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Abstract

We present a deep learning architecture that reconstructs a source of data at given spatio-temporal coordinates using
other sources. Themodel can be applied tomultiple sources in a broad sense: the number of sourcesmay vary between
samples, the sources can differ in dimensionality and sizes, and cover distinct geographical areas at irregular time
intervals. The network takes as input a set of sources that each include values (e.g., the pixels for two-dimensional
sources), spatio-temporal coordinates, and source characteristics. The model is based on the Vision Transformer, but
separately embeds the values and coordinates and uses the embedded coordinates as relative positional embedding in
the computation of the attention. To limit the cost of computing the attention between many sources, we employ a
multi-source factorized attention mechanism, introducing an anchor-points-based cross-source attention block. We
name the architecture MoTiF (multi-source transformer via factorized attention). We present a self-supervised setting
to train the network, in which one source chosen randomly is masked and themodel is tasked to reconstruct it from the
other sources. We test this self-supervised task on tropical cyclone (TC) remote-sensing images, ERA5 states, and
best-track data. We show that the model is able to perform TC ERA5 fields and wind intensity forecasting from
multiple sources, and that using more sources leads to an improvement in forecasting accuracy.

Impact Statement

This article presents a deep learning method for extreme weather forecasting designed to merge multiple sources
of data. The sources can be of different natures (e.g., satellite images and weather station measurements) and
cover different geographical areas and times. We show that by using more sources with a more general artificial
intelligence model, one can, for example, improve the forecasting of tropical cyclones (TCs).

1. Introduction

In recent years, machine learning models have rapidly taken over the field of global weather forecasting.
Fully data-driven models can now reach better average results on many metrics than the best physics-
based ones, such as the High-resolution Integrated Forecasting System (IFS-HRES, Bi et al., 2023; Lam
et al., 2023; Nguyen et al., 2024; Zhong et al., 2024). Still, the overall ability of Machine Learning (ML)
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models to forecast extreme weather accurately is less clear. On the one hand, artificial intelligence
(AI) models have shown improvements upon IFS-HRES in extreme weather-related tasks, such as
forecasting TC tracks, atmospheric rivers (Bi et al., 2023; Kochkov et al., 2023; Lam et al., 2023;
Price et al., 2024), as well as heat, cold, andwind extremes (Bi et al., 2023; Lam et al., 2023; Olivetti and
Messori, 2024). On the other hand, many of the general weather forecasting ML models are trained on
European Center for Medium-range Weather Forecasting’s Reanalysis v5 (ERA5, Hersbach et al.,
2020), which is limited in its capacity to represent extremeweather events. Even disregarding modeling
errors, its 0.25° spatial resolution is insufficient to represent many extreme phenomena accurately, such
as convective activity (Taszarek et al., 2021). In the case of TCs and extra-TCs (ETCs), ERA5 tends to
underestimate the highest wind speeds, which happen in a small region in the eyewall (Bié and de
Camargo, 2023; Chen et al., 2024). Besides, reanalysis and physics-based forecasts are limited in their
real-time availability as they require a phase of data assimilation. Consequently, forecast updates are
typically available only every 6 h, which is longer than the period over which some extreme phenomena
can develop or evolve. For those reasons, extreme weather forecasting ML models would greatly
benefit from being able to use multiple sources of data, including observations.

1.1. Contributions

Multi-source architecture. In this work, we present an architecture named MoTiF (multi-source trans-
former via factorized attention) designed to merge multiple sources of geospatial information, of different
types (satellite imagery, reanalysis, best-track estimates), from different instruments (multiple observing
frequencies and multiple satellites), covering misaligned geographical areas, and at irregular time
intervals. The architecture also allows using a flexible number of sources as input, including within a
batch during inference or training. MoTiF takes as input a set of sources that each include values (e.g.,
pixels for image-like sources), spatio-temporal coordinates, and source characteristics (such as the ground
sampling distance for satellite sources). The model also supports partially missing sources. The task
performed by the network is to predict the values of a requested source, using its coordinates and the
values and coordinates of the other sources. TheMoTiF architecture is based on the transformer (Vaswani
et al., 2023) and Vision Transformer (ViT; Dosovitskiy et al., 2021), and uses three separate embeddings,
for the sources’ values (e.g., pixels for image-like sources), the spatio-temporal coordinates, and a
conditioning vector, including characteristics of the sources and a landmask. The values contain valuable
information, while the embedded coordinates serve as relative positional embedding in the attention
computation (inspired by Shaw et al., 2018). To limit the memory cost of cross-source attention, we use a
factorized attention system inspired byCouairon et al. (2024). As the sources have different shapes and are
generally not aligned geographically, the usual factorized attention does not directly apply. For this
reason, we introduce a specific anchor-points-based cross-attention layer. This layer limits the cost of the
cross-source attention while allowing information to be exchanged between the sources.

