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CONSTRUCTING MAXIMAL SUBGROUPS
OF CLASSICAL GROUPS

DEREK F. HOLT and COLVA M. RONEY-DOUGAL

Abstract

The maximal subgroups of the finite classical groups are divided by
a theorem of Aschbacher into nine classes. In this paper, the authors
show how to construct those maximal subgroups of the finite
classical groups of linear, symplectic or unitary type that lie in
the first eight of these classes. The ninth class consists roughly of
absolutely irreducible groups that are almost simple modulo scalars,
other than classical groups over the same field in their natural
representation. All of these constructions can be carried out in low-
degree polynomial time.

1. Introduction

With only two families of exceptions, the maximal subgroups of the finite classical groups
are divided into nine classes by Aschbacher’s theorem [1]. The maximal subgroups in the
first eight of these classes are described in detail in [15]. The ninth class, S, consists roughly
of absolutely irreducible groups that are almost simple modulo scalars, other than classical
groups over the same field in their natural representation. The two families of exceptions to
Aschbacher’s theorem are groups containing the graph automorphism of PSp(4, 2e), whose
maximal subgroups are divided into six classes (including S) in [1], and groups containing
the graph automorphism of PSO+(8, q).

The purpose of this paper is to describe algorithms for writing down generators of all
of the subgroups that are not in S for G a linear, symplectic or unitary group. We could
do the same when G is orthogonal, but because of the large number of cases that arise in
that situation, we have decided to omit the orthogonal groups for now. We plan to develop
similar algorithms for the orthogonal groups in a future paper.

The two main papers on the computation of maximal subgroups of an arbitrary finite
permutation group G are [5] and [8]. These both show that the problem can effectively be
reduced to the case when G is almost simple. The vast bulk of the cases that arise for G
almost simple can then be handled using the methods that we describe here, and this was
our principal motivation for developing these techniques in a uniform fashion. Of course,
the maximal subgroups in S still need to be dealt with; they are now known for degree
d � 250 (see [12, 20]), and can be constructed on a case-by-case basis.

The algorithms presented in this paper describe the maximal subgroups of the
(quasi)simple linear, symplectic and unitary groups. They can be combined with subgroup
conjugacy information provided in [1, 15] and explicit descriptions of when the maximal
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Maximal subgroups of classical groups

groups in each Aschbacher class are maximal in a classical group, to produce the maximal
subgroups of any group G with:

SL(d, q)�G � �L 2(d, q) (equal to �〈ι〉; see below),

Sp(d, q)�G � �Sp 2(d, q) (equal to �Sp(d, q)〈ι〉; see below), or

SU(d, q)�G � �U(d, q),

and similarly for their projective counterparts.
Our algorithms have been implemented in Magma [3], where they are combined with

representations of groups in S to construct the maximal subgroups of classical groups in
low dimensions over any finite field, in any permutation or matrix representation. Currently,
this is roughly for d � 5, but we are actively working on increasing the families of groups
for which the implementations are available. We also plan in the future to make available
functions that return all maximal subgroups of specific types, such as reducible maximal
subgroups, for the classical groups in all dimensions d .

One of the most significant practical consequences of our algorithms is as follows. Let
G be any permutation group, each of whose nonabelian simple composition factors either
is one of these low-dimensional classical groups, or has order less than 1.6 × 107. Then
one may now compute the maximal subgroups of G, the set of all subgroups of G, and its
automorphism group.

The general maximal subgroups algorithm uses constructive recognition algorithms [14]
to set up a homomorphism between an arbitrary (black-box) representation of the group
G and a standard copy of the matrix group. So our algorithms are applicable to black-box
classical groups.

This paper includes complexity analyses of our algorithms. Before stating a theorem
that summarises our results, we need to introduce some of the notation used in [15]. We
let � be one of the groups SL(d, q), Sp(d, q) or SU(d, q), in their natural representation;
we refer to these three cases as cases L, S and U, respectively. Let �, equal to �L(d, q),
�Sp(d, q) or �U(d, q), be the extension of � by its diagonal and field automorphisms.
Let A = �L 2(d, q) := �〈ι〉, with ι a graph isomorphism in case L with d � 3, let
A := �Sp 2(4, 2e) = �〈ι〉 in case S with d = 4 and q even, and let A = � otherwise. Let
‘ ¯ ’ represent reduction modulo scalars. Note that Ā = Aut(�̄).

Theorem 1.1. Let G be a group with � � G � A, where �̄ is nonabelian simple. Then
generators of the intersection with � of all of the maximal subgroups of G that do not lie
in S, up to conjugacy in GL(d, q), GSp(d, q) or GU(d, q), can be calculated and written
down in time O(d3 log d log3 q).

We comment briefly on the maximal subgroups of the other families of almost simple
groups. The theory of the maximal subgroups of the alternating and symmetric groups is
well understood, and they can be divided into classes using the O’Nan–Scott theorem. Work
of Liebeck, Praeger and Saxl [18] determines the maximality of groups in each O’Nan–
Scott class other than the almost simple case, as well as of the intransitive and imprimitive
groups. A second paper by the same authors determines when one almost simple group is
contained in another [19]. This can be combined with Dixon and Mortimer’s classification
[7] of the primitive almost simple groups of degree less than 1000, to give an explicit list
of maximal subgroups of the alternating and symmetric groups of degree less than 1000.
The usual approach when computing with the alternating and symmetric groups is to use
constructive recognition [2] to find an isomorphism from the input group to the natural
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representation of Alt(n) or Sym(n). Generic functions write down the maximal intransitive
and imprimitive groups in their natural representation, and a database of primitive groups
is used for the rest.

The situation with the sporadic groups is somewhat different. The maximal subgroups
of all sporadics, other than the Monster, are known. To construct these subgroups, one
usually finds standard generators for the sporadic, and then writes down the generators of
the maximal subgroups as words in these standard generators. This can be done for all
maximal subgroups of sporadics of ‘reasonable’ permutation degree: the online Atlas of
finite group representations [24] is a good source of such information.

The theory of the maximal subgroups of the exceptional groups is reasonably well under-
stood [17], and the maximals are known explicitly in many cases. The exceptional groups
are generally treated in the same way as the sporadics: since they have very few low-degree
permutation representations, this is perfectly appropriate.

Up to now, the classical groups have also been treated as sporadics. This is increasingly
unacceptable, as too many classical groups have moderate-degree permutation represen-
tations, and the relevant databases are rapidly becoming unwieldy. This paper presents
a solution to this problem.

The layout of the remainder of the paper is as follows. In Section 2, we introduce some
notation and state a number of general lemmas and a summary of the Aschbacher classes.
In Section 3, we describe how to conjugate a group preserving a non-degenerate form of
symplectic, unitary or orthogonal type on a vector space over a finite field, to a group
that preserves any other form of the same type. In the remaining sections, we present our
algorithms for each of the eight geometric families of subgroups in Aschbacher’s theorem,
before finishing with the subgroups of �Sp 2(4, 2e).

2. Notation and mathematical preliminaries

We let (a, b) denote the greatest common divisor of integers a and b, and [a, b] their
least common multiple.

When describing the structure of groups, the symbol [n], where n ∈ N, denotes a soluble
group of order n, of unspecified structure.

As usual, Ir denotes the r × r identity matrix over GF(q). We define the elementary
matrix Ei,j to be the square matrix with 1 in position (i, j) and 0 elsewhere: the dimension
of Ei,j will always be clear from its context. A matrix A is block-diagonal if it is a block
matrix and all nonzero blocks have their main diagonal on the main diagonal ofA. We write
block-diagonal matrices as Diag[X1, . . . , Xs], where Xi ∈ GL(d/s, q) for 1 � i � s.

We assume throughout that integer operations require constant time. We also assume that
primitive polynomials, together with associated primitive field elements, are known for all
finite fields that arise, and that elements of GF(pe) are represented as polynomials of degree
e − 1 over GF(p). Thus field operations in GF(q) require time O(log q), and elements of
GL(d, q) can be constructed in time O(d2 log q).

By the results proved in [4, Chapters 15 and 16], matrix multiplication – as well as other
basic matrix operations such as inversion, echelonization, and nullspace and determinant
computation – all have time complexity �(d� log q) for the same value of �, where 2 �
� < 3; in fact, it has been proved that � < 2.38. The complexity estimates in many
of the results in this paper are stated in terms of this constant �. For small fields, the
implementations of matrix multiplication usually have time complexity O(d3 log q); for
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prime finite fields of size greater than 216, Magma uses an algorithm due to Strassen [22]
for which � = log2(7). We do not assume the availability of discrete logarithms.

The Kronecker product A⊗ B of two d × d matrices A and B is the d2 × d2 matrix C,
where the ((i − 1)d + k, (j − 1)d + l) entry of C is AijBkl for 1 � i, j, k, l � d. The ⊗
operation is associative, and (A⊗ B)(C ⊗D) = AC ⊗ BD for all d × d matrices A, B,
C and D. Note that the Kronecker product of two d × d matrices can be written down in
time O(d4 log q), as each of the d4 entries requires a single field operation.

Lemma 2.1. Let d ∈ N. The number of prime divisors of d isO(log d). The average number
of prime divisors of d is log log d . The number of divisors of d isO(dε) for any real ε > 0.

Proof. The first statement is clear. For the second, see [11, Theorem 430], and for the third,
see [11, Theorem 315].

Throughout, we let p be a prime, and we set q := pe.

Lemma 2.2. Let α ∈ GF(q). There are Las Vegas O(log q) time algorithms for finding
β ∈ GF(q2) such that β + βq = α, and γ ∈ GF(q2) such that γ q+1 = α.

Proof. For the first problem, we find an element δ ∈ GF(q) such that the polynomial
x2 − αx + δ is irreducible over GF(q). This is known to be the case for almost exactly half
of the δ ∈ GF(q), so we can find such a polynomial quickly by using random choices of δ.
By [9, Theorem 8.12], for example, we can test the irreducibility of the polynomial over
GF(q) and factorise it over GF(q2) in timeO(log q). Since β �→ βq is a field automorphism
of GF(q2) that fixes GF(q), the roots of x2 −αx+ δ are β, βq ∈ GF(q2)with β+βq = α.

Similarly, for the second problem, we find δ ∈ GF(q) such that x2 +δx+α is irreducible
over GF(q); then the roots γ, γ q ∈ GF(q2) satisfy γ q+1 = α.

By constructing a group we mean producing a set of generating elements for the group:
this will generally be a set of matrices. Throughout, we let ζ be a primitive multiplicative
element of GF(q) in cases L and S, and of GF(q2) in case U. The following lemmas are
taken from [21].

Lemma 2.3. Given ζ , the groups GL(d, q), Sp(d, q) and GSp(d, q) can be constructed
in time O(d2 log q). The groups SU(d, q) and GU(d, q) can be constructed in time
O(d2 log q + log2 q).

Lemma 2.4. For ε ∈ {+,−, ◦}, each of the groups �ε(d, q), SOε(d, q), Oε(d, q) and
GOε(d, q) can be constructed in timeO(d� log q+ log3 q), given a primitive field element
ζ . The generators of GOε(d, q) include matricesA andB generating SOε(d, q), an element
Dε ∈ Oε(d, q) of determinant −1, and for ε ∈ {+,−}, an element Eε ∈ GOε(d, q) \
Oε(d, q). We have Det(E−) = (−ζ )d/2 and Det(E+) = ζ d/2.

In fact, Lemma 2.4 is proved in [21] with 3 in place of � in the complexity estimate.
A more detailed analysis of the computations involved in this construction shows that the
operations involved are all either matrix operations that are known to have time complexity
O(d� log q), or transformations of orthogonal and quadratic forms, which will be discussed
in detail in Section 3. The specific form transformations involved can all be carried out using
a permutation of the basis, a scalar operation, and an operation on a 2 × 2 matrix so, as
in Proposition 3.2 below, they can be done in time O(d2 log q). This justifies our use of
O(d� log q + log3 q) in the above lemma.
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We conclude this section with a brief description of the classes of subgroups of
the classical groups G that arise in Aschbacher’s theorem. The maximal subgroups of
�Sp 2(4, 2e) are described in Section 12.

Suppose that G is defined over GF(q) and acts on a vector space V of dimension d.
Groups in C1 act reducibly on V . Those in C2 are imprimitive; that is, they preserve a direct
sum decomposition V = V1 ⊕ · · · ⊕ Vt with t > 1. Groups in C3 are semilinear; that
is, they can be embedded in �L(d/s, qs) for some s > 1. Groups in C4 preserve a tensor
product decomposition V = V1 ⊗ V2. Those in C5 can be defined, modulo scalars, over a
proper subfield of GF(q). Those in C6 normalise an extraspecial or symplectic-type group
that acts irreducibly on V . Groups in C7 preserve a homogeneous tensor decomposition
V = V1 ⊗ · · · ⊗ Vt with t > 1, where the dim(Vi) are all equal. Those in C8 normalise
a proper classical group over GF(q) in its natural representation. Finally, the groups in
C9 = S are almost simple modulo scalars, and do not lie in any class Ci for i = 3, i = 5
or i = 8.

3. Transformation of forms

The following situation frequently arises when constructing subgroups of classical groups.
We have an absolutely irreducible matrix group G of dimension d, which is known to fix a
bilinear or sesquilinear form of full rank d over GF(q) (or GF(q2) in the unitary case). The
type of the fixed form, which may be symplectic, unitary, or orthogonal (of plus or minus
type when d is even), is also known. In the orthogonal case with q even, G is also known
to fix a quadratic form.

Our aim is to find a conjugate of G which is a subgroup of the standard copy of the
relevant classical group, namely Sp(d, q), GU(d, q) or O±(d, q). We first find the form
fixed by G as a d × d matrix A. Then we find a basis change that transforms A to a fixed
standard version F of the form. Notice that if G preserves a symplectic form A, then GX

preserves X−1AX−T , and similarly for the other types of form. In the case of orthogonal
groups and even q, we also find the matrix Q of a quadratic form of plus or minus type
fixed by G, and we transform Q rather than A to a standard version F . In fact, since the
group preserving the bilinear or quadratic form is unchanged if we multiply this form by a
scalar matrix, it suffices to transform A to a scalar multiple of F .

