# CONSTRUCTING MAXIMAL SUBGROUPS OF CLASSICAL GROUPS

#### DEREK F. HOLT AND COLVA M. RONEY-DOUGAL

#### Abstract

The maximal subgroups of the finite classical groups are divided by a theorem of Aschbacher into nine classes. In this paper, the authors show how to construct those maximal subgroups of the finite classical groups of linear, symplectic or unitary type that lie in the first eight of these classes. The ninth class consists roughly of absolutely irreducible groups that are almost simple modulo scalars, other than classical groups over the same field in their natural representation. All of these constructions can be carried out in low-degree polynomial time.

#### 1. Introduction

With only two families of exceptions, the maximal subgroups of the finite classical groups are divided into nine classes by Aschbacher's theorem [1]. The maximal subgroups in the first eight of these classes are described in detail in [15]. The ninth class,  $\delta$ , consists roughly of absolutely irreducible groups that are almost simple modulo scalars, other than classical groups over the same field in their natural representation. The two families of exceptions to Aschbacher's theorem are groups containing the graph automorphism of PSp(4,  $2^e$ ), whose maximal subgroups are divided into six classes (including  $\delta$ ) in [1], and groups containing the graph automorphism of PSO<sup>+</sup>(8, q).

The purpose of this paper is to describe algorithms for writing down generators of all of the subgroups that are not in  $\mathcal{S}$  for G a linear, symplectic or unitary group. We could do the same when G is orthogonal, but because of the large number of cases that arise in that situation, we have decided to omit the orthogonal groups for now. We plan to develop similar algorithms for the orthogonal groups in a future paper.

The two main papers on the computation of maximal subgroups of an arbitrary finite permutation group G are [5] and [8]. These both show that the problem can effectively be reduced to the case when G is almost simple. The vast bulk of the cases that arise for G almost simple can then be handled using the methods that we describe here, and this was our principal motivation for developing these techniques in a uniform fashion. Of course, the maximal subgroups in  $\mathcal S$  still need to be dealt with; they are now known for degree  $d \le 250$  (see [12, 20]), and can be constructed on a case-by-case basis.

The algorithms presented in this paper describe the maximal subgroups of the (quasi)simple linear, symplectic and unitary groups. They can be combined with subgroup conjugacy information provided in [1, 15] and explicit descriptions of when the maximal

During the work for this paper, the second author was partially supported by the Australian Research Council, and partially supported by EPSRC grant number GR/S30580.

Received 4 March 2004, revised 2 November 2004; published 15 February 2005.

2000 Mathematics Subject Classification 20D06, 20E28, 20G40, 68Q25.

© 2005, Derek F. Holt and Colva M. Roney-Dougal

groups in each Aschbacher class are maximal in a classical group, to produce the maximal subgroups of any group G with:

```
\mathrm{SL}(d,q) \unlhd G \leqslant \Gamma \mathrm{L}\, 2(d,q) (equal to \Gamma\langle \iota \rangle; see below), \mathrm{Sp}(d,q) \unlhd G \leqslant \Gamma \mathrm{Sp}\, 2(d,q) (equal to \Gamma \mathrm{Sp}(d,q)\langle \iota \rangle; see below), or \mathrm{SU}(d,q) \unlhd G \leqslant \Gamma \mathrm{U}(d,q),
```

and similarly for their projective counterparts.

Our algorithms have been implemented in Magma [3], where they are combined with representations of groups in \$ to construct the maximal subgroups of classical groups in low dimensions over any finite field, in any permutation or matrix representation. Currently, this is roughly for  $d \le 5$ , but we are actively working on increasing the families of groups for which the implementations are available. We also plan in the future to make available functions that return all maximal subgroups of specific types, such as reducible maximal subgroups, for the classical groups in all dimensions d.

One of the most significant practical consequences of our algorithms is as follows. Let G be any permutation group, each of whose nonabelian simple composition factors either is one of these low-dimensional classical groups, or has order less than  $1.6 \times 10^7$ . Then one may now compute the maximal subgroups of G, the set of all subgroups of G, and its automorphism group.

The general maximal subgroups algorithm uses constructive recognition algorithms [14] to set up a homomorphism between an arbitrary (black-box) representation of the group G and a standard copy of the matrix group. So our algorithms are applicable to black-box classical groups.