Self-supervised framework.Wewrap this architecture within a framework that leverages self-supervised
learning (SSL), which means that no training labels are required, as the same data point can serve as both
input and target. Given a set of available sources in a sample, one of the sources is fully masked, and the
model is tasked to reconstruct it using the other available sources. In order to reconstruct themasked source,
themodel only has access to its spatio-temporal coordinates and information characterizing the source. This
requires the model to understand the relationship between the masked source’s coordinates and character-
istics and those of all other sources. While this source reconstruction task is self-supervised, it has direct
applications, contrary to pure pretext tasks such as in the masked auto-encoder setting (He et al., 2021), for
example, inferring the wind fields of a cyclone from satellite images. Finally, the reconstruction task can be
viewed differently depending on which source is masked: if the masked source is chronologically between
two unmasked ones, then the task is temporal interpolation coupled with domain adaptation. If the masked
source is chronologically last, the task becomes forecasting.

Application.We apply the MoTiF architecture and the self-supervised framework to the specific case
of TCs and ETCs.We pretrain amodel on amix of satellite images and ERA5 surface fields, and then fine-
tune it on different tasks, such as ERA5 fields forecasting, wind intensity forecasting, and satellite images
reconstruction.
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1.2. Related work

1.2.1. Learning from multiple sources for weather forecasting
Using multiple sources as input for weather forecasting ML models has been studied before. Met-Net
3 (Andrychowicz et al., 2023) couples sparse weather stations’ data with assimilated states to forecast a
dense field of precipitation and surface variables. Using observations offers Met-Net the advantage of
updating its forecast every 5 min while also limiting the errors linked to the assimilation process.
However, Met-Net is limited to two types of sources and does not have the objective of combining a
large number of sources. Aardvark (Vaughan et al., 2024) is a global weather forecasting data-driven
model that combinesmany remote sensing and in situ sources to forecast ERA5 states. Themodel’s ability
to combine observations into a common latent space via a transformer-based architecture supports the
choice of architecturemade in this work. Nonetheless, Aardvarkworks on a constant global grid andmaps
off-the-grid data to the grid with SetConv layers (Gordon et al., 2020). While we employ the same
principle of encoding the sources into a common latent space, we focus on nonglobal weather phenomena,
for which the sources cover different geographical areas with varying grids. Finally, McNally et al. (2024)
combine multiple sources of global observations, but output observations instead of ERA5 or any
assimilated state, and use masked autoencoding (He et al., 2021) as a training task. While we use a
similar training task in this work, we fully mask one of the sources instead of masking only regions of
it. We detail the motivations in the following section.

1.2.2. SSL for geographical-temporal data
SSL consists of training on a so-called pretext task that allows the model to learn powerful representations
of the input data. The model can then be fine-tuned for more specific downstream tasks using the learned
representations. The advantage of SSL is that the pretext task can be designed not to require any labeled
data, which often allows the use of a large amount of data with little to no human input. Two principles of
SSL have mostly been explored in the context of temporal-geographical data. Contrastive learning
methods have been used on remote-sensing data, including sources frommultiple satellites with different
resolutions (Ayush et al., 2021; Guo et al., 2024; Klemmer et al., 2024). This type of SSL trains amodel to
decide whether two inputs are transformations of a single sample or are two different samples. On the
other hand, the masked autoencoding method masks areas of the input (He et al., 2021; Tong et al., n.d.)
and tasks the model with reconstructing them. It has also shown success in the context of multi-source
remote-sensing data (Cong et al., 2023; Reed et al., 2023; Zhang et al., 2024). The SSL task used in this
work is similar to masked autoencoding in that the model is trained to reconstruct masked sources, with
the difference that we fully mask one source instead of only masking areas of it. The goal of that change is
twofold: first, to avoid having the model learn to inpaint masked patches from their borders instead of
fetching the information from the other sources; and second, because reconstructing a source from simply
its coordinates and the other sources can be a useful application on its own. Another difference with the
aforementioned works is that they focus on collocated images, whereas the sources used here cover
different geographical areas.

2. Methods

We first present the source reconstruction task used to train themodel in a self-supervisedmanner.We then
cover the specific network architecture designed to use multiple sources as input and output data.

2.1. Definition of a sample

We consider a set S of sources of data S¼ S1,S2,…,S∣S∣� �
. Each source Si is associated with a source

type T Si� �
, which is defined by the nature of the information contained in the source. Examples of source

types are infrared satellite imagery, passive microwave (PMW) imagery, assimilated state, station
measurement, and so forth. Several sources can be of the same source type if they measure the same
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variable(s) but with varying characteristics, for example, two PMW sensors on different satellites that
observe nearly the same frequency but differ in ground sampling distance.