It is convenient to choose the standard versions F of the forms as follows. In the
symplectic case, F = AntiDiag[1, . . . , 1,−1, . . . ,−1]: that is, Fi,d+1−i = 1 for 1 � i �
d/2, and then Fi,d+1−i = −1 for d/2 + 1 � i � d , and Fij = 0 otherwise. In the unitary
case, F = Id . In the orthogonal case with q odd, we have F = Id if d is odd, and F = Id
or I ′

d := Diag[1, . . . , 1, ζ ] when d is even.
It should be noted that the form fixed by the ‘standard copy’ of SU(d, q), as returned

by Magma, for example, is AntiDiag[1, . . . , 1] rather than Id . When writing down the
subgroups of SU(d, q) arising in Thereom 1.1, it will sometimes be convenient to use Id
and sometimes to use AntiDiag[1, . . . , 1] as our standard form. We show in Subsection 3.2
that we can conjugate a matrix preserving one of these forms to one preserving the other
in time O(d2 log q). It will turn out that the total number of generators of all subgroups of
SU(d, q) that arise is O(d), and so we can move freely between one form and the other
without affecting the result of Theorem 1.1.

Similarly, it is sometimes convenient to use AntiDiag[1, . . . , 1] as the standard
orthogonal form of plus type in odd characteristic. Again, we can transform Id or
Diag[1, . . . , 1, ζ ] to AntiDiag[1, . . . , 1] in time O(d2 log q).
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In the orthogonal case with q even, d is necessarily even, because the groups
O(2m+ 1, 2n) are reducible. We choose our standard quadratic form to be


0ee 0e2 J

02e
a b

0 c
0ee

0ee 0e2 0ee


 , (∗)

where e = d/2 − 1, 0kl denotes a k × l zero matrix, and J := AntiDiag[1, . . . , 1].
For a form of plus type, we have b = 1 and a = c = 0, and so the quadratic form is
x1xd + x2xd−1 + . . .+ xd/2xd/2+1.

For a form of minus type, we need to choose a, b and c such that ax2 + bx + c is
irreducible, and there is no canonical solution. In our implementation, we use the matrix of
the quadratic form fixed by SO−(d, q) in Magma.

We now describe our algorithms to solve these problems for the individual types of
forms. The methods used to transformA to F are all similar. First, we use elementary linear
algebra to transform A to F ′, which has zero entries wherever F does. Then we transform
F ′ to a scalar multiple of F , which is sufficient for our requirements.

Since we know, from the results proved in [4, Chapter 16], that the time complexity
of many types of matrix operations over finite fields is O(d� log q), it seems likely that
the results proved in this section could all be improved from time O(d3 log q) to time
O(d� log q). However, we have been unable to find all of the necessary results of this type
in the literature. In any case, our current implementations are O(d3 log q).

In all cases, we let g1, . . . , gr be the generators of G, which are d × d matrices over
GF(q), or over GF(q2) in the unitary case. We let the natural basis of the vector space on
which G is acting be [e1, . . . , ed ].

3.1. Symplectic forms

First we need to find the matrix of the symplectic form A = −AT fixed by G, which
must satisfy giAgT

i = A or, equivalently, giA = A (g−1
i )T for 1 � i � r . In other words,

if M is the d-dimensional G-module over GF(q) defined by G, and M∗ is the dual of M
obtained by inverting and transposing the matrices forM , then we are looking for a module
isomorphism A from M to M∗. Since we are assuming that G acts absolutely irreducibly
on M , A is uniquely determined up to multiplication by a scalar. We can find A by the Las
VegasO(d3 log q)-time algorithm for testing for isomorphism between irreducible modules
defined over finite fields, which is described in [13, Section 4].

Proposition 3.1. LetA be the matrix of a symplectic form preserved by a groupG. In time
O(d3 log q), a matrixX can be constructed such thatGX preserves our standard symplectic
form.

Proof. We first describe how to transformA to an antidiagonal matrixF ′. By interchanging
co-ordinates if necessary, we may assume thatA1d �= 0. LetX1 be a change of basis matrix
for this: it is clear that we may construct X1 in time O(d2 log q). Then, for 2 � i � d − 1,
we replace ei by ei −A1iA

−1
1d ed , and leave e1 and ed unchanged. The transformed form A

then has all entries in the first row and column equal to 0, except for the (1, d) and (d, 1)
entries. By repeating this process on the other rows and columns of A, we can transform
A to an antidiagonal matrix F ′. The change of basis matrix to transform each row has all
nondiagonal entries equal to zero except for one column, so we can construct a change of
basis matrix X2 representing the products of these O(d) operations in time O(d2 log q).
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To transform F ′ to F , we replace ei by (F ′)−1
i,d+1−iei for 1 � i � d/2, and leave the re-

maining ei unchanged. LetX3 be the diagonal change of basis matrix for this transformation.
Then X := (X1X2X3)

−1.

3.2. Unitary forms

In this case, the matrices gi are defined over GF(q2). For a matrixX over GF(q2), letX∗
be the result of transposingX and then replacing all entries ofX by their qth power: that is,
by their image under the field automorphism of GF(q2) that fixes GF(q). Then the matrix
A of the unitary form fixed byG satisfies giAg∗

i = A, or equivalently giA = A(g−1
i )∗, for

1 � i � r . As in the symplectic case, findingA can be done by a module isomorphism test.
For a unitary form, we require that A = A∗. At this stage, we know only that some scalar
multiple λA of A satisfies λA = (λA)∗.

Proposition 3.2. Let A be the matrix of a unitary form preserved by a group G. In time
O(d3 log q), a matrix X can be constructed such that GX preserves the standard unitary
form Id .

We can also write down a matrix Y , having at most 2d nonzero entries, that transforms
Id to AntiDiag[1, . . . , 1], and hence we can conjugate each matrix ofGX to one preserving
AntiDiag[1, . . . , 1] in time O(d2 log q).

Proof. First we make a basis change so as to transform A to a diagonal matrix F ′, using a
similar method to that in the proof of Proposition 3.1. By multiplying F ′ by a scalar matrix,
we may assume that F ′

11 = 1. The fact that λF ′
i = (λF ′

i )
∗ for some λ means that λF ′ has

its entries in GF(q). But then F ′
11 = 1 ∈ GF(q) implies that λ ∈ GF(q), and so we must

already have F ′ = (F ′)∗.
To transform F ′ to the identity matrix F , we replace ei by τiei , where τi satisfies τ 1+q

i =
(F ′)−1

ii for 1 � i � d. By Lemma 2.2, we can find such a τi in timeO(log q) for each i, so
we transform F ′ to F in time O(d log q).

For the final statement, observe that transforming AntiDiag[1, . . . , 1] to Id reduces to
�d/2
 transformations.

3.3. Orthogonal forms

We find the orthogonal form A fixed by G exactly as we did in the symplectic case, but
now we have A = AT.

Proposition 3.3. Let q be odd, and letG � GL(d, q) preserve a known orthogonal formA.
In time O(d3 log q), a matrix X can be constructed such that GX preserves our standard
orthogonal form.

Proof. We can transform A to diagonal F ′ in a similar way to the symplectic and unitary
cases. Then, by replacing the basis vectors ei by multiples τiei , we can effectively multiply
the elements of F ′ by arbitrary squares in GF(q), and hence we can assume that all of the
diagonal entries of F ′ are equal either to 1 or to some fixed non-square, which we can take
to be our given primitive element ζ of GF(q).

Now, if i and j are two indices with F ′
ii = F ′

jj , by means of a basis change that maps

ei �→ ei + λej , and ej �→ λei − ej ,

we can multiply both F ′
ii and F ′

jj by λ2 + 1 for any λ ∈ GF(q). So, by choosing λ such
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that λ2 + 1 is a non-square (and roughly half of the λ ∈ GF(q) have that property), we can
change entries of F ′ in pairs from squares to non-squares, and vice versa. Hence, if d is odd
we can transform F ′ to either F = Id or to ζF . If d is even, we can transform F ′ either to
Id or to I ′

d , as defined above.

As in the proof of Proposition 3.2, we can show that, for a form of plus type, Id or I ′
d

can be transformed in time O(d2 log q) to AntiDiag[1, . . . , 1], which is sometimes more
convenient to use as the standard form.

Now suppose that q and d are even. If a matrix Q represents a quadratic form, then, for
j �= i, the values of Qij and Qji are not individually significant. It is their sum Qij +Qji
that represents the coefficient of xixj in the quadratic form. We therefore replace any such
Q by the unique upper triangular matrix Qu that represents the same form as Q. Then G
preserves Q if and only if (giQgT

i )
u = Qu for 1 � i � r .

In fact, the orthogonal forms preserved by the groups O±(d, 2n) are symplectic, so the
matrices A satisfy Aii = 0 for 1 � i � d . We wish to find a quadratic form preserved
by G, given that G preserves a known orthogonal form A with this property. Since A is
symmetric, we can write A = U + UT, where U is strictly upper-triangular. Then

U + UT = gi(U + UT)gT
i = giUg

T
i + giU

TgT
i ,

so the off-diagonal entries of Uu = U and (giUgT
i )
u are equal for 1 � i � d.

Indeed, ifD is a diagonal matrix with entries δi on the diagonal, thengiDgT
i is symmetric,

so the off-diagonal entries of U +D and (gi(U +D)gT
i )
u are also equal, and requiring that

their diagonal entries be equal gives rise to a system of linear equations in the n unknowns
δi . We are assuming that G fixes a form, so the equations must have a solution, which can
be found in timeO(d3 log q). The required quadratic form preserved byG isQ := U +D.

Proposition 3.4. LetG � GL(d, 2n) preserve a known quadratic formQ, of plus or minus
type. Then in time O(d3 log q), a matrix X can be constructed such that GX preserves our
chosen quadratic form.

Proof. Suppose that d > 2, and recall our choice (∗) of a standard form. Since Q is
non-degenerate, the off-diagonal entries are not all zero, for otherwise the form would be(√

Q11x1 + . . .+ √
Qddxd

)2
.

So, by interchanging co-ordinates if necessary, we may assume that Q1d �= 0. The form is

Q11x
2
1 +Q12x1x2 + . . .+Q1dx1xd + . . . = x1(Q11x1 +Q12x2 + . . .+Q1nxd)+ . . . ,

so by replacing xd byQ11x1 +Q12x2 + . . .+Q1dxd , we makeQ1i = 0 for 1 � i < d and
Q1d = 1. By a similar change to x1, we can achieve Qid = 0 for 2 � i � d. By repeating
this process, we can transform Q to a matrix with structure (∗) in time O(d3 log q).

This reduces us to the case d = 2, where the quadratic is κx2
1 + λx1x2 + µx2

2 . If this
factorises to (sx1 + tx2)(ux1 + vx2), thenQ is of plus type, and we change co-ordinates to
sx1 + tx2, ux1 + vx2 to bring Q to the standard form.

Otherwise, κx2
1 +λx1x2 +µx2

2 is irreducible over GF(q), the form is of minus type, and
we wish to transform it to a standard irreducible ax2

1 + bx1x2 + cx2
2 . In other words, we

must find α, β, γ, δ ∈ GF(q) with[(
α β

γ δ

) (
κ λ

0 µ

) (
α γ

β δ

)]u
=

(
a b

0 c

)
.
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We know that there is a solution, and the stabiliser O−(2, q) of the form in GL(2, q) acts
transitively on the one-dimensional subspaces of GF(q)2, so there is always a solution with
α = 0. The matrix equation then reduces to the three equations β2µ = a, γβ2 = b, and
γ 2κ + γ δβ + δ2µ = c, which enable us to find β, γ and δ.

4. Reducible groups

Sections 4 to 11 all have a similar structure. We first summarise the groups to be con-
structed in Theorem 1.1 that arise in theAschbacher class under consideration in that section.
We then go on to treat cases L, S, and U in detail. In case S with d = 4 and q even, we
postpone the discussion of the subgroups of groups that contain a graph automorphism until
Section 12.

In case L, we denote the natural basis of V := GF(q)d by [e1, . . . , ed ]. In case S, we
put l := d/2, and we let [e1, . . . , el, fl, . . . , f1] be a symplectic basis for GF(q)d , where
the matrix F of the symplectic form fixed by Sp(d, q) is antidiagonal with entries 1 in the
first l rows and −1 in the final l rows. In case U, we may do one of two things. We may use
a basis [e1, . . . , ed/2, fd/2, . . . , f1] if d is even, and [e1, . . . , e�d/2
, w, f�d/2
, . . . , f1] if
d is odd, where the matrix F of the unitary form fixed by SU(d, q) is AntiDiag[1, . . . , 1].
We may, alternatively, use an orthonormal basis [v1, . . . , vd ], with form matrix F = Id .

In this section we describe how to write down generators of conjugacy class represen-
tatives of the reducible subgroups G of � that arise in Theorem 1.1. Such a group G is
the stabiliser of a space W of dimension k, or the stabiliser of spaces W and U of dimen-
sion k and d − k, as described in Table 1, which comes from [15, Table 4.1.A]. Note the
abbreviations ‘t.s.’ for totally singular, and ‘n.d.’ for nondegenerate.

The meanings of the ‘types’ in the second column of Table 1 are as follows. The groups of
type Pk are parabolic subgroups, which are the stabilisers of totally singular k-dimensional
subspaces.A group of typePk,d−k is the stabiliser of both a k-dimensional subspaceW and a
(d−k)-dimensional subspaceU containingU : these groups are non-maximal in PSL(d, q)
but extend to maximal subgroups of PSL 2(d, q). Groups of type GL(k, q)⊕ GL(d − k, q)
stabilise a spaceW of dimension k and a (d−k)-dimensional complementU ofW : as in the
previous row, these groups are maximal only in groups containing a graph automorphism.
Groups of type Sp(k, q) ⊥ Sp(d − k, q) stabilise a nondegenerate symplectic subspace W
of dimension k, and a complement U to W (which is also nondegenerate). Groups of type
GU(k, q) ⊥ GU(d − k, q) stabilise a nondegenerate unitary subspace W of dimension k,
and a complement U to W (which is also nondegenerate).