This paper includes complexity analyses of our algorithms. Before stating a theorem that summarises our results, we need to introduce some of the notation used in [15]. We let  $\Omega$  be one of the groups  $\mathrm{SL}(d,q)$ ,  $\mathrm{Sp}(d,q)$  or  $\mathrm{SU}(d,q)$ , in their natural representation; we refer to these three cases as cases L, S and U, respectively. Let  $\Gamma$ , equal to  $\Gamma\mathrm{L}(d,q)$ ,  $\Gamma\mathrm{Sp}(d,q)$  or  $\Gamma\mathrm{U}(d,q)$ , be the extension of  $\Omega$  by its diagonal and field automorphisms. Let  $A = \Gamma\mathrm{L}\,2(d,q) := \Gamma\langle\iota\rangle$ , with  $\iota$  a graph isomorphism in case L with  $d \geqslant 3$ , let  $A := \Gamma\mathrm{Sp}\,2(4,2^e) = \Gamma\langle\iota\rangle$  in case S with d=4 and q even, and let  $A=\Gamma$  otherwise. Let '-' represent reduction modulo scalars. Note that  $\bar{A}=\mathrm{Aut}(\bar{\Omega})$ .

THEOREM 1.1. Let G be a group with  $\Omega \leq G \leq A$ , where  $\bar{\Omega}$  is nonabelian simple. Then generators of the intersection with  $\Omega$  of all of the maximal subgroups of G that do not lie in  $\mathcal{S}$ , up to conjugacy in GL(d,q), GSp(d,q) or GU(d,q), can be calculated and written down in time  $O(d^3 \log d \log^3 q)$ .

We comment briefly on the maximal subgroups of the other families of almost simple groups. The theory of the maximal subgroups of the alternating and symmetric groups is well understood, and they can be divided into classes using the O'Nan–Scott theorem. Work of Liebeck, Praeger and Saxl [18] determines the maximality of groups in each O'Nan–Scott class other than the almost simple case, as well as of the intransitive and imprimitive groups. A second paper by the same authors determines when one almost simple group is contained in another [19]. This can be combined with Dixon and Mortimer's classification [7] of the primitive almost simple groups of degree less than 1000, to give an explicit list of maximal subgroups of the alternating and symmetric groups of degree less than 1000. The usual approach when computing with the alternating and symmetric groups is to use constructive recognition [2] to find an isomorphism from the input group to the natural

representation of Alt(n) or Sym(n). Generic functions write down the maximal intransitive and imprimitive groups in their natural representation, and a database of primitive groups is used for the rest.

The situation with the sporadic groups is somewhat different. The maximal subgroups of all sporadics, other than the Monster, are known. To construct these subgroups, one usually finds standard generators for the sporadic, and then writes down the generators of the maximal subgroups as words in these standard generators. This can be done for all maximal subgroups of sporadics of 'reasonable' permutation degree: the online ATLAS of finite group representations [24] is a good source of such information.

The theory of the maximal subgroups of the exceptional groups is reasonably well understood [17], and the maximals are known explicitly in many cases. The exceptional groups are generally treated in the same way as the sporadics: since they have very few low-degree permutation representations, this is perfectly appropriate.

Up to now, the classical groups have also been treated as sporadics. This is increasingly unacceptable, as too many classical groups have moderate-degree permutation representations, and the relevant databases are rapidly becoming unwieldy. This paper presents a solution to this problem.

The layout of the remainder of the paper is as follows. In Section 2, we introduce some notation and state a number of general lemmas and a summary of the Aschbacher classes. In Section 3, we describe how to conjugate a group preserving a non-degenerate form of symplectic, unitary or orthogonal type on a vector space over a finite field, to a group that preserves any other form of the same type. In the remaining sections, we present our algorithms for each of the eight geometric families of subgroups in Aschbacher's theorem, before finishing with the subgroups of  $\Gamma \operatorname{Sp} 2(4, 2^e)$ .

## 2. Notation and mathematical preliminaries

We let (a, b) denote the greatest common divisor of integers a and b, and [a, b] their least common multiple.

When describing the structure of groups, the symbol [n], where  $n \in \mathbb{N}$ , denotes a soluble group of order n, of unspecified structure.