A sample Xn is defined as a set of elements from a subset S¼ S1,S2,…,SK
� �

of S. Thus, within a
sample, either zero or one element for each source may be included.

A data point X k
n from a source Sk in the sample of the index n is made up of multiple elements:

(a) The values νkn, which can be zero-dimensional (νkn ∈ℝCk
, where Ck is the number of channels) or

two-dimensional (2D) (νkn ∈ℝCk ×H ×W , where H andW are, respectively, the height and width of
the element). The values represent the data of interest in the source, for example, the values of the
pixels for 2D sources. Since sources of the same source type by definition contain the same
variables, they must have the same channels (and, therefore, the same number of channels Ck).
Two data points from the same source can have different spatial shapes.

(b) The spatial coordinates ckn, whose dimensions are the same as those of the values, except that there
are exactly four channels: latitude, sin longitudeð Þ, cos longitudeð Þ, and a land–sea mask. The
latitudes and longitudes are given for every point (that is, for every pixel in images), which
theoretically allows the model to work with any geometry.

(c) The relative time delta δkn ∈ℝ, which is computed as δkn ¼ t0,n�tkn
δmax

, where t0,n is the absolute time of
the latest source in the sample n, tkn is the absolute time of the observation νkn, and δmax is the
maximum time delta allowed between two observations in a single sample, that is, the maximum
time period between the earliest and the latest elements. δmax is a constant fixed before training.

(d) The source characteristics sk ∈ℝN T Skð Þð Þ, where N T Sk
� �� �

is the number of characteristic
variables for the source type T Sk

� �
. Those are variables that characterize a source within its source

type; therefore, all sources of a common type share the same characteristic variables, but with
potentially different values. The source characteristics depend on the source and are therefore
constant across all elements of a source.

As parts of the sources may be missing (e.g., sea surface temperature over land), an availability mask is
added to the original channels in the values. Its value is one at points where the values are available and
zero where they are missing.

2.2. Self-supervised multi-source training

We first briefly describe the separate values-coordinates embeddings, which are needed to detail the
training task. The details of the embeddings are given in Section 2.3.1.

Given a sample Xn ¼ X 1
n,X2

n,…,XK
n

� �
, each source is embedded into three sequences of vectors as

follows: the embedded values, coordinates, and a conditioning vector.

~νkn ¼ValuesEmbedding νkn, lm
k
n

� �
∈ℝLk × dV

~ckn ¼CoordsEmbedding ckn,δ
k
n

� �
∈ℝLk × dC

~skn ¼ConditionEmbedding skn, lm
k
n

� �
∈ℝLk × dV

where Lk is the length of the sequences, dV and dC are the embedding dimensions of the values and
coordinates, respectively, and lmk

n ∈ℝLk × dV is a binary land–sea mask. The conditioning vector~skn is used
to pass information from the source characteristics and the land–sea mask to every layer of the model,
through adaptive conditional normalization. As the land–sea mask is crucial for the applications explored
later, we found that including it in the conditioning at every layer significantly improved the performance.

At each training step, a source Xm
n is chosen randomly with uniform probability to be masked. The

embedded values of that source are then replaced with a learned [MASK] token:

~νmn ¼ repeat MASK½ �,Lm × dVð Þ∈ℝLm × dV
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The embedded coordinates and conditioning are unaltered by the masking and serve as the information
from which the model reconstructs the masked values. Since the values, coordinates, and characteristics
are embedded independently, there is no leakage of information between the embedded values and the
data received by the model after masking.

The set of all embedded values (including the masked ones), embedded coordinates, and conditioning
are passed to the model. For each source, the model produces an output of the same shape as the original
values. We use the mean square error as a loss function between the original and reconstructed values of
the masked source. Points at which the true values are missing are excluded from the loss computation.
Figure 1 shows a diagram of the overall mask-and-reconstruct pipeline. In the context of batched training,
the masked source is drawn independently between the samples of the batch, and the loss is averaged over
the samples. Since which source is masked varies between the samples, only outputting reconstructions
for masked sources would lead to different batch sizes across the samples. To mitigate this, the model
produces outputs for both masked and unmasked sources. However, the reconstructions for unmasked
sources are ignored in the loss.

2.3. Multi-source architecture

In this section, the subscript n indicating the sample will be omitted for simplicity. The superscript k

designates the k-th source.