Table 1: Maximal reducible groups.

Case Type Description Conditions

L, S, U Pk W t.s. 1 � k � d/2

L Pk,d−k W < U 1 � k < d/2

L GL(k, q)⊕ GL(d − k, q) W ∩ U = 0 1 � k < d/2

S Sp(k, q) ⊥ Sp(d − k, q) W n.d. k even, 1 � k < d/2

U GU(k, q) ⊥ GU(d − k, q) W n.d. 1 � k < d/2
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4.1. Linear reducible groups

Proposition 4.1. A set of representatives for the k-space stabilisers Pk in SL(d, q) can be
constructed in time O(d3 log q).

Proof. Let G be the stabiliser of 〈e1, . . . , ek〉 in SL(d, q); then by [15, Section 4.1],
G ∼= [qk(d−k)] : (SL(k, q) × SL(d − k, q)).(q − 1), and G consists of all matrices of
determinant 1 whose top right corner is a k × (d − k) block of zeros.

We generate SL(k, q) × SL(d − k, q) with 4 block matrices Ai , for 1 � i � 4, in
the obvious fashion, with SL(k, q) acting on 〈e1, . . . , ek〉 and SL(d − k, q) acting on
〈ek+1, . . . , ed〉. Identify SL(k, q) and SL(d − k, q) with the direct factors that we have just
constructed.

Next we define A5 := Diag[ζ, 1, . . . , 1, ζ−1] ∈ SL(d, q). Then 〈Ai : 1 � i � 5〉 ∼=
(SL(k, q)× SL(d − k, q)).(q − 1).

Finally, we define T := tωk+1,e1 = Id + E(k+1),1, where [ω1, . . . , ωd ] is the dual basis
to [e1, . . . , ed ] and, for u ∈ V and ω ∈ V ∗, the transvection tω,u is defined by tω,u(v) =
v + ω(v)u for v ∈ V . We wish to prove that |〈T 〉〈Ai :1�i�4〉| = qk(d−k).

For all X ∈ GL(d, q), we have X−1tωk+1,e1X = tωk+1X,e1X. If X ∈ SL(k, q), then
ωk+1X = ωk+1 and {e1X : X ∈ SL(k, q)} contains a GF(p) basis for 〈e1, . . . , ek〉.
Similarly, if X ∈ SL(d − k, q), then eiX = ei for 1 � i � k, but {ωk+1X : X ∈
SL(d − k, q)} contains a basis for 〈ωk+1, . . . , ωd〉. Thus T may be conjugated to any
transvection tω,v , where v ∈ 〈e1, . . . , ek〉 and ω ∈ 〈ωk+1, . . . , ωd〉. These generate a group
of order qk(d−k), as required.

Thus, up to conjugacy, G = 〈Ai, T : 1 � i � 5〉. Since each matrix is constructed in
time O(d2 log q) and there are O(d) classes of such stabilisers, the total time requirement
is O(d3 log q).

The two types of linear reducible groups in the second section of Table 1 arise as the
intersection of the maximal subgroups of GL(d, q)〈ι〉 with SL(d, q), where ι is the graph
automorphism.

Proposition 4.2. A set of representatives for the intersections of the maximal reducible
subgroups of GL(d, q)〈ι〉 with SL(d, q) can be constructed in time O(d3 log q).

Proof. There are two types of group G to be constructed. The first stabilises a k-space U
and a (d − k)-space W such that U ∩W = {0}. The second stabilises a k-space U and a
(d − k)-space W with U < W . In both cases, k < d/2.

In the first case,G ∼= (SL(k, q)×SL(d−k, q)).(q−1), by [15, Section 4.1]. The group
G consists of block-diagonal matrices, where the first block has size k × k and the second
block has size (d − k) × (d − k). The first block can be any matrix from GL(k, q). The
second can then be any element of GL(d − k, q) whose determinant is the inverse of the
determinant of the first block. Let Ai , for 1 � i � 5, be as in Proposition 4.1; then, up to
conjugacy, G = 〈Ai : 1 � i � 5〉.

In the second case, let G be the stabiliser in SL(d, q) of the subspaces 〈e1, . . . , ek〉 and
〈e1, . . . , ed−k〉. ThenG ∼= [q2dk−3k2 ].(SL(k, q)2 × SL(d − 2k, q)).(q − 1)2. The groupG
consists of all matrices of the form:

 A 0 0
B C 0
D E F


 ,

whereA ∈ GL(k, q), C ∈ GL(d− 2k, q), F ∈ GL(k, q), and Det(A)Det(C)Det(F ) = 1.
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We define {Xi : 1 � i � 6} to generate H := SL(k, q) × SL(d − 2k, q) × SL(k, q)
in the obvious fashion. Let D1 and D2 be diagonal matrices, where both have ζ in row 1,
matrix D1 has ζ−1 in row k + 1, matrix D2 has ζ−1 in row d − k + 1, and both have 1s
elsewhere. Clearly 〈D1,D2〉 ∼= (q − 1)2 and normalises H .

Finally, we let matrix T1 := Id + Ek+1,1, matrix T2 := Id + Ed−k+1,1, and matrix
T3 := Id + Ed−k+1,k+1. In a similar fashion to Proposition 4.1, one may show that P1 :=
〈T1〉H has order qk(d−2k), and by symmetry that the same is true forP3 := 〈T3〉H . Similarly,
P2 := 〈T2〉H has order qk

2
. Since 〈H,D1,D2〉 fixes 〈e1, . . . , ek〉 and 〈e1, . . . , ed−k〉, the

groups Pi have trivial pairwise intersections, and so G = 〈H,D1,D2, T1, T2, T3〉.
Each of theO(d) groups requires at most eleven generating matrices, each of which can

be written down in time O(d2 log q).

4.2. Symplectic reducible groups

Proposition 4.3. A set of representatives of the maximal reducible subgroups of Sp(d, q)
that stabilise isotropic k-spaces can be constructed in time O(d3 log q).

Proof. LetG be the stabiliser in Sp(d, q) of the isotropic subspaceU := 〈e1, . . . , ek〉, then
by [15, Section 4.1],

G ∼= [qk(k+1)/2+k(d−2k)] : (GL(k, q)× Sp(d − 2k, q)).

The matrices in G are all matrices in Sp(d, q) that are of the following form:
 A 0 0
B C 0
D E F


 .

Here A ∈ GL(d, q), F = JA−1TJ , for J := AntiDiag[1, . . . , 1] ∈ GL(k, q), and C ∈
Sp(d, q). The matrices B,D and E are arbitrary.

Let A1 and A2 generate GL(k, q), and define Xi := Diag[Ai, Id−2k, J (A
−1
i )TJ ] for

i = 1, 2. The description in [23] of the generators A1 and A2 of GL(k, q) is particularly
simple, and hence may easily be adapted to give a description of J (A−1

i )TJ (for i = 1, 2)
that can be computed directly in timeO(k2 log q) rather than requiring a succession of matrix
operations. We identify GL(k, q) with 〈X1, X2〉. Let B1 and B2 generate Sp(d − 2k, q),
and for i = 1, 2 define Yi := Diag[Ik, Bi, Ik]. Identify Sp(d − 2k, q) with 〈Y1, Y2〉.

Next, define T1 := Id + Ed,1. The reader may check that conjugation by elements of
GL(k, q) can map T1 to any matrix with 1s down the diagonal, a (k×k) block in the bottom
left corner that is symmetric about the anti-diagonal, and zeros elsewhere. Conjugation by
elements of Sp(d − 2k, q) fixes T1. Thus 〈T1〉(GL(k,q)×Sp(d−2k,q)) has order qk(k+1)/2. If
d = 2k, then G = 〈Xi, Yi, T1 : i = 1, 2〉.

If d > 2k, then define T2 := Id + Ed,d−k − Ek+1,1. It is routine to check that
T2 ∈ Sp(d, q), and clear that T2 stabilises 〈e1, . . . , ek〉. The argument that the normal
closure of 〈T2〉 under GL(k, q) × Sp(d − 2k, q) has order qk(d−2k) is similar to that of
Proposition 4.1, as

〈e1, . . . , ek〉 ⊥ 〈ek+1, . . . , el, fl, . . . , fk+1〉.
Then G = 〈Xi, Yi, Ti : i = 1, 2〉.

There are O(d) possibilities for G, giving a total time of O(d3 log q).

Proposition 4.4. A set of representatives of the maximal reducible subgroups of Sp(d, q)
that stabilise symplectic subspaces may be constructed in time O(d3 log q).
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Proof. Let G be the stabiliser in Sp(d, q) of 〈e1, . . . ek, fk, . . . , f1〉; then, by [15,
Section 4.1],

G ∼= Sp(2k, q)× Sp(d − 2k, q).

The group G consists of all matrices from Sp(d, q) of the form
 A 0 B

0 C 0
D 0 E


 , where

(
A B

D E

)
∈ Sp(2k, q).

Here, A, B, D and E are k × k matrices, and C ∈ Sp(d − 2k, q).
Let A1, A2 generate Sp(2k, q). Let Aijk , where i, j, k ∈ {1, 2}, be k × k submatrices of

Ai such that

Ai :=
(
Ai11 Ai12
Ai21 Ai22

)
.

For i = 1, 2, define Xi ∈ G to be block matrices with Aijk in the corners in the obvious
fashion, and Id−2k in the centre. Let B1 and B2 generate Sp(d − 2k, q), and for i = 1, 2
define Yi := Diag[Ik, Bi, Ik]. Then G = 〈X1, X2, Y1, Y2〉.

There are O(d) conjugacy classes of symplectic groups stabilising isotropic subspaces,
so the result follows.

4.3. Unitary reducible groups

Here we use the unitary form F = AntiDiag[1, . . . , 1]. Recall that, for A ∈ GL(d, q2),
we denote by A∗ the matrix resulting from transposing A and then replacing all entries in
A by their qth powers.

Proposition 4.5. A set of representatives of the maximal reducible subgroups of SU(d, q)
that stabilise isotropic k-spaces can be constructed in time O(d3 log2 q).

Proof. LetG � SU(d, q) be the maximal subgroup that stabilisesU := 〈e1, . . . , ek〉. Then
by [15, Section 4.1],

G ∼= [qk(2d−3k)] : (SL(k, q2)× SU(d − 2k, q)).[q2 − 1].
The group G consists of matrices of the same shape as those in Proposition 4.3.

We require various field elements. If q is odd, then set ν := ζ (q+1)/2; otherwise, set
ν := 1, so that ν satisfies ν + νq = 0. If q is odd, then let µ ∈ GF(q2) satisfy µq+1 = −2.
By Lemma 2.2, µ may be found in time O(log q).

To construct G, we start by taking a direct product of GL(k, q2) with SU(d − 2k, q),
where the generators A1, A2 of GL(k, q2) act as JA−∗

i J on 〈fk, . . . , f1〉, where J :=
AntiDiag[1, . . . , 1] ∈ GL(k, q2). As in the symplectic case, we may adapt the description
of the generatorsA1 andA2 of GL(k, q2) in [23] to describe the coefficents of JA−∗

i J , and
hence we construct the direct product in time O(d2 log q + log2 q).

We need two unitary transvections. The first is T1 := Id + νEd,1. The second is T2 :=
Id+Ed,d−k+Ek+1,1, provided that d−2k > 1. If d−2k = 1, then the second transvection
is T2 := Id +λ1Ed,1 +λ2Ed,�d/2� +λ3E�d/2�,1, where (λ1, λ2, λ3) is (ζ, 1, 1) if q is even,

and (1, µ, µq) when q is odd. The proof that the normal closure of 〈T1〉 has order qk
2
, and

that the normal closure of 〈T2〉 has order q2k(d−2k), is similar to the proof of Proposition 4.3.
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Finally, we add a diagonal matrix, which has entry ζ in row 1, entry ζ−1 in row (k+ 1),
entry ζ−p in row d, entry ζp in row d − k, and 1 elsewhere. If d = 2k or d = 2k + 1, we
make some obvious minor variations, which we leave to the reader.

Each group is generated by at most seven matrices, and there areO(d) conjugacy classes
of such groups, and so the result follows.

Proposition 4.6. A set of representatives of the maximal reducible subgroups of SU(d, q)
that fix unitary subspaces can be constructed in time O(d3 log q + log2 q).

Proof. Let k � d/2 be given, and defineU := 〈e1, . . . , e�k/2
, f�k/2
, . . . , f1〉. If k is even,
then let G be the stabiliser in SU(d, q) of U ⊥ U⊥. If k and d are both odd, then let G
stabilise 〈U,w〉 and its complement. Suppose that k is odd and d is even. Let α ∈ GF(q2)

satisfy α + αq = 1; by Lemma 2.2, α can be found in time O(log q). Let β ∈ GF(q2)

satisfy βq+1 = −1; we may set β to be ζ (q−1)/2 if q is odd, and to be 1 if q is even. The
reader may verify that the vectors w1 := αel + fl and w2 := −αqβel + βfl , with l = d/2,
are such that U1 := 〈U,w1〉 and U2 := 〈V,w2〉 are orthogonal unitary subspaces, where
V := 〈e�k/2
+1, . . . , el−1, fl−1, . . . , f�k/2
+1〉. We let G stabilise U1 ⊥ U2.

The construction ofG ∼= (SU(k, q)× SU(d − k, q)).(q − 1) is straightforward, and we
leave it to the reader.