As usual,  $I_r$  denotes the  $r \times r$  identity matrix over GF(q). We define the elementary matrix  $E_{i,j}$  to be the square matrix with 1 in position (i, j) and 0 elsewhere: the dimension of  $E_{i,j}$  will always be clear from its context. A matrix A is block-diagonal if it is a block matrix and all nonzero blocks have their main diagonal on the main diagonal of A. We write block-diagonal matrices as  $Diag[X_1, \ldots, X_s]$ , where  $X_i \in GL(d/s, q)$  for  $1 \le i \le s$ .

We assume throughout that integer operations require constant time. We also assume that primitive polynomials, together with associated primitive field elements, are known for all finite fields that arise, and that elements of  $GF(p^e)$  are represented as polynomials of degree e-1 over GF(p). Thus field operations in GF(q) require time  $O(\log q)$ , and elements of GL(d,q) can be constructed in time  $O(d^2 \log q)$ .

By the results proved in [4, Chapters 15 and 16], matrix multiplication – as well as other basic matrix operations such as inversion, echelonization, and nullspace and determinant computation – all have time complexity  $\Theta(d^{\Psi} \log q)$  for the same value of  $\Psi$ , where  $2 \leq \Psi < 3$ ; in fact, it has been proved that  $\Psi < 2.38$ . The complexity estimates in many of the results in this paper are stated in terms of this constant  $\Psi$ . For small fields, the implementations of matrix multiplication usually have time complexity  $O(d^3 \log q)$ ; for

prime finite fields of size greater than  $2^{16}$ , Magma uses an algorithm due to Strassen [22] for which  $\Psi = \log_2(7)$ . We do not assume the availability of discrete logarithms.

The Kronecker product  $A \otimes B$  of two  $d \times d$  matrices A and B is the  $d^2 \times d^2$  matrix C, where the ((i-1)d+k,(j-1)d+l) entry of C is  $A_{ij}B_{kl}$  for  $1 \leq i,j,k,l \leq d$ . The  $\otimes$  operation is associative, and  $(A \otimes B)(C \otimes D) = AC \otimes BD$  for all  $d \times d$  matrices A,B,C and A. Note that the Kronecker product of two  $A \times d$  matrices can be written down in time  $A \times d$  matrices  $A \times d$  matrices a single field operation.

LEMMA 2.1. Let  $d \in \mathbb{N}$ . The number of prime divisors of d is  $O(\log d)$ . The average number of prime divisors of d is  $\log \log d$ . The number of divisors of d is  $O(d^{\varepsilon})$  for any real  $\varepsilon > 0$ .

*Proof.* The first statement is clear. For the second, see [11, Theorem 430], and for the third, see [11, Theorem 315].  $\Box$ 

Throughout, we let p be a prime, and we set  $q := p^e$ .

Lemma 2.2. Let  $\alpha \in GF(q)$ . There are Las Vegas  $O(\log q)$  time algorithms for finding  $\beta \in GF(q^2)$  such that  $\beta + \beta^q = \alpha$ , and  $\gamma \in GF(q^2)$  such that  $\gamma^{q+1} = \alpha$ .

*Proof.* For the first problem, we find an element  $\delta \in \mathrm{GF}(q)$  such that the polynomial  $x^2 - \alpha x + \delta$  is irreducible over  $\mathrm{GF}(q)$ . This is known to be the case for almost exactly half of the  $\delta \in \mathrm{GF}(q)$ , so we can find such a polynomial quickly by using random choices of  $\delta$ . By [9, Theorem 8.12], for example, we can test the irreducibility of the polynomial over  $\mathrm{GF}(q)$  and factorise it over  $\mathrm{GF}(q^2)$  in time  $O(\log q)$ . Since  $\beta \mapsto \beta^q$  is a field automorphism of  $\mathrm{GF}(q^2)$  that fixes  $\mathrm{GF}(q)$ , the roots of  $x^2 - \alpha x + \delta$  are  $\beta$ ,  $\beta^q \in \mathrm{GF}(q^2)$  with  $\beta + \beta^q = \alpha$ . Similarly, for the second problem, we find  $\delta \in \mathrm{GF}(q)$  such that  $x^2 + \delta x + \alpha$  is irreducible over  $\mathrm{GF}(q)$ ; then the roots  $\gamma$ ,  $\gamma^q \in \mathrm{GF}(q^2)$  satisfy  $\gamma^{q+1} = \alpha$ .