Figure 1. Overall diagram of the architecture. (a) Overall view of the masking-and-reconstruction
pipeline. In this case, Source 1 is chosen to be masked. (b) Multi-source anchored cross-attention
mechanism (MSCA) is shown for an example with two 2D sources. In this case, each embedded vector is a
patch from the original image, as usual in ViT-based architectures. The embedded vectors that are not
anchor points remain unchanged through this layer. (c) Diagram of the backbone. IWSA, individual
windowed self-attention. The MSCA block lets information travel across the sources, while the IWSA
block lets information travel within each source. The embedded coordinates serve as positional encoding
for the attention layers.
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2.3.1. Embeddings
The embedding layers project the sources’ components into two latent spaces that are common to all
sources, one for the values and one for the coordinates. The model includes three embedding modules for
each source type (values, coordinates, and characteristics), which process all sources of the type in
question. The layers in the embedding modules depend on the dimensionality of the source type.

For 2D sources, the values νk ∈ℝCk ×Hk ×Wk
are split into square patches of side length p, which are then

embedded separately, following the ViT architecture (Dosovitskiy et al., 2021). This is done with a
convolutional layer of kernel size and stride p and dV filters. The same is done for the geographical
coordinates ck ∈ℝ4×Hk ×Wk

with dC filters. This results in two sequences of Lk vectors ~νk and c0k with Lk

being the number of patches in the input.
For 0D sources, the values νk ∈ℝCk

are embedded with a dense layer with output dimension dV . The
same is done for the geographical coordinates of the shape ck ∈ℝ4 with an output dimension of dC. This
results in two vectors: one for the values and one for the geographical coordinates.

For all source types, the coordinates embedding module then applies a treatment to integrate the time
information: the time delta δk is embedded with a dense layer into a vector of dimension dC, which is then
summed to c0k to obtain a sequence c00k . For 2D sources, the embedded time vector is repeated along the
sequence dimension before being summed to c0k . c0k is finally fed into a small Multi-Layer Perceptron
(MLP) with two dense layers, Gaussian Error Linear Unit (GELU) activation, and layer normalization to
obtain the final coordinates embedding ~ck.

Finally, for all sources, another layer embeds the conditioning information: for 2D sources, the 2D
land–sea mask is embedded with a convolutional layer as is done for the values and coordinates. The
sources’ characteristics are then embedded with a linear layer and summed to the embedded land–sea
mask. For 0D sources, the land–sea mask is just a scalar, which is concatenated to the characteristic
variables, before being passed through a linear layer. The conditioning tensor is used in the adaptive
conditional normalization layer described in the next section.

2.3.2. Backbone
The MoTiF backbone is based on the transformer architecture (Vaswani et al., 2023), modified to work
with multiple sources. Instead of processing a single sequence of vectors, for each source Sk two
sequences are processed throughout the backbone: the values ~νk and coordinates ~ck. Throughout the
backbone, only the values sequences are modified and constitute the backbone’s output. The coordinate
sequences remain unchanged, but still influence the computation of the updated value sequences via
conditioning and relative positional attention (as detailed thereafter).

The backbone is a chain of blocks. Each block includes three sub-blocks in succession: (a) a multi-
source anchored cross-attention block (MSCA), (b) an individual windowed spatial attention block
(IWSA), and (c) an MLP with two dense layers, GELU activation. Each layer is wrapped in an adaptive
conditional normalization layer, which lets the information in the coordinates influence the computation
on the values in the wrapped layer. The details of theMSCA, IWSA, and conditional normalization layers
are given below. Figure 1 describes the successive blocks in the backbone.

Factorized multi-source attention.As computing the attention over the full sequences of all sources at
once would be intractable with a large number of sources, we choose to decompose the attention into two
steps: (a) cross-sources attention and (b) spatial attention individual to each source. This system is usually
referred to as factorized attention, and has notably been used for global weather forecasting with a three-
dimensional (3D) representation of the atmosphere (Couairon et al., 2024). That 3D factorization first
computes the attention across the vertical column at each geographical point individually, and then the
attention across each 2D field separately. This mechanism applies to global weather forecasting since two
fields at different altitudes/pressure levels in the atmosphere are well aligned geographically (same
latitudes and longitudes). In our case, the sources are, in general, not geographically aligned and are even
of different sizes, so the notion of “cross-sources column” is ill-defined. For this reason, we use an anchor-
point attention mechanism in the MSCA blocks, which allows points of any areas of different sources to
attend to one another. The IWSA blocks then compute the spatial self-attention over each source
individually.
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MSCA block. Given sequences of embedded values ~νk
� �

k∈ 1,…,Kf g and coordinates ~ck
� �

k∈ 1,…,Kf g, a
subset of the vectors (referred to as anchor points) is gathered from each sequence. For 0D and 1D
sources, the sequence contains a single vector, which is chosen as the anchor. For 2D sources, every Λ
vector along each axis (height and width) is selected as an anchor, whereΛ is a hyperparameter set to 4 in
our experiments. This forms the anchor sequences νk

