ∗(ν1) = θ and τ∗(ν j) = 0 for j = 2, . . . , q, we can form a generating set with the
desired property for K0(Fθ, f ) by taking the union of {ν1, . . . νq} and a generating set
including [1] for the isomorphic image of coker(α0 − id). This proves part (i).

For part (ii), we use part (i) together with the fact that the order on K0(Fθ, f ) is
determined by the effect of the unique tracial state τ because Tn is a finite dimen-
sional infinite compact metric space and ϕθ, f is a minimal homeomorphism of Tn

(see [22, Theorem 5.1(1)] or [29, Theorem 4.5(1)]).

Corollary 7.3 Let ϕθ, f be a minimal uniquely ergodic Furstenberg transformation on
Tn as above. Then linearizing the functions fi : Ti → T in f = ( f1, . . . , fi−1) does not
change the isomorphism class of the transformation group C∗-algebra Fθ, f .

Proof Since ϕθ, f is minimal, θ must be irrational. So the range of the unique tracial
state (by unique ergodicity) on K0(Fθ, f ) is dense in R as it is Z + Zθ by the above
argument. Benefiting from the results of [21], such C∗-algebras are completely classi-
fiable by their Elliott invariants, which remain unchanged (up to isomorphism) after
the linearization process. Linearizing does not change the isomorphism classes of the
K-groups, and Theorem 7.2 guarantees that the order structure of the group K0 is
precisely the regular order inherited from R on Z + Zθ before and after lineariza-
tion.

8 Applications to C∗(Dn)

This section is devoted to some applications of the results of the previous sections to
the C∗-algebras studied in [33], in which the authors promised to completely classify
the simple infinite dimensional quotients of the group C∗-algebra of their interest
C∗(Dn) by their K-theoretic invariants in a later work. In this context, the discrete
group Dn is a higher dimensional analogue of the discrete Heisenberg group H3, and
is defined by

Dn =
〈

x, y0, y1, . . . , yn | xy0 = y0x, yi y j = y j yi

for 0 ≤ i, j ≤ n, [x, y j] = y j−1 for 1 ≤ j ≤ n
〉
,

where [x, y] := xyx−1 y−1. The group Dn can be represented as a semidirect product
Zn+1 oη Z, where the group homomorphism η : Z→ GL(n + 1,Z) is such that η(k)
is the matrix, whose (i, j)-entry is given by

( k
j−i

)
as defined in [33]. This realization

allows us to study K-theory of C∗(Dn).
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Proposition 8.1 Ki(C∗(Dn)) ∼= Ki(An+1,θ) for i = 0, 1. In particular,

rank K0

(
C∗(Dn)

)
= rank K1

(
C∗(Dn)

)
= an+1.

Proof Since Dn
∼= Zn+1 oη Z, so C∗(Dn) ∼= C∗(Zn+1)oη̃ Z ∼= C(Tn+1)oη̃ Z and the

integer matrix corresponding to η̃ is the (n+1)×(n+1) matrix Mn introduced in [33],
which is precisely the matrix Sn+1 defined in Section 5 to describe the linear structure
of Anzai transformations on Tn+1. The rest of the proof follows from Theorem 2.1.

As some higher-dimensional analogues of the irrational rotation algebras Aθ, all
simple infinite-dimensional quotients of C∗(Dn) have been classified in [33, Theo-
rem 3.2]. These consist of the C∗-algebras An,θ for some irrational parameter θ, and

a few more classes of C∗ algebras denoted by A(n)
i , which are of the form C(Yi ×

Tn−i) oφi Z for some suitable finite sets Yi and minimal homeomorphisms φi for

i = 1, 2, . . . , n − 1. Then it is proved in [33, Theorem 4.8] that A(n)
i
∼= MCi (B(n)

i ),

where B(n)
i is the transformation group C∗-algebra of some affine Furstenberg trans-

formation on Tn−i . We conclude the following results.

Corollary 8.2 Let A be a simple infinite dimensional quotient of C∗(Dn). Then
rank K0(A) = rank K1(A) = an−i for some i ∈ {0, 1, . . . , n − 1} that is uniquely
determined by the isomorphism A ∼= C(Yi × Tn−i) oφi Z as in [33, Theorem 3.2].

Proof It is proved that A is isomorphic to a matrix algebra over a Furstenberg trans-
formation group C∗-algebra B(n)

i onTn−i for some suitable i ∈ {0, 1 . . . , n} [33, The-

orem 4.8]. So K j(A) ∼= K j(B(n)
i ) for j = 0, 1. The rest of the proof is clear from the

preceding theorem.

We saw in Proposition 6.5 that {an} is a strictly increasing sequence. Therefore the
preceding corollary is a first step towards the classification of the simple infinite di-
mensional quotients of C∗(Dn) by means of K-theory. But as is seen, the rank of the
K-groups alone can not distinguish the algebras at the same “level” (i.e., those alge-
bras that are included in the same class, but with different values of the parameters).
The other powerful K-theoretic invariant that helps us do this is the trace invariant,
i.e., the range of the unique tracial state acting on the K0-group.