By *constructing* a group we mean producing a set of generating elements for the group: this will generally be a set of matrices. Throughout, we let  $\zeta$  be a primitive multiplicative element of GF(q) in cases L and S, and of  $GF(q^2)$  in case U. The following lemmas are taken from [21].

LEMMA 2.3. Given  $\zeta$ , the groups GL(d,q), Sp(d,q) and GSp(d,q) can be constructed in time  $O(d^2 \log q)$ . The groups SU(d,q) and GU(d,q) can be constructed in time  $O(d^2 \log q + \log^2 q)$ .

Lemma 2.4. For  $\varepsilon \in \{+, -, \circ\}$ , each of the groups  $\Omega^{\varepsilon}(d,q)$ ,  $\mathrm{SO}^{\varepsilon}(d,q)$ ,  $\mathrm{O}^{\varepsilon}(d,q)$  and  $\mathrm{GO}^{\varepsilon}(d,q)$  can be constructed in time  $O(d^{\Psi}\log q + \log^3 q)$ , given a primitive field element  $\zeta$ . The generators of  $\mathrm{GO}^{\varepsilon}(d,q)$  include matrices A and B generating  $\mathrm{SO}^{\varepsilon}(d,q)$ , an element  $D_{\varepsilon} \in \mathrm{O}^{\varepsilon}(d,q)$  of determinant -1, and for  $\varepsilon \in \{+, -\}$ , an element  $E_{\varepsilon} \in \mathrm{GO}^{\varepsilon}(d,q) \setminus \mathrm{O}^{\varepsilon}(d,q)$ . We have  $\mathrm{Det}(E_{-}) = (-\zeta)^{d/2}$  and  $\mathrm{Det}(E_{+}) = \zeta^{d/2}$ .

In fact, Lemma 2.4 is proved in [21] with 3 in place of  $\Psi$  in the complexity estimate. A more detailed analysis of the computations involved in this construction shows that the operations involved are all either matrix operations that are known to have time complexity  $O(d^{\Psi} \log q)$ , or transformations of orthogonal and quadratic forms, which will be discussed in detail in Section 3. The specific form transformations involved can all be carried out using a permutation of the basis, a scalar operation, and an operation on a  $2 \times 2$  matrix so, as in Proposition 3.2 below, they can be done in time  $O(d^2 \log q)$ . This justifies our use of  $O(d^{\Psi} \log q + \log^3 q)$  in the above lemma.

We conclude this section with a brief description of the classes of subgroups of the classical groups G that arise in Aschbacher's theorem. The maximal subgroups of  $\Gamma \operatorname{Sp} 2(4, 2^e)$  are described in Section 12.

Suppose that G is defined over GF(q) and acts on a vector space V of dimension d. Groups in  $\mathcal{C}_1$  act reducibly on V. Those in  $\mathcal{C}_2$  are imprimitive; that is, they preserve a direct sum decomposition  $V = V_1 \oplus \cdots \oplus V_t$  with t > 1. Groups in  $\mathcal{C}_3$  are *semilinear*; that is, they can be embedded in  $\Gamma L(d/s, q^s)$  for some s > 1. Groups in  $\mathcal{C}_4$  preserve a tensor product decomposition  $V = V_1 \otimes V_2$ . Those in  $\mathcal{C}_5$  can be defined, modulo scalars, over a proper subfield of GF(q). Those in  $\mathcal{C}_6$  normalise an extraspecial or symplectic-type group that acts irreducibly on V. Groups in  $\mathcal{C}_7$  preserve a homogeneous tensor decomposition  $V = V_1 \otimes \cdots \otimes V_t$  with t > 1, where the  $\dim(V_i)$  are all equal. Those in  $\mathcal{C}_8$  normalise a proper classical group over GF(q) in its natural representation. Finally, the groups in  $\mathcal{C}_9 = \mathcal{S}$  are almost simple modulo scalars, and do not lie in any class  $\mathcal{C}_i$  for i = 3, i = 5 or i = 8.