� �
k∈ 1,…,Kf g and ck

� �
k ∈ 1,…,Kf g. The anchor value

sequences are concatenated into a single sequence V , and the same is done for the coordinates to obtain a
sequence C. An attention map A is then computed over V in the traditional sense, with C playing the role
of relative positional embedding (as in Shaw et al., 2018): V is projected through a linear layer to a triplet
of queries QV ∈ℝLΛ × dI , keys KV ∈ℝLΛ × dI , and values VV ∈ℝLΛ × dI , where dI is the inner dimension of
the attention layer and LΛ is the total number of anchor points. The same is done for the coordinates to
obtain a tripletQC,KC,VC. The keys and queries are normalized with an RMSNorm layer following Esser
et al. (2024). The attention map is then computed as:

A¼ Softmax QV KVð ÞT +QC KCð ÞT� �
ffiffiffiffiffi
dI

p

In practice, multi-head self-attention (Vaswani et al., 2023) is used. The anchor values sequence is then
multipliedwith the attentionmap as in the traditional transformer and then linearly projected back to dV :
V out ¼Linear AVð Þ. Then, V out is split back into the anchors vectors, and the updated anchor values are
summed to their values before computing the attention. The vectors that were not selected as anchor
points are unchanged throughout the process. Figure 1 shows an example of this layer for two 2D
sources.

IWSA block. The IWSA block computes the attention between vectors of the same source, for each
source separately. For 2D sources, this is done using spatial attention windows as in the Swin Transformer
(Liu et al., 2021). For odd-indexed blocks, the windows are shifted by half the window size. The window
size is set to 8. For 0D sources, this block does nothing (identity), as 0D sources are sequences of a single
vector.

Adaptive conditional normalization layer. This layer is the same modulation mechanism used in
the Diffusion Transformer (DiT) model (Peebles and Xie, 2023), and is used to let each layer receive
the information embedded in the conditioning ~s, including the source characteristics and land–sea

mask. Let F be a block ~wk
� �

k∈ 1,…,Kf g ¼F ~νk
� �

k∈ 1,…,Kf g, ~ck
� �

k∈ 1,…,Kf g
� �

that takes as input

sequences of embedded values and coordinates and outputs updated embedded values. The condi-
tioning is projected to a triplet γk,βk,αk by a dense layer followed by a Sigmoid Linear Unit (SiLU).
The embedded values are then shifted and scaled as ωk ¼ γk~νk + βk . The block is then applied to the

shifted-scaled values as ~w0k
n o

k∈ 1,…,Kf g
¼ F ωk

� �
k ∈ 1,…,Kf g, ~ck

� �
k∈ 1,…,Kf g

� �
. Finally, the output of

the block is multiplied by the gate and summed to a skip connection: ~ωk ¼ αk ~w’k +~νk.

2.3.3. Output projection layers
The output projection layers receive the value sequence ~νk

� �
k∈ 1,…,Kf g output by the backbone and project

them to the original source spaces. Similar to the embedding layers, sources of the same type share the
same output layer. For 2D sources, the output layer is made up of a layer normalization and a strided
deconvolution followed by a two-hidden-layer ResNet. To reduce checkerboard artifacts due to the
patching, the strided deconvolutions are initialized with the ICNR scheme (Aitken et al., 2017). For 0D
sources, the output layers are made up of a layer normalization followed by a dense layer.

3. Experiments on TCs and ETCs

3.1. Data

Dataset.We use the TC-PRIMED dataset (Razin et al., 2023). This dataset includes multiple sources of
data specific to TCs and ETCs. The first type of source used from TC-PRIMED is PMW satellite images
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around the 37 GHz band. PMW observations have proven useful in the forecasting of TCs (Wimmers
et al., 2019;Ma et al., 2023), as a proxy for liquid precipitations (Razin et al., 2023). The PMWimages are
taken from 11 sensors on 11 different satellites, with different characteristics (exact frequency, scan type,
ground sampling distance, and orbit). Since the satellites were in orbit over different periods of time, and
only a fraction of the satellites orbited over any given storm, only a fraction of the sources is eventually
available for each pair (storm and time), with the maximum being 6.