5. Imprimitive groups

In this section, we describe how to construct representatives of the maximal imprimitive
subgroups G of � that arise in Theorem 1.1. Such a group G is the stabiliser in � of an
m-space decomposition

D : V = V1 ⊕ · · · ⊕ Vt ,

where d = mt and t > 1, such that the conditions of Table 2 (from [15, Table 4.2.A]) hold.
The types of the imprimitive groups are as follows. The groups of type GL(m, q)�Sym(t)

stabilise a decomposition of V into a direct sum of t subspaces, each of dimension m. The
groups of type Sp(m, q) � Sym(t) stabilise a decomposition of V into a direct sum of t non-
degenerate symplectic subspaces, each of dimension m. The groups of type GL(d/2, q).2
stabilise a decomposition of V into a direct sum of two totally singular subspaces, each
of dimension d/2. The groups of type GU(m, q) � Sym(t) stabilise a decomposition of
V into a direct sum of t nondegenerate unitary subspaces, each of dimension m. Finally,
the groups of type GL(d/2, q2).2 stabilise a decomposition of V into a direct sum of two
totally singular subspaces, each of dimension d/2 (recall that in case U, the vector space V
is defined over GF(q2)).

Table 2: Maximal imprimitive groups.

Case Type Description of Vi Conditions

L GL(m, q) � Sym(t)

S Sp(m, q) � Sym(t) non-degenerate

S GL(d/2, q).2 totally singular q odd

U GU(m, q) � Sym(t) non-degenerate

U GL(d/2, q2).2 totally singular
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5.1. Linear imprimitive groups

Proposition 5.1. A set of representatives of the maximal imprimitive subgroups of SL(d, q)
can be constructed in time O(d2+ε log q), for any ε > 0.

Proof. Let t > 1 divide d, and for 0 � i � t − 1, set Vi+1 := 〈eim+1, . . . , e(i+1)m〉. LetG
be the stabiliser in SL(d, q) of the decomposition V = V1 ⊕ · · · ⊕ Vt , and let m := d/t .
Then, by [15, Section 4.2],

G ∼= SL(m, q)t .(q − 1)(t−1).Sym(t).

The group consists of all matrices in SL(d, q) that are composed ofm×m block matrices,
where each row and column can contain only one nonzero block matrix. The determinants
of the first t − 1 blocks can be chosen freely, but the final block must ensure that the
determinant of the overall matrix is 1.

Let A,B ∈ GL(d, q) have the generators for SL(m, q) in the initial m × m block,
and the identity elsewhere. Let C,D ∈ GL(d, q) be block matrices preserving D , with
blocks of size (m×m), where CD := (1, 2, . . . , t) and DD := (1, 2). The nonzero block
in rows 1 to m is defined to be −Im in C and D, unless m and t are both odd, when it
is Im in C. All other blocks in C and D are Im, so Det(C) = Det(D) = 1. We have
〈A,B,C,D〉 ∼= SL(m, q)t .Sym(t) or SL(m, q)t .2(t−1).Sym(t).

LetE := Diag[ζ, 1, . . . , 1, ζ−1, 1, . . . 1], with ζ−1 in rowm+1. Then, up to conjugacy,
G = 〈A,B,C,D,E〉.

The number of types of imprimitive decomposition is equal to the number of proper
divisors k of d, which is O(dε) for any real ε > 0, by Lemma 2.1.

5.2. Symplectic imprimitive groups

Proposition 5.2. A set of representatives of the maximal imprimitive subgroups of Sp(d, q)
that stabilise decompositions into non-degenerate subspaces can be constructed in time
O(d2+ε log q), for any real ε > 0.

Proof. LetG be the stabiliser in Sp(d, q) of D : V = V1⊕· · ·⊕Vt , where eachVi is a sym-
plecticm-space. Then by [15, Section 4.2],G ∼= Sp(m, q) �Sym(t). Note thatm is even, and
set k := m/2. For 0 � i � t−1 we may setVi+1 := 〈eik+1, . . . , e(i+1)k, f(i+1)k, . . . , fik+1〉.

Let A1 and A2 generate Sp(m, q); use them to construct X1 and X2 as in the proof of
Proposition 4.4. Let C ∈ SL(d, q) interchange ei with ei+k and fi with fi+k for 1 � i � k,
and fix the other basis vectors. Let D ∈ SL(d, q) map ei �→ e((i+k−1) mod l)+1 and fi �→
f((i+k−1) mod l)+1, for 1 � i � l. Then, up to conjugacy, G = 〈X1, X2, C,D〉.

The number of types of imprimitive decomposition is equal to the number of even proper
divisors of d, namely O(dε) for any ε > 0.

When q is odd, there is a second conjugacy class of maximal imprimitive subgroups of
Sp(d, q).

Proposition 5.3. A representative of the maximal imprimitive groups in Sp(d, q) that sta-
bilise a decomposition into two isotropic subspaces can be constructed in timeO(d2 log q).

Proof. Let G be the maximal subgroup of Sp(d, q) that stabilises the decomposition D :
V = 〈e1, . . . , el〉 ⊕ 〈fl, . . . , f1〉. Then by [15, Section 4.2], G ∼= GL(l, q).2. Elements
of G can either stabilise each space in the decomposition (in which case they can act as
any element of GL(l, q) on the first k-dimensional subspace, provided that the action on
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the second k-dimensional subspace preserves the isotropic form), or they can interchange
〈e1, . . . , el〉 with 〈fl, . . . , f1〉.

Let A1, B1 generate GL(l, q), and let J := AntiDiag[1, . . . , 1] ∈ GL(l, q). Define
A := Diag[A1, J (A

−1
1 )TJ ] andB := Diag[B1, J (B

−1
1 )TJ ]. A short calculation shows that

A and B preserve both F and D , and so are in G.
Let C := AntiDiag[Il,−Il]; then, up to conjugacy, G = 〈A,B,C〉.

5.3. Unitary imprimitive groups

In the next proposition, we use the form F = Id .

Proposition 5.4. A set of representatives of the imprimitive maximal subgroups of
SU(d, q) that stabilise decompositions into unitary subspaces can be constructed in time
O(dε(d2 log q + log2 q)), for any real ε > 0.

Proof. Let t > 1 be a divisor of d , let m := d/t , and for 0 � i � t − 1 set Vi+1 :=
〈vim+1, . . . , v(i+1)m〉. Let G be the stabiliser in SU(d, q) of the decomposition D : V =
V1 ⊥ · · · ⊥ Vt . Then, by [15, Section 4.2],

G ∼= SU(m, q)t .(q + 1)t−1.Sym(t).

Let A1 and B1 generate SU(m, q), and let A := Diag[A1, Im . . . , Im] and B :=
Diag[B1, Im, . . . , Im]. Then both A and B preserve F and D , so A,B ∈ G. Identify
〈A,B〉 with SU(m, q).

Let C ∈ GL(d, q2) interchange vi with −vi+m, for 1 � i � m, and fix everything
else. A short calculation shows that Det(C) = 1, and that CC∗ = Id , so C ∈ G. Let
D1 ∈ GL(d, q2) map vi �→ v((i+m−1) mod d)+1 for 1 � i � d. If m or q is even or t is odd,
letD = D1; otherwise, letD := Diag[−1, 1, . . . , 1]D1. It may be checked thatDD∗ = Id
and that Det(D) = 1.

Let E := Diag[ζ q−1, 1, . . . , 1, ζ 1−q, 1, . . . , 1] ∈ GL(d, q2) have nontrivial entries in
rows 1 and m+ 1. Then, up to conjugacy, G = 〈A,B,C,D,E〉.

The number of choices of t is equal to the number of proper divisors of d, which isO(dε)
for any real ε > 0.

In the next proposition, we use the form F := AntiDiag[1, . . . , 1].
Proposition 5.5. If d is even, a representative of the maximal imprimitive subgroups of
SU(d, q) that preserve a decomposition into two isotropic subspaces can be constructed in
time O(d2 log q + log2 q).

Proof. Let G be the stabiliser in SU(d, q) of the decomposition D : V = 〈ei : 1 � i � l〉
⊕ 〈fi : l � i � 1〉. Then by [15, Section 4.2], G ∼= SL(l, q2).(q − 1).2.

LetA1, B1 ∈ SL(l, q2)generate SL(l, q2), and letJ := AntiDiag[1, . . . , 1] ∈ GL(l, q2).
Define A := Diag[A1, JA

−∗
1 J ] and B := Diag[B1, JB

−∗
1 J ]. Identify 〈A,B〉 with

SL(l, q2). A short calculation shows thatA andB preserve bothF and D , and soA,B ∈ G.
Define C1 := AntiDiag[Il, Il] and M := Diag[ζ (q+1)/2, 1, . . . , 1, ζ−q(q+1)/2] ∈

GU(d, q), a matrix of determinant −1 that squares to Id . If d ≡ 0 mod 4 or q is even,
then let C := C1; otherwise, set C := C1M . If C = C1, then C2 ∈ SL(l, q2); otherwise,
C2 is a diagonal matrix such that Det(C2|〈ei :1�i�l〉) = −1. We see thatC ∈ NG(SL(l, q2)).

DefineD ∈ GL(d, q2) to be diagonal with entry ζ in row 1, entry ζ q in row 2, entry ζ−1 in
row d−1 and ζ−q in row d . ThenD preservesF and D , soD ∈ NG(SL(l, q2))\SL(l, q2).
Up to conjugacy, G = 〈A,B,C,D〉.
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6. Semilinear groups

In this section we describe how to write down generators for the semilinear subgroupsG
of� that arise in Theorem 1.1. Let u := 1 in cases L and S, and u := 2 in case U. A group is
semilinear if it can be embedded in �L(d/s, qsu) for some divisor s of d. From [15, Table
4.3.A], we find that, for each such s, there is one maximal semilinear subgroup G having
the same type (L, S or U) as�. In addition, in case S with q odd, there is a conjugacy class
of semilinear groups isomorphic to GU(d/2, q).2.

We denote a primitive element of GF(qsu) by ω. The symbol νq denotes the field auto-
morphism x �→ xq of GF(qsu), and σq denotes the matrix operation (a)ij �→ (aq)ij .

Lemma 6.1. Let q be a prime power. A subgroup of GL(s, q) that is isomorphic to�L(1, qs)
may be constructed in time O(s2 log q + log2 q).

Proof. Fix a basis B := [1, ω, ω2, . . . , ωs−1] of GF(qs) over GF(q). This determines an
embedding φ : GF(qs)(1) −→ GF(q)(s), and induces an embedding ψ : �L(1, qs) −→
GL(s, q).

Let f (x) be a primitive polynomial for GF(qs) over GF(q) with root ω, and let A ∈
GL(s, q) be the companion matrix for f . Then A acts on the natural basis in the same way
as ω acts by multiplication on B, so As = ψ(ω).

For 0 � i, j � s− 1, let ξij be the coefficient of ωj in the expression for ωiq , written as
a linear combination of ωk with 0 � k � s − 1. Define B ∈ GL(s, q) by Bij := ξi−1,j−1.
ThenB acts on the natural basis of GF(q)(s) in the same way as νq acts on B, soB = ψ(νq).
Then 〈A,B〉 ∼= 〈ω, νq〉 = �L(1, qs).

We construct the field elements in time O(log2 q) for ωq ; then O(log q) time for each
additional power. Writing down the matrix B then takes an additional time O(s2 log q),
yielding a total time of O(s2 log q + log2 q).

Retaining the notation of the proof above, the map ψ can be used to construct a map θ :
�L(d/s, qs) −→ GL(d, q), where θ : (λωi)jk �→ (λAi)jk and θ : σq �→ Diag[B, . . . , B]
for λ ∈ GF(q). It is clear that θ is an injection. The reader may verify that θ restricted to
GL(d/s, qs) is a homomorphism by checking that the (m, n)th block of θ(X).θ(Y ) isψ(x),
where x is the (m, n)th entry of XY , for X, Y ∈ GL(d/s, qs). Furthermore, θ(σq) acts by
conjugation on Im(θ |GL(d/s,qs )) by conjugating each block by B, which corresponds to the
action of σq on GL(d/s, qs). So θ is a homomorphism.

Lemma 6.2. Let A and B be as in Lemma 6.1. Then | Det(A)| is equal to q− 1 and Det(B)
is equal to 1 if s is odd or q is even, or to −1 if s is even and q is odd.

Proof. The first claim follows from the fact that when it is represented as a subgroup of
GL(d, q), we have | Det(GL(d/s, qs))| = (q − 1) [15, Proposition 4.3.6].

The normal basis theorem (see, for instance, [16, Theorem 2.35]) states that there exists
an element α in GF(qs) such that [α, αq, αq2

, . . . , αq
s−1] is a basis for GF(qs) over GF(q).

Relative to this basis, the matrix for ψ(νq) is a permutation matrix with a 1 in position
(i, i + 1) for 1 � i � s − 1 and a 1 in position (s, 1). Thus Det(B) is as stated.

6.1. Linear semilinear groups

Proposition 6.3. A set of representatives of the maximal semilinear subgroups of SL(d, q)
can be constructed in time O(d� log d log2 q).
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Proof. Let G be a maximal semilinear subgroup of SL(d, q). Then, by [15, Proposition
4.3.6], there exists a prime divisor s of d such that

G ∼= SL(d/s, qs).
qs − 1

q − 1
.s.

We use Lemma 6.1 to construct matrices As, Bs ∈ GL(s, q) with 〈As, Bs〉 ∼= �L(1, qs).
We compute Cs := ψ(ωq−1) = A

q−1
s in time O(s� log2 q).

If s = d and d is odd, then let H := 〈Cs, Bs〉. Since s is odd, Det(Bs) = Det(Cs) = 1,
so H � SL(d, q). It is clear that H ∼= ((qs − 1)/(q − 1)).s, so G = H . If s = d = 2,
then set Fs := BsA

(q−1)/2
s and let H := 〈Cs, Fs〉. Then Det(Fs) = 1 and CFss = C

q
s , so

G = H .
If s �= d, then let X, Y ∈ GL(d/s, qs) generate SL(d/s, qs). We may assume that

X = Diag[ω,ω−1, 1 . . . , 1], and that Y has all nonzero entries equal to ±1; see [23]. Let
A := θ(X) ∈ GL(d, q), and B := θ(Y ) ∈ GL(d, q). Then 〈A,B〉 ∼= SL(d/s, qs) �
SL(d, q). Note that since all nonzero entries ofX and Y lie in the set {ω±1,±1}, we do not
have to power As or compute discrete logs. Thus, given As , we construct A and B in time
O(d2 log q).