## 3. Transformation of forms

The following situation frequently arises when constructing subgroups of classical groups. We have an absolutely irreducible matrix group G of dimension d, which is known to fix a bilinear or sesquilinear form of full rank d over GF(q) (or  $GF(q^2)$  in the unitary case). The type of the fixed form, which may be symplectic, unitary, or orthogonal (of plus or minus type when d is even), is also known. In the orthogonal case with q even, G is also known to fix a quadratic form.

Our aim is to find a conjugate of G which is a subgroup of the standard copy of the relevant classical group, namely  $\operatorname{Sp}(d,q)$ ,  $\operatorname{GU}(d,q)$  or  $\operatorname{O}^\pm(d,q)$ . We first find the form fixed by G as a  $d \times d$  matrix A. Then we find a basis change that transforms A to a fixed standard version F of the form. Notice that if G preserves a symplectic form A, then  $G^X$  preserves  $X^{-1}AX^{-T}$ , and similarly for the other types of form. In the case of orthogonal groups and even q, we also find the matrix Q of a quadratic form of plus or minus type fixed by G, and we transform Q rather than A to a standard version F. In fact, since the group preserving the bilinear or quadratic form is unchanged if we multiply this form by a scalar matrix, it suffices to transform A to a scalar multiple of F.

It is convenient to choose the standard versions F of the forms as follows. In the symplectic case,  $F = \text{AntiDiag}[1, \ldots, 1, -1, \ldots, -1]$ : that is,  $F_{i,d+1-i} = 1$  for  $1 \le i \le d/2$ , and then  $F_{i,d+1-i} = -1$  for  $d/2 + 1 \le i \le d$ , and  $F_{ij} = 0$  otherwise. In the unitary case,  $F = I_d$ . In the orthogonal case with q odd, we have  $F = I_d$  if d is odd, and  $F = I_d$  or  $I'_d := \text{Diag}[1, \ldots, 1, \zeta]$  when d is even.

It should be noted that the form fixed by the 'standard copy' of SU(d,q), as returned by MAGMA, for example, is AntiDiag[1,...,1] rather than  $I_d$ . When writing down the subgroups of SU(d,q) arising in Thereom 1.1, it will sometimes be convenient to use  $I_d$  and sometimes to use AntiDiag[1,...,1] as our standard form. We show in Subsection 3.2 that we can conjugate a matrix preserving one of these forms to one preserving the other in time  $O(d^2 \log q)$ . It will turn out that the total number of generators of all subgroups of SU(d,q) that arise is O(d), and so we can move freely between one form and the other without affecting the result of Theorem 1.1.

Similarly, it is sometimes convenient to use AntiDiag[1,...,1] as the standard orthogonal form of plus type in odd characteristic. Again, we can transform  $I_d$  or Diag[1,...,1, $\zeta$ ] to AntiDiag[1,...,1] in time  $O(d^2 \log q)$ .

In the orthogonal case with q even, d is necessarily even, because the groups  $O(2m+1,2^n)$  are reducible. We choose our standard quadratic form to be

$$\begin{pmatrix} 0_{ee} & 0_{e2} & J \\ 0_{2e} & a & b & 0_{ee} \\ 0_{ee} & 0 & c & 0_{ee} \\ 0_{ee} & 0_{e2} & 0_{ee} \end{pmatrix}, \tag{*}$$

where e = d/2 - 1,  $0_{kl}$  denotes a  $k \times l$  zero matrix, and J := AntiDiag[1, ..., 1]. For a form of plus type, we have b = 1 and a = c = 0, and so the quadratic form is  $x_1x_d + x_2x_{d-1} + ... + x_{d/2}x_{d/2+1}$ .

For a form of minus type, we need to choose a, b and c such that  $ax^2 + bx + c$  is irreducible, and there is no canonical solution. In our implementation, we use the matrix of the quadratic form fixed by  $SO^-(d, q)$  in Magma.

We now describe our algorithms to solve these problems for the individual types of forms. The methods used to transform A to F are all similar. First, we use elementary linear algebra to transform A to F', which has zero entries wherever F does. Then we transform F' to a scalar multiple of F, which is sufficient for our requirements.

Since we know, from the results proved in [4, Chapter 16], that the time complexity of many types of matrix operations over finite fields is  $O(d^{\Psi} \log q)$ , it seems likely that the results proved in this section could all be improved from time  $O(d^3 \log q)$  to time  $O(d^{\Psi} \log q)$ . However, we have been unable to find all of the necessary results of this type in the literature. In any case, our current implementations are  $O(d^3 \log q)$ .