The PMW images in TC-PRIMED cover at least 50% of the 750-km disc centered on the storm’s
center. However, the images are not, in general, centered on the cyclone. All sources of PMW images are
grouped in the source type “passive microwave” (in the sense defined in Section 2). We also use ERA5
surface fields cropped to a 20° × 20° box around the cyclone. The ERA5 fields are centered on the
cyclone’s center of circulation according to best-track estimations. The included ERA5 fields are 10-m u
and v components of the wind, mean sea-level pressure, and sea surface temperature. Finally, we use best-
track data included with TC-PRIMED, which gives the best retrospective estimates of the maximum
sustained wind (MSW) speeds within the cyclones.

We refer the reader to the original article about TC-PRIMED (Razin et al., 2023) and its documentation
for the details of the preprocessing applied to the sources to build the datasets, as well as the exact
characteristics of each sensor/satellite. The PMW images are products at level 1C, which means they
could realistically be used in real-time applications.

Preprocessing. While the architecture can be applied to the PMW images in their original satellite
geometry (as the spatial coordinates of every point are fed to the model), we found that resampling the
images to a regular lat-lon grid improved the training. We use a spatial resolution of 0.15°, which is the
finest resolution across the PMW sensors used in our experiment. Since all PMW images have a native
spatial resolution coarser than 0.15°, no information is lost by the resampling operation: all images use the
same regular grid, but coarser sources are blurrier. All sources are finally normalized by subtracting their
means and dividing by their standard deviations.

Train-validation-test split. The list of samples is divided into three splits: training, validation, and test,
with proportions of 0.8, 0.15, and 0.15, respectively. Two samples with the same storm ID (which give
information about the same cyclone) are necessarily put in the same split. The test split is not used or
looked at until making the final evaluation of the model.

Figure 2. Two examples (the first two rows and the last two rows, respectively) of reconstructions from the
same storm, but with different available sources and targets. The model is able to correctly identify the
area in the other sources that is closest in space and time to its target.
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3.2. Pretraining

We pretrain the MoTiF model in the self-supervised setting described in Section 2.2, using the PMWand
ERA5 data. For each training sample, either ERA5 or one of the satellite sources is masked, and themodel
is tasked to reconstruct it using the other sources. For the ERA5 and PMW data, we add a “distance-to-
center” channel: this channel is an image of the same dimensions as the other fields in the source, and gives
at each pixel the distance from the center of the storm (given by the best-track estimates). This channel is
not given to the model as input, but the model is asked to predict it alongside the other channels; this
channel will be used to quantitatively evaluate how well the model locates the cyclone.

To limit the size of the batches, a sample can only include at most one observation from each satellite
source and two ERA5 states. The time window is set to δmax ¼ 24h.When several observations of a source
are available within the time window (for example, ERA5 always has four time points in 24 h), one is
selected with uniform probability.

We then fine-tune the model on three different tasks: forecasting ERA5 fields, forecasting the storms’
MSW speed, and interpolating or extrapolating PMWimages. The following sections describe the results
of those experiments.

The pretraining uses a cosine annealing learning rate schedule with a maximum of 3e�5 and a
minimum of 1e�8 with five epochs of warmup. The fine-tuning also uses a cosine annealing schedule but
from3e�6 to 1e�9, and over 50 epochs. In practice, all fine-tuning experiments converged to their optima
in at most five epochs, making it much shorter than the pretraining by using an early stopping policy.

3.3. Results

3.3.1. ERA5 forecasting
Reconstructing the wind fields from remote-sensing observations is among the most desirable areas of
research for applying AI to TCs (Duong et al., 2023). The architecture described here allows to use ERA5
data as both input and/or output, coupled with a flexible amount of remote-sensing images, given at any
point in time. In this experiment, the model is tasked with forecasting the surface fields of ERA5 t0 + 24h,
given sources that are in the time window t0�24h, t0½ �. Like in the pretraining, the model receives at most
one observation per PMW sensor and one ERA5 state. Contrary to the pretraining, when several data
points of a source exist in the time window, the most recent is selected. This notably means that the model
always receives the ERA5 state at exactly t0. An example of a sample is shown in Figure 2. Since the
ERA5 fields are centered on the storm’s center in the TC-PRIMED dataset, their spatial coordinates
naturally give information on the location of the storm. To limit that information and force the model to
detect the location of the storm on its own, the ERA5 fields are randomly cropped during training: a
rectangular subset of the fields is selected, with a width and height randomly sampled between 60 and 100%
of the original size. As a result, during training, the ERA5 fields are generally not centered on the storm.