Proposition 8.3 Suppose A ∼= C(Yi × Tn−i) oφi Z is a simple infinite dimensional
quotient of C∗(Dn) as in [33, Theorem 3.2]. Then A has a unique tracial state τ̃ and
τ̃∗K0(A) = 1

Ci
(Z + Zϑi), where Ci = |Yi | and e2πiϑi = ζi = (−1)Ci +1ηCi

i as in
[33, Lemma 4.6 and Theorem 4.8].

Proof Following [33, Theorem 4.8], A is isomorphic to MCi (B(n)
i ) = MCi (C)⊗ B(n)

i ,

where B(n)
i is a simple Furstenberg transformation group C∗-algebra with the irra-

tional parameter ζi = (−1)Ci +1ηCi
i . By Corollary 1.5, B(n)

i has a unique tracial state
τ . Moreover, τ∗K0(B(n)

i ) = Z + Zϑi , where e2πiϑi = ζi (see [16, Theorem 2.23] or
Theorem 7.2). Thus A has the unique tracial state τ̃ = (1/Ci Tr) ⊗ τ , in which Tr is
the usual trace on MCi (C), and so τ̃∗K0(A) = 1/Ci(Z + Zϑi) [16, Lemma 3.5].
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Finally, we can characterize all simple infinite-dimensional quotients of C∗(Dn).

Proposition 8.4 An,θ
∼= An ′,θ ′ if and only if n = n ′ and there exists an integer k

such that θ = k ± θ ′. More generally, let A(n)
i
∼= C(Yi × Tn−i) oφi Z be a simple

infinite dimensional quotient of C∗(Dn) with the structure constants λ, µ1, . . . , µi as

in [33, pp. 165–166], and let A(n ′)
i ′
∼= C(Y ′i ′ × Tn ′−i ′) oφ ′i

Z be a simple infinite
dimensional quotient of C∗(Dn ′) with the structure constants λ ′, µ ′1, . . . , µ

′
i ′ . Suppose

that Ci = |Yi | and C ′i ′ = |Y ′i ′ |. Then A(n)
i
∼= A(n ′)

i ′ if and only if n − i = n ′ − i ′,
Ci = C ′i ′ and

λ(Ci
i+1)µ(Ci

i )
1 µ

( Ci
i−1)

2 · · ·µCi
i = λ ′(

C ′
i ′

i ′+1
)µ ′1

(
C ′

i ′
i ′ )µ ′2

(
C ′

i ′
i ′−1

) · · ·µ ′i ′
C ′i ′

or

λ(Ci
i+1)µ(Ci

i )
1 µ

( Ci
i−1)

2 · · ·µCi
i = (λ ′(

C ′
i ′

i ′+1
)µ ′1

(
C ′

i ′
i ′ )µ ′2

(
C ′

i ′
i ′−1

) · · ·µ ′i ′
C ′i ′ )−1.

Proof Use the previous proposition and the fact that {an} is a strictly increasing
sequence (see Proposition 6.5). Note that

ζi = (−1)Ci +1ηCi
i = λ(Ci

i+1)µ(Ci
i )

1 µ
( Ci

i−1)
2 · · ·µCi

i

by the last equation on [33, p. 171].

Remark 8.5 Note that Ci = |Yi | is completely determined by the structural con-
stants λ, µ1, . . . , µi−1 (which are roots of unity). More precisely, by calculations on
[33, pp. 165–166], we have

Ci = min
{

r ∈ N | λr = λ(r
2)µr

1 = · · · = λ(r
i)µ

( r
i−1)

1 µ
( r

i−2)
2 · · ·µr

i−1 = 1
}
.

For an explicit example in lower dimensions, see [26, Lemma 5.4].

9 Concluding Remarks

(I) The method used in Section 1 for computing K-groups of the transformation
group C∗-algebras of homeomorphisms of the tori may be extended to more general
settings. Let G be a compact connected Lie group with torsion-free fundamental
group π1(G). (It is well known that the fundamental group of such spaces are finitely
generated and abelian, so being torsion-free means π1(G) ∼= Zl, for some l.) Some
important examples are any finite Cartesian products of the groups S3, SO(2), Sp(n),
U (n) and SU (n). Then K∗(G) is torsion-free and can be given the structure of a Z2-
graded Hopf algebra over the integers [14]. Moreover, regarded as a Hopf algebra,
K∗(G) is the exterior algebra on the module of the primitive elements, which are
of degree 1. The module of the primitive elements of K∗(G) may also be described
as follows. Let U (n) denote the group of unitary matrices of order n and let U :=
∪∞n=1U (n) be the stable unitary group. Any unitary representation ρ : G → U (n),
by composition with the inclusion U (n) ⊂ U , defines a homotopy class β(ρ) in
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[G,U ] = K1(G). The module of the primitive elements in K1(G) is exactly the
module generated by all classes β(ρ) of this type. If in addition, G is semisimple and
simply connected of rank l, there are l basic irreducible representations ρ1, . . . , ρl,
whose maximum weights λ1, . . . , λl form a basis for the character group T̂ of the
maximal torus T of G, and the classes β(ρ1), . . . , β(ρl) form a basis for the module
of the primitive elements in K1(G) and K∗(G) = Λ∗(β(ρ1), . . . , β(ρl)). In any case,
to compute K∗(C(G)oα Z) it is sufficient to determine the homotopy classes of α ◦ρ
for the irreducible representations ρ of G in terms of β(ρ)’s.