Let C := θ(Diag[ωq−1, 1, . . . , 1]). Then C = Diag[Cs, Is, . . . , Is], and Det(C) = 1.
Finally, let D1 := θ(σq). If s = 2, where d/s is odd and q is odd, then let D := D1Z,
where Z is a block-diagonal matrix with nonzero blocks equal to A(q−1)/2

s ; otherwise, set
D := D1. In both cases, we have G = 〈A,B,C,D〉.

The generating matrices for G are written down in time O(d� log2 q), and the number
of types of semilinear group is equal to the number of prime divisors of d, which isO(log d)
by Lemma 2.1.

6.2. Symplectic semilinear groups

Proposition 6.4. A set of representatives of the maximal semilinear subgroups of Sp(d, q)
of symplectic type can be constructed in time O(d3 log d log2 q).

Proof. Let G be a maximal semilinear subgroup of Sp(d, q), of symplectic type. Then,
by [15, Proposition 4.3.10], there exists a prime divisor s of d such that d/s is even and
G ∼= Sp(d/s, qs).s.

As in Lemma 6.1, constructAs := ψ(ω) and Bs := ψ(νq) in timeO(s2 log q+ log2 q).
Then let Xd/s and Yd/s be generating matrices for Sp(d/s, qs), and let A := θ(Xd/s) and
B := θ(Yd/s). By [23] we may assume that all nonzero entries of Xd/s and Yd/s are in
the set {±1, ω±1}, so this construction takes time O(d2 log q). Let C := θ(σq). Since if
s = 2 then d ≡ 0 mod 4, we always have Det(C) = 1. Then setting H := 〈A,B,C〉 gives
H ∼= G.

A short calculation shows that if β(_ , _) is a symplectic form on GF(qs)d/s , then
β ′(_ , _) := Tr(β(_ , _)) is a symplectic form over GF(q). As we have a fixed symplectic
form, and we know our basis for GF(qs) over GF(q), we can calculate a matrix for this
form inO(d2 log2 q). By the results of Section 3, we conjugateH to a subgroup of Sp(d, q)
in timeO(d3 log q). Noting that there areO(log d) groups to be constructed completes the
proof.

Proposition 6.5. A representative of the maximal semilinear subgroups of Sp(d, q) of
unitary type can be constructed in time O(d3 log2 q)
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Proof. Let G be a maximal semilinear subgroup of Sp(d, q), of unitary type. Then, by
[15, Proposition 3.2.7], G ∼= GU(l, q).2. Let ω be a primitive element of GF(q2), let
A2 := ψ(ω) ∈ GL(2, q), and let B2 := ψ(νq) ∈ GL(2, q). Also, let X, Y ∈ GL(l, q2)

generate GU(l, q). We then construct A := θ(X) and B := θ(Y ). Let i be such that
(q + 1)/2i is odd, and let m := (q2 − 1)/2i+1. Let C := Diag[B2A

m
2 , . . . , B2A

m
2 ], so

that each block has determinant 1. Since A2 is a (2 × 2) matrix, we construct C in time
O(d2 log q + log2 q).

A short calculation shows that if β(_ , _) is a unitary form over GF(q2), then β ′(_ , _) :=
Tr(λβ(_ , _)) is a symplectic form over GF(q), for λ ∈ GF(q2) of trace zero. We can choose
λ to be a primitive 4th root of unity, and then construct β ′ in time O(d2 log2 q). We use
Proposition 3.2 to conjugate H to G � Sp(d, q).

6.3. Unitary semilinear groups

Proposition 6.6. A set of representatives of the maximal semilinear subgroups of SU(d, q)
can be constructed in time O(d3 log d log2 q).

Proof. Let G be a maximal semilinear subgroup of SU(d, q). Then

G ∼= SU(d/s, qs).
qs + 1

q + 1
.s

for some odd prime s dividing d . The construction of H ∼= G is virtually identical to that
of Proposition 6.3, and we leave it to the reader.

A short calculation shows that if β(_ , _) is a unitary form over GF(qs), then β ′(_ , _) :=
Tr(β(_ , _)) is a unitary form over GF(q). Thus we may use the results of Section 3 to
conjugate H to G in time O(d3 log q). Noting that there are O(log d) maximal semilinear
subgroups completes the proof.

7. Tensor product groups

In this section we describe how to write down generators for the tensor product subgroups
G of� that arise in Theorem 1.1. A group is tensor product if it preserves a decomposition
V = V1 ⊗ V2. From [15, Table 4.4.A] we find that in cases L and U, for each divisor
d1 <

√
d of d there is a unique suchG. Its socle mod scalars is PSL(d1, q)×PSL(d2, q) or

PSU(d1, q)× PSU(d2, q), in cases L and U respectively, where d = d1d2. In case S, these
groupsG occur only for odd q. In this case, for each even divisor d1 of d for which d2 � 3,
there are (one or two) groups G with socle mod scalars equal to PSp(d1, q)× P�ε(d2, q).
We note that the determinant of A⊗ B ∈ GL(d1, q)⊗ GL(d2, q) is Det(A)d2 Det(B)d1 .

7.1. Linear tensor product groups

Proposition 7.1. A set of representatives of the maximal tensor product subgroups of
SL(d, q) can be constructed in time O(d2+ε log q), for any real ε > 0.

Proof. We let G be a maximal tensor product subgroup of SL(d, q), we set Z :=
Z(SL(d, q)), and we let Ḡ := G/(G ∩ Z). Then Z(G) = Z, and by [15, Section 4.4]
there exists a divisor d1 <

√
d of d such that, with d2 := d/d1 and

c := (d1, q − 1)(d2, q − 1)(d1, d2, q − 1)

(d, q − 1)
,
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we have Ḡ ∼= (PSL(d1, q) × PSL(d2, q)).[c]. Elements of G are the Kronecker products
of elements of GL(d1, q) with those of GL(d2, q); the quotient group of order c measures
the freedom in the choice of determinant in each tensor factor.

For i = 1, 2, let Ai and Bi generate SL(di, q). Let S and T be the Kronecker products
of A1 and B1 with Id2 , and let U and V be the products of Id1 with A2 and B2. Let
C1 := ζ (q−1)/(q−1,d)Id , so that 〈C〉 = Z, and set H := 〈S, T ,U, V,C〉. If c = 1, then, up
to SL(d, pe) conjugacy, G = H .

When c > 1,Gmay be generated byH together with certain matrices of the formD :=
D1 ⊗D2, where D1 := Diag[ζ x, 1, . . . , 1] ∈ GL(d1, q) and D2 := Diag[ζ y, 1, . . . , 1] ∈
GL(d2, q). We want to make all matrices D such that Det(D) = 1, which implies that
d2x + d1y = 0 mod q − 1. So the required generators D correspond to generators of the
nullspace of the 3 × 1 matrix [d2, d1, q − 1].

Finding this nullspace involves transforming the matrix to one with a single nonzero
entry, by using elementary row operations over the integers. This can be done in time
polynomial in the ‘size’ of the entries, where ‘size’ here means the number of bits. In fact,
only one division involving q − 1 is required, and all other operations involve numbers of
size O(log d), so the nullspace can be found in time O(d log q).

The number of groups to be constructed is equal to half of the number of divisors of d,
which by Lemma 2.1 is O(dε) for any real ε > 0.

7.2. Symplectic tensor product groups

Proposition 7.2. A set of representatives of the maximal tensor product subgroups of
Sp(d, q) may be constructed in time O(d�+ε log3 q).

Proof. Let G be a maximal tensor product subgroup of Sp(d, pe). Then by [15, Section
4.4], we see that q is odd, there exists an even divisor d1 of d such that d2 := d/d1 � 3,
and

Ḡ ∼= (PSp(d1, q)× POε(d2, q)).(d2, 2),

where ε ∈ {+,−, ◦} and Z(G) = {±I } = Z(Sp(d, q)).
Let X1, Y1 generate Sp(d1, q), and let Z1 := Diag[ζ, . . . , ζ, 1, . . . , 1] ∈ GL(d1, q), so

that 〈X1, Y1, Z1〉 ∼= GSp(d1, q). Let X, Y and Z be the Kronecker products of X1, Y1 and
Z1 with Id2 .

Suppose that d2 is odd, and let A◦, B◦,D◦ generate O(d2, q) as in Lemma 2.4. Let
A, B and D be the Kronecker products of Id1 with A◦, B◦ and D◦ respectively, and set
H := 〈X, Y,A,B,D〉.

Now suppose that d2 is even, and for ε = ± let Aε,Bε,Dε,Eε generate GOε(d2, q) as
in Lemma 2.4. Let Aε, Bε, Dε and Eε be the tensor products of Id1 with Aε, Bε, Dε and
Eε, and let Zε be the product of Z−1 with Eε. Finally, let Hε := 〈X, Y,Zε,Aε, Bε,Dε〉.
Since d1 and d2 are even, we have Hε � SL(d, q).

The reader may check that in each case, H preserves a symplectic form given by
β(S1 ⊗ T1, S2 ⊗ T2) = β1(S1, S2).β2(T1, T2), where β1 is a symplectic form on GF(q)d1

and β2 is a symmetric bilinear form on GF(q)d2 . The form β1 is the standard one, and (as
we discussed in the remark following Lemma 2.4) the form β2 is almost antidiagonal (it is
antidiagonal apart from a 2×2 matrix in the centre of the matrix defining the form), and can
be transformed to antidiagonal in O(log q). So we can compute β and then transform it to
the standard symplectic form, all in time O(d2 log q). Hence we may find M and compute
G with G := HM � Sp(d, q) in time O(d� log q).

By Lemma 2.1, there are O(dε) groups to be constructed, for any real ε > 0.
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7.3. Unitary tensor product groups

We use the form F = Id , and we let Z := Z(SU(d, q)).

Proposition 7.3. A set of representatives of the maximal tensor product subgroups of
SU(d, q) can be constructed in time O(d2+ε log q + log2 q).

Proof. LetG be a maximal tensor product subgroup of SU(d, q), and let Ḡ := G/(G∩Z).
Then Z(G) = Z, and by [15, Section 4.4] there exists a divisor d1 <

√
d of d such that,

with d2 := d/d1 and

c := (d1, q + 1)(d2, q + 1)(d1, d2, (q + 1))

(d, q + 1)
,

we have Ḡ = (PSU(d1, q)× PSU(d2, q)).[c].
Let S, T , U and V generate SU(d1, q) ◦ SU(d2, q) as in Proposition 7.1. Let C :=

ζ (q
2−1)/(q+1,d)Id , so that 〈C〉 = Z, and set H := 〈S, T ,U, V,C〉. Then H preserves a

unitary form β(A1 ⊗ B1, A2 ⊗ B2) = β1(A1, A2).β2(B1, B2), where βi is represented by
Idi . Therefore β has matrix Id , and we assume that H � G.

If c = 1, then, up to SU-conjugacy,G = H , so we suppose that c �= 1. A diagonal matrix
preserves F if and only if all of its entries are powers of η := ζ q−1. We generate G with
H together with matrices of the form D := D1 ⊗D2, where D1 := Diag[ηx, 1, . . . , 1] ∈
GU(d1, q) and D2 := Diag[ηy, 1, . . . , 1] ∈ GU(d2, q), and Det(D) = 1. The condition
Det(D) = 1 is equivalent to d2x + d1y = 0 mod (q + 1). So the required generators D
correspond to generators of the nullspace of the integral 3×1 matrix [d2, d1, q+1], which,
as in the linear case, can be found in time O(d log q).

By Lemma 2.1, there are O(dε) decompositions, for any real ε > 0.

8. Subfield groups

In this section we describe how to write down generators for the subfield subgroups G
of the group � that arise in Theorem 1.1. Let u := 1 in cases L and S, and let u := 2 in
case U. A group is subfield if, modulo scalars, it can be written over a proper subfield of
GF(qu). Throughout this section, f denotes a divisor of e (recall that q = pe), and ω
denotes a primitive element of GF(pfu). From [15, Table 4.5.A], we find that, for each
such f for which e/f is prime, there is one maximal subfield subgroupG having the same
type (L, S or U) as�. In addition, in case U with q odd, there are (one or two) groupsG of
orthogonal type, and in case U with n even, there is a group of symplectic type.

Recall that [a, b] denotes the lowest common multiple of integers a and b.

8.1. Linear subfield groups

Proposition 8.1. The maximal subfield subgroups of SL(d, q) can be constructed in time
O((d2 log q + log2 q) log log q).

Proof. Let Z := Z(SL(d, pe)), and let G � SL(d, pe) be a maximal subfield group.
Then Z(G) = Z, and by [15, Section 4.5] there exists a prime divisor b of e such that
| PGL(d, pf ) : G/Z| = c, where f := e/b. We define k := (pe − 1, d) and

c := k[pf − 1, (pe − 1)/k]
(pe − 1)

.

The group G consists of all matrices from 〈GL(d, pf ), Z(GL(d, pe))〉 that have
determinant 1.
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Let A and B generate SL(d, pf ); then A and B may be thought of as elements of
SL(d, pe). Let C := ζ (p

e−1)/kId . Then 〈C〉 = Z, so if c = (pf − 1, d), we may set
G = 〈A,B,C〉.

Suppose then that c �= (pf − 1, d), and define H := 〈A,B,C〉 and

Y := Diag[ω, 1, . . . , 1] ∈ GL(d, pe).

Then 〈SL(d, pf ), Y 〉 = GL(d, pf ). Let D := Y c; then, since c | (pf − 1, d), we see that
| GL(d, pf ) : 〈SL(d, pf ),D〉| = c. We compute ωc, and henceD, in time O(log d log q).
Now we construct a scalarX ∈ GL(d, pe) such that Det(XD) = 1. We have Det(D) = ζ z,
where

z = pe − 1

pf − 1
.
k.[pf − 1, (pe − 1)/k]

pe − 1
= k(pf − 1)(pe − 1)/k

(pf − 1)(pf − 1, (pe − 1)/k)

= pe − 1

(pf − 1, (pe − 1)/k)
.