We compare the performance of the architecture in different settings: the pretrained model without
fine-tuning, the fine-tuned model with both ERA5 and PMW inputs, the fine-tuned model with only
ERA5 as input, and finally, the fine-tuned model with only PMW images as input. We use the root mean
squared error and mean absolute error (MAE) as evaluation metrics. Except for the distance-to-center
channel, the pixels outside of the 1000-km radius around the center of the cyclone are excluded from the
error computation, in order to evaluate the forecast in the relevant area specifically. The radius of 1,000 km
is chosen to roughly fit the maximum diameter of tropical storms (2,220 km for Typhoon Tip). We also
evaluate the model on the minimum sea-level pressure, which is a strong indicator of a storm’s intensity.
The results are indicated in Table 1 and Figures 3 and 4. The fine-tuning operation, as expected, improves
the performance on all variables. Interestingly, using only PMW images results in a lower error for the
distance to the storm’s center than using only ERA5 as input, suggesting PMW images are more effective
for forecasting the storm’s position at + 24h. A potential reason for this is the error in the locations of
storms in ERA5 (Bié and de Camargo, 2023), which can be corrected by themodel with the PMWimages,
which are direct observations and do not contain a location error. On the other hand, ERA5 is amore useful
input for forecasting the future ERA5 fields, although coupling both types of input yields the best results.
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3.3.2. Intensity forecasting
In this second experiment, the model is tasked with forecasting the MSW speed of the storm at t0 + 24h.
The time window is again set to t0�24h, t0½ �. Since this data source was not included during the
pretraining, the embedding and output projection layers for the MSW source are fully learned during
the fine-tuning phase. The sources available in the samples to make the forecast are the same as for the
ERA5 forecasting experiment: at most, one observation per PMWsensor, and one ERA5 state. The results

Figure 3. Example of ERA5 surface fields reconstruction from a previous ERA5 state and PMW images.
Left of the vertical bar: available sources, given as input to the model. Right of the vertical bar: targets
(left) and predictions (right). Each row corresponds to a variable. The distance-to-center variable is
displayed for every source, but is actually not given as input to the model, being only required as output.
The sea-surface temperature (SST) field is only used as input. The annotations δt ¼Ddhh :mm indicate
the time delta between the reference time t0 and the time of the observation, in the format days–hours–
minutes. The forecast time is at t0 + 1 day; thus, the predictions are at δt ¼�1day.

Table 1. RMSE values for different channels and sets of input sources. Lower is better. SLP, sea-level
pressure

Setting
Mean SLP

(hPa)
V-wind 10 m

(kt)
U-wind 10 m

(kt)
Min SLP
(hPa)

Wind speed 10 m
(kt)

No fine-tuning 3.18 3.09 3.02 7.07 2.80
Fine-tuned (PMWonly) 3.56 3.31 3.39 8.78 3.03
Fine-tuned (ERA5 only) 2.53 2.97 2.89 6.66 2.62
Fine-tuned

(ERA5 + PMW)
2.28 2.66 2.64 5.62 2.34
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are given in Table 2 and Figure 5. As for the ERA5 forecasting, combining both types of input sources
yields the lowest average error. While the architecture was not designed with the specific objective of
doing intensity forecasting, the overall MAE for the model using both ERA5 and PMWimages as input is
comparable to those of forecasting agencies (12.9 to 22.0 kt) and of other deep learning techniques such as
DeepTC (Kim et al., 2024).

3.3.3. PMW reconstruction
This experiment uses the same self-supervised task as the pretraining, while only keeping the PMW
sources: one PMW image is randomly masked, and the model is tasked with reconstructing it from the
other available PMW images. Figures 6–10 show examples of reconstructions, and more are included in
the Supplementary Material. Overall, the model is able to well locate the core of the storm in the
reconstructed images (as shown by the distance-to-center channel), and reproduces the structure to some
extent. It is noteworthy that the distance-to-center channel is not given as input to the model, but is required
to be predicted alongside the brightness temperature. It is still included in the figures to help the reader
identify the center of the storm in the PMW images. The model suffers from an obvious lack of low
frequencies, even in the casewhere the image to reconstruct is very close in time to an available source. This
limitation is expected as the model is trained with the mean squared error as the objective, whose optimal
point is the mean of the target distribution. Therefore, the model tries to predict the mean of the distribution,
which, by averaging all possible realizations, smoothes out all of the local, high-frequency components.

4. Discussion

4.1. Potential impacts

Using multiple sources of data for data-driven weather forecasting is a field that is rapidly gaining
attention, notably due to its potential for extreme weather. This work aims to be a step towards a general
ML method for multi-source weather interpolation and forecasting by tackling the challenge of fusing

Figure 4. Comparison of error in forecast storm location (km). Text annotations indicate the median
values.
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Figure 5.Comparison of mean absolute error (MAE) for different sets of input sources, as well as the non-
fine-tuned model. Lower is better. Text annotations indicate the median values.