(II) There is a relation between K-theory of the transformation group C∗-alge-
bras of the homeomorphisms of the tori and the topological K-theory of compact
nilmanifolds. In fact, let α = (t,A) be an affine transformation on Tn satisfying
conditions (a) through (d) of Remark 5.2. Then it has been shown in [12] that α
is conjugate (in the group of affine transformations on Tn) to the transformation
α ′ = (t ′,A ′), where A ′ is an upper triangular matrix whose bottom right k × k
corner is the identity matrix Ik, and t ′ = (0, . . . , 0, t ′1, . . . , t

′
k). The transformation

α ′ is called a standard form for α [28]. Assume that α is given in standard form.
Then Packer associates an induced flow (R,N/Γ) to the flow (Z,Tn) generated by α,
where N is a simply connected nilpotent Lie group of dimension n + 1, the discrete
group Γ is a cocompact subgroup of N, and the action of R is given by translation on
the left by exp sX for s ∈ R and some X ∈ n, the Lie algebra of N. One of the most
important facts is that the C∗-algebra C(N/Γ) oβ R corresponding to the induced
flow is strongly Morita equivalent to C(Tn)oαZ [28, Proposition 3.1]. Consequently,
one has

(9.1) Ki(C(Tn) oα Z) ∼= Ki(C(N/Γ) oβ R) ∼= K1−i(N/Γ), i = 0, 1.

The second isomorphism here is Connes’ Thom isomorphism. So the K-theory of
C(Tn) oα Z is converted to the topological K-theory of the compact nilmanifold
N/Γ. Following the proof of [28, Proposition 3.1], one can conclude that for the
special case of Anzai transformations we can take N = Fn−1 (the generic filiform Lie
group of dimension n + 1) and Γ = Dn−1, which were defined in [33]. On the other
hand, following [35, Theorem 3.6], one has the isomorphism

(9.2) Ki(C
∗(Γ)) ∼= K i+n+1(N/Γ), i = 0, 1.

Combining (9.1) and (9.2) one gets

Ki(C(Tn) oα Z) ∼= K i+1(N/Γ) ∼= Ki+n(C∗(Γ)), i = 0, 1.

Using the above isomorphisms, one can relate the algebraic invariants of the involved
C∗-algebras and topological information of the corresponding nilmanifold. For ex-
ample, since N/Γ is a classifying space for Γ, one has the isomorphisms

(9.3) H∗dR(N/Γ) ∼= Ȟ∗(N/Γ,R) ∼= H∗(Γ,R) ∼= H∗(N,R) ∼= H∗(n,R),

where H∗dR(N/Γ) denotes the de Rham cohomology of the manifold N/Γ,
H∗(N/Γ,R) denotes the Čech cohomology of N/Γ with coefficients in R, H∗(Γ,R)
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denotes the group cohomology of Γ with coefficients in the trivial Γ-module R,
H∗(N,R) denotes the Moore cohomology group of N (as a locally compact group)
with coefficients in the trivial Polish N-module R, and H∗(n,R) denotes the coho-
mology of the Lie algebra n with coefficients in the trivial n-module R. Now, using
the Chern isomorphisms ch0 : K0(N/Γ)⊗Q→ Ȟeven(N/Γ,Q) and ch1 : K1(N/Γ)⊗
Q→ Ȟodd(N/Γ,Q), one concludes that the even and odd cohomology groups stated
in (9.3) are all isomorphic to Rk, where k is the (common) rank of the K-groups of
C(Tn) oα Z as in Corollary 2.2. As an example, if N = Fn−1, Γ = Dn−1, and
n = fn−1, then the even and odd cohomology groups stated in (9.3) are all iso-
morphic to Ran , where an is the rank of the K-groups of An,θ that was studied in
detail in Sections 5 and 6. Conversely, one may use the topological tools for N/Γ
to get some information about C(Tn) oα Z and C∗(Γ). For example, we know that
N/Γ as a compact nilmanifold can be constructed as a principal T-bundle over a
lower dimensional compact nilmanifold [10]. Then we can compute the topological
K-groups of N/Γ using the six term Gysin exact sequence [17, IV.1.13, p. 187]. As
an example, one can see that Fn−1/Dn−1 is a principal T-bundle over Fn−2/Dn−2,
and the corresponding Gysin exact sequence is in fact the topological version of the
Pimsner–Voiculescu exact sequence for the crossed product An,θ

∼= An−1,θ oα Z as
in [33, Theorem 2.1(d)].
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