In all cases, we let  $g_1, \ldots, g_r$  be the generators of G, which are  $d \times d$  matrices over GF(q), or over  $GF(q^2)$  in the unitary case. We let the natural basis of the vector space on which G is acting be  $[e_1, \ldots, e_d]$ .

## 3.1. Symplectic forms

First we need to find the matrix of the symplectic form  $A = -A^T$  fixed by G, which must satisfy  $g_i A g_i^T = A$  or, equivalently,  $g_i A = A (g_i^{-1})^T$  for  $1 \le i \le r$ . In other words, if M is the d-dimensional G-module over GF(q) defined by G, and  $M^*$  is the dual of M obtained by inverting and transposing the matrices for M, then we are looking for a module isomorphism A from M to  $M^*$ . Since we are assuming that G acts absolutely irreducibly on M, A is uniquely determined up to multiplication by a scalar. We can find A by the Las Vegas  $O(d^3 \log q)$ -time algorithm for testing for isomorphism between irreducible modules defined over finite fields, which is described in [13, Section 4].

PROPOSITION 3.1. Let A be the matrix of a symplectic form preserved by a group G. In time  $O(d^3 \log q)$ , a matrix X can be constructed such that  $G^X$  preserves our standard symplectic form.

*Proof.* We first describe how to transform A to an antidiagonal matrix F'. By interchanging co-ordinates if necessary, we may assume that  $A_{1d} \neq 0$ . Let  $X_1$  be a change of basis matrix for this: it is clear that we may construct  $X_1$  in time  $O(d^2 \log q)$ . Then, for  $2 \leq i \leq d-1$ , we replace  $e_i$  by  $e_i - A_{1i}A_{1d}^{-1}e_d$ , and leave  $e_1$  and  $e_d$  unchanged. The transformed form A then has all entries in the first row and column equal to 0, except for the (1, d) and (d, 1) entries. By repeating this process on the other rows and columns of A, we can transform A to an antidiagonal matrix F'. The change of basis matrix to transform each row has all nondiagonal entries equal to zero except for one column, so we can construct a change of basis matrix  $X_2$  representing the products of these O(d) operations in time  $O(d^2 \log q)$ .

To transform F' to F, we replace  $e_i$  by  $(F')_{i,d+1-i}^{-1}e_i$  for  $1 \le i \le d/2$ , and leave the remaining  $e_i$  unchanged. Let  $X_3$  be the diagonal change of basis matrix for this transformation. Then  $X := (X_1 X_2 X_3)^{-1}$ .

## 3.2. Unitary forms

In this case, the matrices  $g_i$  are defined over  $GF(q^2)$ . For a matrix X over  $GF(q^2)$ , let  $X^*$  be the result of transposing X and then replacing all entries of X by their qth power: that is, by their image under the field automorphism of  $GF(q^2)$  that fixes GF(q). Then the matrix A of the unitary form fixed by G satisfies  $g_iAg_i^*=A$ , or equivalently  $g_iA=A(g_i^{-1})^*$ , for  $1 \le i \le r$ . As in the symplectic case, finding A can be done by a module isomorphism test. For a unitary form, we require that  $A=A^*$ . At this stage, we know only that some scalar multiple  $\lambda A$  of A satisfies  $\lambda A=(\lambda A)^*$ .

PROPOSITION 3.2. Let A be the matrix of a unitary form preserved by a group G. In time  $O(d^3 \log q)$ , a matrix X can be constructed such that  $G^X$  preserves the standard unitary form  $I_d$ .

We can also write down a matrix Y, having at most 2d nonzero entries, that transforms  $I_d$  to AntiDiag[1, ..., 1], and hence we can conjugate each matrix of  $G^X$  to one preserving AntiDiag[1, ..., 1] in time  $O(d^2 \log q)$ .

*Proof.* First we make a basis change so as to transform A to a diagonal matrix F', using a similar method to that in the proof of Proposition 3.1. By multiplying F' by a scalar matrix, we may assume that  $F'_{11} = 1$ . The fact that  $\lambda F'_i = (\lambda F'_i)^*$  for some  $\lambda$  means that  $\lambda F'$  has its entries in GF(q). But then  $F'_{11} = 1 \in GF(q)$  implies that  $\lambda \in GF(q)$ , and so we must already have  $F' = (F')^*$ .