Table 2. Overall RMSE and MAE for intensity forecasting for different input sources (kt). Lower is
better

Setting RMSE MAE

PMWonly 23.07 17.37
ERA5 only 19.54 14.39
ERA5 + PMW 17.28 12.51
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sources that are misaligned in space and time. Regarding the application of TCs and ETCs intensity
forecasting, this work goes beyond its predecessors: while TCmulti-sources intensity forecasting with
ML models has been studied many times before (Chen et al., 2018; Giffard-Roisin et al., 2020;
Ma et al., 2023), previous works used images aligned in space (centered on the storm’s center) and at
regular time intervals (generally, every 6 h). However, the potential applications go further: examples
of problems which can theoretically be addressed with this architecture are: (a) nowcasting precipi-
tation fields using radar data as target and assimilated states, previous radar data, station measure-
ments, and microwave images as input; (b) reconstructing the wind fields around the eye of TCs using
Synthetic-aperture Radar (SAR) data as target.

Figure 6.Distribution of the mean absolute error at the intensity forecasting task, for different subsets of
input sources. Lower is better.

Figure 7. Example of reconstruction of a passive microwave image. Left of the vertical bar, top row
(brightness temperature): available sources, fed to the model as input. Right, top row: target and
prediction. Bottom row: “dist_to_center” channel, which is the distance between each pixel and the
storm’s center according to best-track data. This channel is not given as input, but is required to be
predicted by the model to judge its ability to locate the cyclone. The annotations δt ¼Ddhh :mm indicate
the time delta between the reference time t0 and the time of the observation, in the format days–hours–
minutes. In this example, the closest source (41 min apart, left) in time does not capture the tail of the
cyclone, while another image, further away chronologically (8 h 53min apart), does show it. Themodel is
able to merge the sources, in the sense that it fetches information from the closer image for the center and
from the other one for the cyclone’s tail.
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4.2. Limitations

A clear limitation of this work is that the model is trained with a deterministic objective, using the mean
squared error as a loss function. In this setting, the model learns to avoid predicting high-frequency
features when reconstructing a source, as those are not fully determined by the other observations. This
greatly limits themodel’s applicability to tasks requiring the prediction of small-scale features, such as the
example problems mentioned in Section 4.1.

Figure 9. Example of temporal interpolation of a passive microwave image where the image to
reconstruct is in between the two other available sources chronologically. While the only the low
frequencies are reconstructed, the distance-to-center channel shows that the location of the storm’s core
was well interpolated.

Figure 10. Example of reconstruction where the image to reconstruct is anterior to the other available
images.

Figure 8. Example of reconstruction using images from six different satellites as input to reconstruct a
seventh. The multi-source cross-attention lets the model process many different sources at a reasonable
cost. In particular, examples such as this one can be processed in the same batch as examples with only
one or two sources, both during training and inference. While cases with five or more available satellites
are a minority of the training data, the model does not collapse, and shows an ability to select information
from the sources that are closest in time and space. Every image has a specific aspect ratio and size.
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4.3. Future work

4.3.1. Using a generative model
Since using a deterministic training objective is the main limitation of the model, the main direction to
improve it is to use a generative objective instead.Generativemodels, such as those based ondiffusion, learn
to sample from the target distribution. Thus, a generativemodel trainedwell enoughwould produce samples
with high-frequency features if they appear in the target distribution. Diffusion models have notably used
this advantage to better forecast extreme events in global weather forecasting (Zhong et al., 2023.

Since training a diffusion model is costlier than a deterministic model, a possibility is to pretrain a
deterministic model on the self-supervised reconstruction task, and then fine-tune on a specific task with
the diffusion objective.

4.4. Testing the model on more types of extreme weather

As mentioned in Section 4.1, there are more potential applications over which the model can be tested;
however, most of those (such as precipitation nowcasting and wind field reconstruction) first require the
model to produce high-frequency features, and could therefore serve as benchmarks for a potential
generative version.

5. Conclusion

Thiswork presents an architecture that allows learning from sources of different natures, dimensionalities,
and characteristics, as input and/or output. Contrary to previous works that combine multiple sources for
weather forecasting, this architecture can use sources that are misaligned in space and at irregular time
intervals, and can work with a flexible set and number of sources. We propose a self-supervised
reconstruction task to train the model, which forces the model to learn the relationship between the
spatiotemporal coordinates of all sources. We apply that self-supervised pretraining on a mix of
assimilated states (ERA5 reanalysis surface fields) and remote-sensing images (PMW satellite imagery).
We then explore different possibilities of the architecture by fine-tuning the model on different down-
stream tasks, in which the predicted sources differ in nature and dimensionality. While this work leaves
many questions open regarding the applicability of the architecture for directly useful problems, it
represents a step forward compared to the previous literature for combining machine learning and the
diversity of data types available in geospatial sciences.
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