By [11, Theorem 57], since k divides z, the equation λd = z mod pe − 1 has k solutions,
and solving it is equivalent to solving λd/k = z/k mod (pe − 1)/k. We use the Euclidean
algorithm to find integers x and y such that x.(d/k) + y.((pe − 1)/k) = 1, in time
O(log(d/k)). Then x = (d/k)−1 mod (pe − 1)/k. Given x, we compute λ in constant
time. We set X := ζ−λId ; then, up to conjugacy, G = 〈H,XD〉. Computing ζ−λ requires
time O(log2 q + log d), and then computing XD requires time O(d2 log q), since X is a
scalar.

By Lemma 2.1, there are O(log e) = O(log log q) groups to construct.

8.2. Symplectic subfield groups

Proposition 8.2. A set of representatives of the maximal subfield subgroups of Sp(d, q)
may be constructed in time O((d2 log q + log2 q) log log q).

Proof. Let G be a maximal subfield subgroup of Sp(d, pe). Then, by [15, Proposition
4.5.4], there exists a divisor f of e such that e/f is prime and

G ∼= Sp(d, pf ).(2, e/f, p − 1).

A symplectic form on GF(pf )d extends naturally to a symplectic form with the same
form matrix on GF(pe)d , so Sp(d, pf ) may be considered as a subgroup of Sp(d, pe).

If (2, e/f, p−1) = 1, then we may setG = Sp(d, pf ), so suppose that (2, e/f, p−1) =
2. LetD ∈ GL(d, pf )map ei �→ ωei and fi �→ fi , for 1 � i � l. ThenD ∈ GSp(d, pf ),
and Det(D) = ζ kd/2, where k := (pe−1)/(pf −1). Since e/f = 2 and p is odd, d divides
kd/2. Let S := ζ−k/2Id , and defineC := SD. A short calculation shows thatC preservesF
and has determinant 1, so C ∈ NSp(d,pe)(Sp(d, pf )), and we may setG = 〈Sp(d, pf ), C〉.

The matrices S and D are diagonal, so computing C takes time O(d2 log q + log2 q).
By Lemma 2.1, there are O(log log q) groups to be constructed.

8.3. Unitary subfield groups

Here we use the form F = AntiDiag[1, . . . , 1]. We let Z := Z(SU(d, q)) and C :=
ζ (q

2−1)/(q+1,d)Id , so that 〈C〉 = Z. We define k := (q + 1, d) = (pe + 1, d). Recall that
for a matrix A ∈ GL(d, q2), by Aσq we mean the matrix whose entries are qth powers of
the entries of A.
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Proposition 8.3. A set of representatives of the maximal subfield subgroups of SU(d, q)
of unitary type can be constructed in time O((d2 log q + log2 q) log log q).

Proof. LetG be a maximal subfield subgroup of SU(d, pe) of unitary type. ThenZ(G) = Z

and by [15, Section 4.5] there exists an odd prime divisor b of e such that | PGU(d, pf ) :
G/Z| = c, where f := e/b and

c := k[pf + 1, (pe + 1)/k]
(pe + 1)

.

A unitary form on GF(p2f )d extends naturally to a unitary form on GF(p2e)d , so
GU(d, pf ) may be considered as a subgroup of GU(d, pe).

The construction of G is similar to Proposition 8.1; we sketch it briefly. Let A and B
generate SU(d, pf ), and let H := 〈A,B,C〉 � SU(d, pe).

If c = (pf + 1, d), then we may choose G = H , so suppose that c �= (pf + 1, d), let
Y := Diag[ω, 1, . . . , 1, ω−pf ] ∈ GU(d, pf ), and let D := Y c. A short calculation shows
that Det(D) = ζ z, where z = −(p2e − 1)/(pf + 1, (pe + 1)/k). We find a λ such that
λ(pe−1)d = −z mod p2e−1, by finding (d/k)−1 mod (pe+1)/k in timeO(log(d/k)).
We then set X := ζ λ(p

e−1)Id , so that XD ∈ SU(d, pe), and we choose G = 〈H,XD〉.
By Lemma 2.1 there are O(log e) = O(log log q) groups to be constructed.

Proposition 8.4. A set of representatives of the maximal subfield subgroups of SU(d, q)
of orthogonal type can be constructed in time O(d3 log q + log3 q).

Proof. These occur only for q odd. For ε ∈ {+,−, ◦}, let Fε denote the matrix of the
symmetric bilinear form preserved by Oε(d, q).

Suppose first that d is even. Then by [15, Proposition 4.5.5], G ∼= Z.PSO+(d, q).2 or
Z.PSO−(d, q).2.

First we deal with the G of plus type. Let A, B, D+ and E+ be the generators of
GO+(d, q), as in Lemma 2.4. In this case, we have F+ = AntiDiag[1, . . . , 1]. From the
remarks following the proof of Proposition 3.3, we can take this to be the standard orthogonal
form. All matrices in O+(d, q) are fixed by A �→ Aσq , so we may think of O+(d, q) as a
subgroup of GU(d, q). Therefore H0 := 〈A,B,C〉 ∼= Z.SO+(d, q) � SU(d, q).

We construct the outer involution. Let X := ζ Id , and let E := E+X−1. Then EFE∗ =
F , so E ∈ NGU(d,q)(SO+(d, q)), and Det(E) = ζ d(q−1)/2. Set H1 := 〈H0,D+, E,Xq−1〉
� GU(d, q). We construct an elementW ofH1\H0 of determinant 1; then, up to conjugacy,
we have G = 〈H0,W 〉.

First suppose that (q + 1)/k is even, and let i1 := (q2 − 1)/2k. Then Xi1 ∈ H1,
and Det(Xi1) = −1, so Det(Xi1D+) = 1. We must show that Xi1D+ �∈ H0. Suppose
otherwise; then there exists a scalar S ∈ Z such that SXi1D+ ∈ SO+(d, q), so in particular
SXi1D+F+(SXi1D+)T = F+. This implies that S = ±X−i1 , contradicting S ∈ Z. We
put W := Xi1D+.

Next suppose that d/k is even, and let m := (q + 1)/k. Let i2 := (q − 1)(m + 1)/2;
then the exponent z of ζ in Det(Xi2) is

z = d(q − 1)(m+ 1)

2
= (q − 1)dm

2
+ d(q − 1)

2

= (q − 1)(q + 1)d

2(d/2, q + 1)
+ d(q − 1)

2

= d(q − 1)

2
.
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Since X−i2 ∈ GU(d, q), we see that EX−i2 ∈ H1. A short calculation shows that if there
exists an S such that EX−i2S preserves F+, then S = ±Xi2+1−(q+1)/2. But then S �∈ Z, a
contradiction. Thus EX−i2 �∈ H0, and we put W := EX−i2 .

Finally, suppose that m := d/k and (q + 1)/k are both odd. We have

Det(D+E) = ζ (d+q+1)(q−1)/2.

Since ((q + 1)/k,m) = 1, there exists an n ∈ Z such that nm = 1 mod (q + 1)/k. We
compute n in time O(logm) = O(log d). Let

i3 := (q − 1)n(d + q + 1)

2k
;

note that i3 is divisible by (q − 1). Then

Det(Xi3) = ζ d(q−1)n(d+q+1)/2k = αnm,

where α := ζ (d+q+1)(q−1)/2. Now,

|α| = (q + 1)

(q + 1, (d + q + 1)/2)
= (q + 1)

k
,

by our assumptions on d and (q + 1). Then, since αmn = α1+o(q+1)/k for some o ∈ Z, we
have αmn = α. Therefore Det(D+EX−i3) = 1. A short calculation shows thatD+EX−i3 �∈
H0, so we may set W := D+EX−i3 .

Next we show how to construct G ∼= Z.PSO−(d, q).2 of minus type. We may assume
that F− is either Id or Diag[ω, 1, . . . , 1], according to whether (q − 1)d/4 is odd or even.
Let A, B, D− and E− be as in Lemma 2.4, let X be as before, and let E := X−1E− so
that E preserves a unitary form with matrix F−. If (q + 1)/k is even, then W := Xi1D−.
If d/k is even, then W := EX−i2 . If the same power of 2 divides both (q + 1) and d, then
if d/2 is even,W := D−EX−i3 , and if d/2 is odd,W := EX−i3 . We find a change of form
matrix M using Proposition 3.2; then, up to conjugacy, G = 〈HM

0 ,WM 〉.
The case when d is odd is similar but easier. It is shown in [15, Proposition 4.5.5] that

G ∼= Z.SO◦(d, q), and we leave the construction to the reader.

Proposition 8.5. A representative of the maximal subfield symplectic subgroups of
SU(d, q) can be constructed in time O(d2 log q + log2 q).

Proof. Let d be even, let G be a maximal subfield subgroup of SU(d, q) of symplectic
type, and let c := (2, q − 1)(q + 1, d/2)/(q + 1, d). Then, by [15, Proposition 4.5.6],

G ∼= Z.PSp(d, q).c.

Let F ′ be the symplectic form matrix AntiDiag[1, . . . , 1,−1, . . . ,−1].
LetA,B ∈ SL(d, q) generate Sp(d, q), and considerA andB as elements of SL(d, q2).

If c = 1, then let H := 〈A,B,C〉, so that G ∼= H .
If c �= 1, thenq is odd. LetD ∈ SL(d, q2)map ei �→ ζ (q+1)/2ei andfi �→ −ζ−(q+1)/2fi

for 1 � i � l. Then D ∈ NSL(d,q2)(Sp(d, q)), as D preserves F ′ up to multiplication
by −1. Let H := 〈A,B,C,D〉; then H ∼= G. We use the results in Section 3 to find M
with HM � SU(d, q), then up to conjugacy G = HM . In fact, H preserves the form YF ′
with Y := −ζ (q+1)/2Id , so the change of form can be carried out in time O(d2 log q).
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9. Groups of extraspecial and symplectic type

In this section we describe how to write down generators for the maximal subgroups
of SL(d, q), Sp(d, q) and SU(d, q1/2) which are normalisers of extraspecial groups or of
2-groups of symplectic type.

9.1. Structure and conjugacy

For any prime r and any integerm � 1, there are two isomorphism types of extraspecial
groups of order r2m+1; see, for example, [10, Theorem 5.2]. For r odd, we are concerned
only with the isomorphism type that has exponent r , since the normaliser in GL(rm, q) of
the other type of extraspecial group is a proper subgroup of the normaliser of an extraspecial
group of exponent r .

For r = 2, the extraspecial group of minus type is a central product of a quaternion group
of order 8 with zero or more dihedral groups of order 8. By taking a central product of an
extraspecial 2-group with a cyclic group of order 4, we obtain a 2-group of symplectic type.

InTable 3 we describe the maximal subgroups of extraspecial normaliser type in GL(d, q),
GU(d, q1/2) and GSp(d, q), taken from [15, Table 4.6.B]. The extraspecial or symplectic-
type groups E are represented in d = rm dimensions over the field of q = pe elements,
where e is minimal subject to pe ≡ 1 mod |Z(E)| (equal to r or 4). Groups of type
r1+2m.Sp(2m, r) are the full normalisers in GL(rm, q) or GU(rm, q1/2) of an extraspecial
r-group of order r1+2m and exponent r , where r is odd. These groups are maximal in
GL(d, q) if q is a nonsquare, and in GU(d, q1/2) if q is square. Groups of type
(4 ◦ 21+2m).Sp(2m, 2) are the normalisers in GL(2m, q) or GU(2m, q1/2) of a 2-group
of symplectic type of order 21+2m. Such a group is maximal in GL(2m, q) if q is prime,
and in GU(2m, q1/2) if q is a square of a prime. Groups of type 21+2m− .O−(2m, 2) are the
normalisers of a 2-group of minus type and order 21+2m− in GL(2, q) or Sp(2m, q). Such a
group is maximal in GL(2, q) when q is prime and m = 1, and is maximal in Sp(2m, q)
for m > 1 and q prime.

9.2. Construction of the groups

We assume throughout this subsection that d = rm, where r is a prime divisor of q − 1,
and we let ω be a primitive rth root of 1 in GF(q), constructed in time O(log2 q).

We describe how to write down generators of E and of NGL(d,q)(E), but we do this in
such a way that a setX of generators ofNSL(d,q)(E) occurs as a subset. The group generated
by X will necessarily preserve a form of unitary or symplectic type, as appropriate. In the
unitary case, the form preserved will be Id , whereas in the symplectic case it will require a
permutation of the basis to transform it to the standard antidiagonal form.

Table 3: Structure of extraspecial normalisers.

Type Case Conditions

r1+2m.Sp(2m, r) L q nonsquare, r odd

U q square, r odd
(4 ◦ 21+2m).Sp(2m, 2) L q prime, d � 4

U q = p2

21+2m− .O−(2m, 2) L q prime, d = 2
S q prime
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We describe this process first for the case when r is odd. The cases for r = 2 require
minor variations of the same recipe.

Lemma 9.1. LetE � GL(d, q) be an extraspecial group of odd order and exponent r , with
|E| = r2m+1. Then E can be constructed in time O(d2 log d log q + log2 q).

Proof. LetX ∈ GL(r, q) be diagonal withXii = ωi−1 for 1 � i � r , and let Y ∈ GL(r, q)
be the permutation matrix defined by the permutation (1, 2, . . . , r). That is, Yi(i+1) = 1 for
1 � i < r , entry Yr1 = 1, and Yij = 0 otherwise. Then the commutator [Y,X] is equal to
ωIr , and so X and Y generate an extraspecial group M of order r3 and of exponent r .

Now for 1 � i � m, we define Xi := Irm−i ⊗ X ⊗ Iri−1 and Yi := Irm−i ⊗ Y ⊗ Iri−1 ,
where ⊗ is the Kronecker product operation. The group E generated by the Xi and Yi is
a central product of m copies of 〈X, Y 〉, and so it is an extraspecial group of the required
type.