To transform F' to the identity matrix F, we replace  $e_i$  by  $\tau_i e_i$ , where  $\tau_i$  satisfies  $\tau_i^{1+q} = (F')_{ii}^{-1}$  for  $1 \le i \le d$ . By Lemma 2.2, we can find such a  $\tau_i$  in time  $O(\log q)$  for each i, so we transform F' to F in time  $O(d \log q)$ .

For the final statement, observe that transforming AntiDiag[1, ..., 1] to  $I_d$  reduces to  $\lfloor d/2 \rfloor$  transformations.

# 3.3. Orthogonal forms

We find the orthogonal form A fixed by G exactly as we did in the symplectic case, but now we have  $A = A^{T}$ .

PROPOSITION 3.3. Let q be odd, and let  $G \leq GL(d, q)$  preserve a known orthogonal form A. In time  $O(d^3 \log q)$ , a matrix X can be constructed such that  $G^X$  preserves our standard orthogonal form.

*Proof.* We can transform A to diagonal F' in a similar way to the symplectic and unitary cases. Then, by replacing the basis vectors  $e_i$  by multiples  $\tau_i e_i$ , we can effectively multiply the elements of F' by arbitrary squares in GF(q), and hence we can assume that all of the diagonal entries of F' are equal either to 1 or to some fixed non-square, which we can take to be our given primitive element  $\zeta$  of GF(q).

Now, if i and j are two indices with  $F'_{ii} = F'_{ij}$ , by means of a basis change that maps

$$e_i \mapsto e_i + \lambda e_j$$
, and  $e_j \mapsto \lambda e_i - e_j$ ,

we can multiply both  $F'_{ii}$  and  $F'_{jj}$  by  $\lambda^2 + 1$  for any  $\lambda \in GF(q)$ . So, by choosing  $\lambda$  such

that  $\lambda^2 + 1$  is a non-square (and roughly half of the  $\lambda \in GF(q)$  have that property), we can change entries of F' in pairs from squares to non-squares, and vice versa. Hence, if d is odd we can transform F' to either  $F = I_d$  or to  $\zeta F$ . If d is even, we can transform F' either to  $I_d$  or to  $I'_d$ , as defined above.

As in the proof of Proposition 3.2, we can show that, for a form of plus type,  $I_d$  or  $I'_d$  can be transformed in time  $O(d^2 \log q)$  to AntiDiag[1, ..., 1], which is sometimes more convenient to use as the standard form.

Now suppose that q and d are even. If a matrix Q represents a quadratic form, then, for  $j \neq i$ , the values of  $Q_{ij}$  and  $Q_{ji}$  are not individually significant. It is their sum  $Q_{ij} + Q_{ji}$  that represents the coefficient of  $x_i x_j$  in the quadratic form. We therefore replace any such Q by the unique upper triangular matrix  $Q^u$  that represents the same form as Q. Then G preserves Q if and only if  $(g_i Q g_i^T)^u = Q^u$  for  $1 \leq i \leq r$ .

In fact, the orthogonal forms preserved by the groups  $O^{\pm}(d, 2^n)$  are symplectic, so the matrices A satisfy  $A_{ii} = 0$  for  $1 \le i \le d$ . We wish to find a quadratic form preserved by G, given that G preserves a known orthogonal form A with this property. Since A is symmetric, we can write  $A = U + U^T$ , where U is strictly upper-triangular. Then

$$U + U^{T} = g_{i}(U + U^{T})g_{i}^{T} = g_{i}Ug_{i}^{T} + g_{i}U^{T}g_{i}^{T},$$

so the off-diagonal entries of  $U^u = U$  and  $(g_i U g_i^T)^u$  are equal for  $1 \le i \le d$ .

Indeed, if D is a diagonal matrix with entries  $\delta_i$  on the diagonal, then  $g_i D g_i^T$  is symmetric, so the off-diagonal entries of U + D and  $(g_i (U + D) g_i^T)^u$  are also equal, and requiring that their diagonal entries be equal gives rise to a system of linear equations in the n unknowns  $\delta_i$ . We are assuming that G fixes a form, so the equations must have a solution, which can be found in time  $O(d^3 \log q)$ . The required quadratic form preserved by G is Q := U + D.