If r = 2, then the construction described above will produce an extraspecial 2-group of
plus type.

Lemma 9.2. Let E be as in Lemma 9.1. Then NGL(d,q)(E) can be constructed in time
O(d2 log d log q + log2 q).

Proof. Let U ∈ GL(r, q) be diagonal, with Uii = ωi(i−1)/2, and let V ∈ GL(r, q) with
Vij = ω(i−1)(j−1) for 1 � i, j � r . The reader can verify that XU = X and YU = YX.
One may also check thatXV = Y−1 and YV = X. So the group 〈U,V 〉 induces SL(2, r) =
Sp(2, r) on M̄ := M/Z(M). For 1 � i � m, we define Ui := Irm−i ⊗ U ⊗ Iri−1 and
Vi := Irm−i ⊗ V ⊗ Iri−1 .

Then the Ui and Vi all normalise E, and the group that they generate induces a direct
product of m copies of Sp(2, r) on Ē := E/Z(E).

Let W ∈ GL(r2, q) be the permutation matrix defined by the permutation w ∈ S :=
Sym({0, . . . , r2−1}) that maps a �→ (a+((a−1) mod r)r) mod r2. The matrix Ir⊗Y is a
permutation matrix coming from the permutation y1 ∈ S, where ay1 = (((a− 1) div r)r +
(a mod r) + 1) mod r2. Similarly, Y ⊗ Ir is a permutation matrix for y2 ∈ S, where
ay2 = a + r mod r2. The reader can check that wy2 = y2w, and that y1w = wy1y2
satisfies

ay1w = (((a − 1) div r + a mod r)r + (a mod r)+ 1) mod r2.

In general, if R is a diagonal matrix, and S is a permutation matrix defined from the
permutation σ , then T := RS is the diagonal matrix with Tiσ ,iσ = Rii . Using this fact, the
reader can check that Ir⊗X is centralised byW , whereas (X⊗Ir )W = (Ir⊗X)(X⊗Ir )−1.

For 1 � i � m−1, we defineWi := Irm−1−i ⊗W⊗Iri−1 . From the relations on (X⊗Ir )
and W , we see that XWij = Xj for j �= i + 1 and XWii+1 = XiX

−1
i+1, whereas YWii = Yj for

j �= i and YWii = YiYi+1.
We claim that all of the elementsUi , Vi ,Wi ,Xi and Yi , together with the scalar matrices,

generate NGL(d,q)(E). We have already seen that the group induced on Ē by the Ui and Vi
is the direct product of n copies of Sp(2, r). Now the only maximal subgroup of Sp(4, r),
acting on the subspace Ē2 := 〈X1, X2, Y1, Y2〉 � Ē, which contains Sp(2, r) × Sp(2, r),
is the wreath product Sp(2, r) � C2. This latter group acts imprimitively (as a group of
linear transformations) on Ē2, and the blocks are the subspaces spanned by X1, Y1 and
X2, Y2. Now W1 fixes Ē2, but does not fix or interchange these two subspaces, so X1, X2,
Y1, Y2 and W1 must generate Sp(4, r) on Ē2. Since Sp(2k, r) × Sp(2, r) is a maximal
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subgroup of Sp(2k + 2, r) for k > 1, we see by induction on k that Ui , Vi , Xi and Yi
for 1 � i � k and Wi for 1 � i < k generate Sp(2k, r) in their action on the subspace
Ēk := 〈Xi, Yi : 1 � i � k〉 � Ē. Our claim now follows from the case k = m and the
known structure of the extraspecial normaliser.

It can be shown that for r = 2, the group 〈Vi,Xi, Yi,Wi〉 is the normaliser of an
extraspecial 2-group of plus type.

Next we study the normaliser in GL(d, q) of a 2-group E of symplectic type, for d > 2.

Lemma 9.3. The normaliser in GL(d, q)of a groupE of symplectic type, where |E| = 22m+2

and q ≡ 1 mod 4, can be constructed in time O(d2 log d log q + log2 q).

Proof. Let ψ := ζ (q−1)/4, constructed in time O(log2 q). In addition to the generators Xi
and Yi , defined as in Lemma 9.1, we include the scalar matrix Z := ψId as a generator of
E. Then E is a central product of an extraspecial group with a cyclic group of order 4. The
O(log d) generators for E are constructed in time O(d2 log d log q + log2 q).

We define Vi and Wi as in Lemma 9.2, but U is now defined to be to be the (2 × 2)-
diagonal matrix with U11 = 1 and U22 = ψ . We find that XU = X and YU = ψXY . Let
Ui := I2m−i ⊗U⊗I2i−1 for 1 � i � m; then YUii = XiYiZ. Thus, as in the case with r odd,
the Ui and Vi together induce a direct product of m copies of Sp(2, 2) on Ē, and it can be
shown as before that theXi , Yi , Z, Ui , Vi andWi together generate NGL(d,q)(E). Since we
have O(log d) matrices, each requiring time O(d2 log q) to create (after the construction
of ψ), the total time is O(d2 log d log q + log2 q).

Finally, we turn to the case when E is an extraspecial 2–group of minus type. The
construction here works also when d = 2.

Lemma 9.4. LetE � GL(d, q) be an extraspecial 2-group of minus type, with d � 2. Then
NGL(d,q)(E) can be constructed in time O(d2 log d log q + log2 q).

Proof. The matrices Xi , Yi , Vi and Wi are defined exactly as before for i > 1. We define
X1, Y1, U1, V1 and W1 as follows:

X1 := I2m−1 ⊗
(
a b

b −a
)
, where a2 + b2 = −1;

Y1 := I2m−1 ⊗
(

0 −1
1 0

)
;

U1 := I2m−1 ⊗
(

1 1
−1 1

)
;

V1 := I2m−1 ⊗
(

1 + a + b 1 − a + b

−1 − a + b 1 − a − b

)
;

W1 := I2m−2 ⊗




1 0 1 0
0 1 0 1
0 1 0 −1

−1 0 1 0


 , if m > 1.

The reader can check that the relations

X
U1
1 = Y1X1, Y

U1
1 = Y1, X

V1
1 = Y−1

1 and Y
V1
1 = Y1X1

hold. The proof that these matrices generate the normaliser of E is similar to that of
Lemma 9.2.
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Proposition 9.5. Representatives of all groups in Table 3 can be constructed in time
O(d3 log d log q + log2 q).

Proof. We have shown that, in all cases, the matrices Xi , Yi , Ui , Vi and Wi , together with
scalar matrices, generate G := NGL(d,q)(E). We start by replacing our existing generators
by scalar multiples that lie in SL(d, q).

The determinants of the O(log d) matrices above can be calculated in total time
O(d� log d log q). Computing the required scalar for a given matrix involves finding a
dth root in GF(q), which by [9, Theorem 8.12] can be done in time O(d3 log d log q). But
det(Xi) = det(Yi) = 1 for all i, and the determinants ofUi ,Vi andWi are all independent of
i, so we need only to compute three dth roots. Scalar multiplication is anO(d2 log q) time
operation, so this can be done to the O(log d) generators of G in time O(d3 log d log q).

Now the group Sp(2m, r) is perfect, except whenm = 1 and r � 3, or whenm = r = 2.
Whenever it is perfect, we haveG = (G∩SL(d, q))Z(G), whereZ(G) consists of all scalar
matrices in GL(d, q), and so our modified generators Xi , Yi , Ui , Vi and Wi will all have
determinant one. Although SO−(2m, 2) is not perfect (it has a perfect subgroup of index 2
in general), it is a subgroup of Sp(2m, 2), and so again we obtainG = (G∩SL(d, q))Z(G)
for m > 2.

This leaves only the cases d = rm = 2, 3, 4. If d = 3 and r ≡ 1 mod 9, then G =
(G ∩ SL(d, q))Z(G), whereas when r �≡ 1 mod 9, we append V U1

1 to the generating set.
The situation is similar when d = 2 or d = 4, and we omit the details.

In cases S and U in Table 3, since the group that we have constructed as the normaliser
of E in SL(d, q) has the structure specified in Table 3 and there is only one conjugacy
class of groups isomorphic to E in GL(d, q) [15, Proposition 4.6.3], it follows that the
constructed group must preserve a form of the corresponding type. By [10, Theorem 4.4],
E acts absolutely irreducibly, and so it preserves a unique such form up to multiplication
by scalars. Thus, in order to determine which form is preserved, we need only consider E.

We find that in case U the matrices Xi and Yi preserve the unitary form Id . In the
symplectic case (that is, when r = 2 and q is prime), the form preserved is

Diag

[(
0 1

−1 0

)
, . . . ,

(
0 1

−1 0

)]
,

which can be transformed to the standard symplectic form by a permutation of the basis. So
to conjugate the group that we have constructed into our standard version of Sp(d, q), we
just need to carry out this permutation of the basis, which can be done in time O(d2 log q)
for each of the O(log d) generating matrices.

10. Tensor-induced groups

In this section we describe how to write down generators for the tensor-induced subgroups
G of� that arise in Theorem 1.1.A groupG is tensor induced if it preserves a decomposition
V = V1 ⊗ V2 ⊗ · · · ⊗ Vt , with dim(Vi) = m for 1 � i � t ; the maximal groups in this
class permute the tensor factors Vi transitively.

From [15, Table 4.7.A] we find that, for each divisor m of d, there is at most one such
G, but they arise only for m � 3 in cases L and U, and for m even and q and t both odd in
case S.

Let H � GL(m, q) be a matrix group, and let K � Sym(t) be transitive. Then

H TWrK := (H ◦ · · · ◦H).K
is the tensor wreath product of H and K (the ‘TWr’ stands for ‘tensor wreath’). It is like
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a standard wreath product, except that we take a central product of t copies of the base group
with amalgamated subgroup H ∩ Z(GL(m, q)). The group H TWrK is tensor-induced,
with t tensor factors of dimension m.

Denote a basis of Vi by [vi1, vi2, . . . , vim] for 1 � i � t . A basis of V1 ⊗· · ·⊗Vt is then
[v11⊗v21⊗· · ·⊗vt1, v11⊗v21⊗· · ·⊗vt2, . . . , v11⊗· · · v(t−1)2⊗vt1, . . . , v1m⊗· · ·⊗vtm].

If each tensor factorVi has a bilinear or sesquilinear formFi , then we can define a bilinear
or sesquilinear formF onV by definingF(v1⊗· · ·⊗vt , w1⊗· · ·⊗wt) := ∏t

i=1 Fi(vi, wi)

and extending by linearity.

Lemma 10.1. LetH � GL(m, q) be generated by a set of s1 matrices, and letK � Sym(t)
be transitive and generated by a set of s2 permutations. Then H TWrK � GL(mt , q) can
be constructed in time O((s1 + s2)m

2t log q).

Proof. Let 〈A1, . . . , As1〉 := H . The base group is generated as a normal subgroup by
{A1 ⊗ Im ⊗ · · · ⊗ Im, . . . , As1 ⊗ Im ⊗ · · · ⊗ Im}, since K is transitive. These matrices
are written down in time O(s1(mt )2 log q). The top group is generated by s2 permutation
matrices. Calculating the positions of the nonzero entries involvesO(s2t) integer operations,
and then writing down the matrices requires time O(s2m2t log q).

10.1. Linear tensor-induced groups

Proposition 10.2. A set of representatives for the maximal tensor-induced subgroups of
SL(d, q) can be constructed in time O(d2 logε d log q), for any real ε > 0.

Proof. Let d = rs , where r is not a proper power, and let Z := Z(SL(d, q)). We may
assume that s > 1. Let G be a maximal tensor-induced subgroup of SL(d, q), and let
Ḡ := G/(G ∩ Z). Then Z(G) = Z, and by [15, Proposition 4.7.3] there exists a divisor
t > 1 of s such that d = mt , where G preserves a decomposition D : V = V1 ⊗ · · · ⊗ Vt ,
and Ḡ is isomorphic to one of the following:

(a) PSL(m, q)2.

[
(q − 1,m)3

(q − 1, d)

]
, t = 2,m ≡ 2 mod 4, q ≡ 3 mod 4;

(b) PSL(m, q)t .

[
(q − 1, d/m)(q − 1,m)t

(q − 1, d)

]
.Sym(t), otherwise.

Let D = Diag[ζ, 1, . . . , 1] ∈ GL(m, q), and let C ∈ GL(d, q) generate Z. Then
〈SL(m, q),D〉 = GL(m, q), and D(q−1,m) ∈ Z(GL(m, q))SL(m, q).

Suppose that (b) holds. Let H := SL(m, q)TWr Sym(t) � G, constructed in time
O(d2 log q), by Lemma 10.1. LetU := D⊗D−1 ⊗Im⊗· · ·⊗Im ∈ GL(d, q), constructed
in time O(d2 log q). Since the top group of the tensor wreath product acts transitively on
{Vi : 1 � i � t}, we have

〈H,C,U〉 ∼= PSL(m, q)t .[(q − 1,m)t−1].Sym(t).

Let H1 := 〈H,C,U〉, and let E = D(q−1,d)/(q−1,d/m) ⊗ Im ⊗ · · · ⊗ Im ∈ GL(d, q).
Then E preserves D , and the reader may check that Det(E) = ζ (q−1,d)d/(q−1,d/m)m, so
E ∈ Z(GL(d, q))G. We use the Euclidean algorithm to find, in timeO(log d), a powerµ of
ζ such that Det(µId) = ζ (q−1,d). We then set S := µ−d/(q−1,d/m)mId , so that SE ∈ G. It
follows from the definition ofD that [〈H1, SE〉 : H1] = (q−1, d/m)(q−1,m)/(q−1, d),
so up to conjugacy G = 〈H1, SE〉. We construct SE in time O(d2 log q), as mt−1 < d, so
constructing S as a scalar requires time O(d log d log q).
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Next suppose that (a) holds. LetH = Z.(SL(m, q)◦SL(m, q)), and letU := D⊗D−1;
then Det(U) = 1 and [〈H,U〉 : H ] = (q − 1,m). Let E := D(q−1,m2)/(q−1,m) ⊗ Im.
Then Det(E) = ζ (q−1,m2)m/(q−1,m), so E ∈ Z(GL(d, q))G. Let µ be as in the previous
paragraph (with t = 2), and let S := µ−m/(q−1,m)Id . Then Det(SE) = 1, so SE ∈ G. Let
i ∈ N be minimal subject to (SE)i ∈ 〈H,U〉. Then ζ (q−1,m2)i/(q−1,m) is the determinant
of a scalar of GL(m, q), and so (q − 1,m) divides (q − 1,m2)i/(q − 1,m). Thus i is a
multiple of (q − 1,m)2/(q − 1,m2), and soG = 〈H,U, SE〉. The complexity in this case
is the same as before.

The result then follows from Lemma 2.1.

10.2. Symplectic tensor-induced groups

Proposition 10.3. A set of representatives of the maximal tensor-induced subgroups of
Sp(d, q) may be constructed in time O(d3 logε d log q), for any real ε > 0.

Proof. Let G be a maximal tensor-induced subgroup of Sp(d, q), and let Ḡ = G/Z(G).
Then, by [15, Proposition 4.7.4], we have d = mt for somem, t ∈ N with t > 1 odd, where
(m, q) �= (2, 3) and

Ḡ ∼= PSp(m, q)t .2t−1.Sym(t)

with Z(G) = {±I } = Z(Sp(d, q)). Denote the decomposition of V that G preserves by
D : V = V1 ⊗ · · · ⊗ Vt .

We construct H := Sp(m, q)TWr Sym(t) in time O(d2 log q), by Lemma 10.1. Then
H preserves D , and from the discussion preceding Lemma 10.1,H preserves a symplectic
form. Therefore H is GL(d, q)-conjugate to a subgroup of G of index 2t−1. Let D =
Diag[ζ, . . . , ζ, 1, . . . , 1] so that 〈Sp(m, q),D〉 = GSp(m, q). Let U := D ⊗D−1 ⊗ Im ⊗
· · · ⊗ Im ∈ GL(d, q). We define H1 := 〈H,U〉; then H1 ∼= G. By the results in Section 3,
we may find a matrix M in time O(d3 log q) such that HM

1 = G.
By Lemma 2.1, there are O(logε d) groups to be constructed.

10.3. Unitary tensor-induced groups

We use the form F = AntiDiag[1, . . . , 1], and we let Z := Z(SU(d, q)).

Proposition 10.4. A set of representatives of the maximal tensor-induced subgroups of
SU(d, q) can be constructed in time O(d3 logε d log q), for any real ε > 0.

Proof. Let d = rs , where r is not a proper power and s > 1. Let G be a maximal tensor-
induced subgroup of SU(d, q), and let Ḡ := G/(G ∩ Z). Then Z(G) = Z and by [15,
Proposition 4.7.3], there exists a divisor t of s such thatd = mt ,Gpreserves a decomposition
D : V = V1 ⊗ · · · ⊗ Vt , and Ḡ is isomorphic to one of the following:

(a) PSL(m, q)2.

[
(q + 1,m)3

(q + 1, d)

]
, t = 2, m ≡ 2 mod 4, q ≡ 3 mod 4;

(b) PSL(m, q)t .

[
(q + 1, d/m)(q + 1,m)t

(q + 1, d)

]
.Sym(t), otherwise.

The construction of G is almost identical to that of Proposition 10.2, and we leave it to the
reader.
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11. Classical subgroups

Finally, we describe how to construct the classical subgroups G of � arising in
Theorem 1.1. These are summarised in Table 4, which comes from [15, Table 4.8.A]. The
type is the quasisimple group contained inG. Note that the unitary groups have no maximal
classical subgroups.

11.1. Linear classical groups

In this subsection, let Z := Z(SL(d, q)), and let C generate Z.

Proposition 11.1. A representative of the maximal classical subgroups of SL(d, q) of
symplectic type may be constructed in time O(d2 log q + log2 q).

Proof. Let G be a maximal symplectic subgroup of SL(d, q), and let

c := (q − 1, 2)(q − 1, d/2)

(q − 1, d)
.

Then, by [15, Proposition 4.8.3], G ∼= Z.PSp(d, q).c.
LetA,B ∈ SL(d, q)generate Sp(d, q), constructed in timeO(d2 log q) as in Lemma 2.3.

If q is even or if (q−1, d/2) = (q−1, d)/2, then, up to conjugacy,G = 〈A,B,C〉. Suppose
otherwise, and let

D := Diag[ζ, . . . , ζ, 1, . . . , 1] ∈ NGL(d,q)(Sp(d, q)) \ 〈C,Sp(d, q)〉.
Then Det(D) = ζ d/2.

Solve di ≡ d/2 mod (q − 1) in timeO(log(d/(d, q − 1))) = O(log d), as in the proof
of Proposition 8.1. Compute ζ−i in time O(log2 q), and construct E := ζ−iD in time
O(d2 log q). Then E ∈ NSL(d,q)(Sp(d, q)). Since no scalar multiple of D lies in Sp(d, q),
up to conjugacy G = 〈A,B,C,E〉.
Proposition 11.2. A set of representatives of the maximal orthogonal subgroups of
SL(d, q) may be constructed in time O(d3 log q + log3 q).

Proof. For ε ∈ {+,−, ◦}, letGε be a maximal orthogonal subgroup of SL(d, q) of type ε.
Then q is odd and Gε ∼= Z.SOε(d, q).(d, 2) [15, Proposition 2.8.2].

LetAε andBε generate SOε(d, q), as in Lemma 2.4. If d is odd, then up to SL-conjugacy,
G = Z.SO(d, q). Suppose that d is even, and letWε be as defined in Proposition 8.4. Then,
up to conjugacy, Gε = 〈Aε,Bε, C,Wε〉.
Proposition 11.3. A representative of the maximal unitary subgroups of SL(d, q) may be
constructed in time O(d2 log q + log2 q).

Table 4: Maximal classical groups.

Case Type Conditions

L Sp(d, q) d even, d � 4

L SU(d, pe/2) e even, d � 3

L �ε(d, q) q odd, d � 3

S SOε(d, q) q even, d � 4
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Proof. Let G be a maximal unitary subgroup of SL(d, q), and let q = pe. Then e is even,
and we let q0 := pe/2 and

c := (q0 + 1, d)(q − 1)

[q0 + 1, (q − 1)/(q − 1, d)](q − 1, d)
.

By [15, Proposition 4.8.5], we have Z(G) = Z and G/Z ∼= PSU(d, q0).[c].
LetA andB generate SU(d, q0), with a form represented by the identity matrix. If c = 1,

then up to conjugacy, G = 〈A,B,C〉.
Suppose otherwise, and let D := Diag[ζ q0−1, 1, . . . , 1] ∈ GL(d, q), so that we have

〈A,B,D〉 = GU(d, q0), and 〈GU(d, q0), ζ Id〉 = NGL(d,q)(SU(d, q0)). The group of
order c consists of all products of D and ζ Id of determinant 1. Similarly to the tensor-
product case, we find generators for the normaliser by finding a basis for the nullspace of
[q0 − 1, d, q − 1], in time O(d log q). This yields at most two matrices, X and Y . We may
set G = 〈A,B,C,X, Y 〉.

11.2. Symplectic classical groups

Proposition 11.4. A set of representatives of the maximal classical subgroups of Sp(d, q)
may be constructed in time O(d3 log q + log3 q).

Proof. The maximal classical subgroups of Sp(d, q) are orthogonal, of types ε ∈ {+,−},
and occur only for even q; see [15]. LetGε be a maximal classical subgroup of Sp(d, q) of
type ε. By [15, Proposition 4.8.6],

Gε

(Gε ∩ Z(Sp(d, q)))
∼= Oε(d, q).

Since Z(Sp(d, q)) = 1 for q even, and Oε(d, q) = SOε(d, q) for q even, we generate
Hε ∼GL G in time O(d3 log + log3 q), by Lemma 2.4.

For even q, the matrix of the symmetric bilinear form preserved by Hε is also the
matrix of a symplectic form. Our choice of form implies that H+ � Sp(d, q), and so, up
to conjugacy, G = H . We use Proposition 3.1 to conjugate H− to preserve our chosen
symplectic form.

12. The symplectic groups in dimension four

In dimension 4, if q is even, then PSp(4, q) = Sp(4, q) has a graph automorphism,
arising from the Dynkin diagram for C2. Groups that contain the graph automorphism have
a different subgroup structure from other symplectic groups; they do not have the standard
Aschbacher classes of subgroups, but behave as described in this section. Throughout,
q := 2e, and we assume that e > 1 since Sp(4, 2) ∼= Sym(6).

The group that consists of Sp(4, q) extended by a graph automorphism is denoted
Sp 2(4, 2e) := Sp(4, 2e).2. The full automorphism group of Sp(4, 2e) is denoted
�Sp 2(4, 2e) := �Sp(4, 2e)〈ι〉 = Sp(4, 2e).e.2. The maximal subgroups of Sp 2(4, 2e)
all extend to maximal subgroups of �Sp 2(4, 2e), and vice versa, so it suffices to discuss
the maximal subgroups of this latter group.

We give a statement of Aschbacher’s theorem for this family of groups; see [1, Theorem
14.2] for more details.
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Theorem 12.1. Let K be a maximal subgroup of �Sp 2(4, 2e), where e > 2, and let
G := K ∩ Sp(4, 2e). Then G lies in one of the following classes.

A1 : the stabiliser of a point and a totally singular subspace containing it. There is a unique
conjugacy class of such groups in Sp(4, 2e).

A2 : the stabiliser of an imprimitive decomposition and a quadratic form of plus type.
There are two nonisomorphic classes of such groups in Sp(4, 2e).

A3 : a semilinear group, of a degree 2 field extension, that preserves a quadratic form of
minus type. There is a unique conjugacy class of such groups in Sp(4, 2e).

A4 : a subfield group over GF(2f ) where e/f is prime. For each choice of f , there is a
unique conjugacy class of such groups in Sp(4, 2e).

A5 : the Suzuki group Sz(2e). These occur only when e is odd, in which case there is a
unique conjugacy class of such groups in Sp(4, 2e).

S . G is almost simple modulo scalars, written over a minimal field, is absolutely
irreducible, and is not semilinear.

In class A2, there are two families of groups. This is because the space GF(2e)4, equipped
with a quadratic form Q of plus type, has two direct sum decompositions. The first is into
two 2-spaces, each of plus type. The second is into two 2-spaces, each of minus type. The
stabiliser in SO+(4, 2e) of the first type of decomposition is SO+(2, 2e) � Sym(2), and the
stabiliser of the second is SO−(2, 2e) � Sym(2).

It is the novelty subgroups in classes A1, A2 and A3 that we must describe how to
construct, as well as the Suzuki group Sz(q). Note that from the perspective ofAschbacher’s
theorem for PSp(4, q), the Suzuki group is considered to lie in S. However, since it is the
centraliser in PSp(4, q) of an outer involution, it constitutes an Aschbacher class in its own
right when we are discussing �Sp 2(4, q).

Lemma 12.2. A representative of the groups in class A1 can be constructed in time O(e).

Proof. Let G be the intersection of a point stabiliser and a subspace stabiliser. Without
loss of generality, the point is V := 〈e1〉, and the subspace (which is maximal isotropic) is
W := 〈e1, e2〉.

Let A1 := Diag[ζ, 1, 1, ζ−1] and A2 := Diag[1, ζ, ζ−1, 1]. Let T1 be a transvection
with 1 in positions (2, 1) and (4, 3), and zeros in all other off-diagonal entries. Let T2 be a
transvection with 1 in positions (3, 1) and (4, 2), and zeros in all other off-diagonal entries.
Similarly, let T3 have a 1 in position (3, 3), and let T4 have a 1 in position (4, 1).

The reader may check that all six of these matrices lie in Sp(4, q). It is clear that they
all stabilise V and W . The reader may also check that any matrix that is in the symplectic
group and stabilises V and W can be written as a product of these.

Lemma 12.3. Representatives of the two conjugacy classes of groups in class A2 can be
constructed in time O(e3).

Proof. We construct SO+(2, q) in time O(e3), and then construct SO+(2, q) � Sym(2) in
constant time. We use the results of Section 3 to conjugate SO+(2, q) � Sym(2) so that it
preserves our standard symplectic form. We proceed similarly for SO−(2, q) �Sym(2).

Lemma 12.4. A representative of the groups in class A3 can be constructed in timeO(e2).

Proof. We let A be the companion matrix for a primitive element of GF(q4) over GF(q).
ThenA has order q4−1. LetB := Aq

2−1, calculated in timeO(e2). We letC be the image of
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the field automorphism x �→ xq of GF(q4). Then C normalises B. The groupH := 〈B,C〉
is isomorphic to a maximal semilinear subgroup of SL(2, q2) ∼= SO−(4, q), and hence is
the intersection of SO−(4, q)with Sp(2, q2).2. We use the results of Section 3 to conjugate
H to a suitable group G � Sp(4, q).

Lemma 12.5. We construct a representation of Sz(2e) in time O(e2).

Proof. An explicit isomorphism between the Chevalley groupC2(2e) (equal toB2(2e)) and
Sp(4, 2e) is constructed in [6, Theorem 11.3.2], and the graph automorphism g of B2(2e)
is defined in [6, Proposition 12.3.3]. The Suzuki group Sz(2e) for e odd is defined in [6,
Section 13.4] as the subgroup ofB2(2e) fixed by the involutory automorphism gf ofB2(2e),
for a suitably chosen field automorphism f . This enables us to construct explicit generators
of Sz(2e) as a subgroup of Sp(4, 2e). Let t = 2(e+1)/2. Then, for e > 1, they can be chosen
as 


ζ 0 0 0
0 ζ t−1 0 0
0 0 ζ 1−t 0
0 0 0 ζ−1


 ,




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 and




1 0 ζ ζ t

0 1 0 ζ

0 0 1 0
0 0 0 1


 ,

which can be constructed in time O(e2) = O(log2 q).
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