PROPOSITION 3.4. Let  $G \leq \operatorname{GL}(d, 2^n)$  preserve a known quadratic form Q, of plus or minus type. Then in time  $O(d^3 \log q)$ , a matrix X can be constructed such that  $G^X$  preserves our chosen quadratic form.

*Proof.* Suppose that d > 2, and recall our choice (\*) of a standard form. Since Q is non-degenerate, the off-diagonal entries are not all zero, for otherwise the form would be

$$\left(\sqrt{Q_{11}}x_1 + \ldots + \sqrt{Q_{dd}}x_d\right)^2.$$

So, by interchanging co-ordinates if necessary, we may assume that  $Q_{1d} \neq 0$ . The form is

$$Q_{11}x_1^2 + Q_{12}x_1x_2 + \ldots + Q_{1d}x_1x_d + \ldots = x_1(Q_{11}x_1 + Q_{12}x_2 + \ldots + Q_{1n}x_d) + \ldots,$$

so by replacing  $x_d$  by  $Q_{11}x_1 + Q_{12}x_2 + ... + Q_{1d}x_d$ , we make  $Q_{1i} = 0$  for  $1 \le i < d$  and  $Q_{1d} = 1$ . By a similar change to  $x_1$ , we can achieve  $Q_{id} = 0$  for  $2 \le i \le d$ . By repeating this process, we can transform Q to a matrix with structure (\*) in time  $O(d^3 \log q)$ .

This reduces us to the case d=2, where the quadratic is  $\kappa x_1^2 + \lambda x_1 x_2 + \mu x_2^2$ . If this factorises to  $(sx_1 + tx_2)(ux_1 + vx_2)$ , then Q is of plus type, and we change co-ordinates to  $sx_1 + tx_2$ ,  $ux_1 + vx_2$  to bring Q to the standard form.

Otherwise,  $\kappa x_1^2 + \lambda x_1 x_2 + \mu x_2^2$  is irreducible over GF(q), the form is of minus type, and we wish to transform it to a standard irreducible  $ax_1^2 + bx_1x_2 + cx_2^2$ . In other words, we must find  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\delta \in GF(q)$  with

$$\left[ \left( \begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array} \right) \left( \begin{array}{cc} \kappa & \lambda \\ 0 & \mu \end{array} \right) \left( \begin{array}{cc} \alpha & \gamma \\ \beta & \delta \end{array} \right) \right]^u = \left( \begin{array}{cc} a & b \\ 0 & c \end{array} \right).$$

We know that there is a solution, and the stabiliser  $O^-(2,q)$  of the form in GL(2,q) acts transitively on the one-dimensional subspaces of  $GF(q)^2$ , so there is always a solution with  $\alpha=0$ . The matrix equation then reduces to the three equations  $\beta^2\mu=a$ ,  $\gamma\beta^2=b$ , and  $\gamma^2\kappa+\gamma\delta\beta+\delta^2\mu=c$ , which enable us to find  $\beta$ ,  $\gamma$  and  $\delta$ .

## 4. Reducible groups

Sections 4 to 11 all have a similar structure. We first summarise the groups to be constructed in Theorem 1.1 that arise in the Aschbacher class under consideration in that section. We then go on to treat cases L, S, and U in detail. In case S with d=4 and q even, we postpone the discussion of the subgroups of groups that contain a graph automorphism until Section 12.

In case L, we denote the natural basis of  $V := GF(q)^d$  by  $[e_1, \ldots, e_d]$ . In case S, we put l := d/2, and we let  $[e_1, \ldots, e_l, f_l, \ldots, f_1]$  be a symplectic basis for  $GF(q)^d$ , where the matrix F of the symplectic form fixed by Sp(d,q) is antidiagonal with entries 1 in the first l rows and -1 in the final l rows. In case U, we may do one of two things. We may use a basis  $[e_1, \ldots, e_{d/2}, f_{d/2}, \ldots, f_1]$  if d is even, and  $[e_1, \ldots, e_{\lfloor d/2 \rfloor}, w, f_{\lfloor d/2 \rfloor}, \ldots, f_1]$  if d is odd, where the matrix F of the unitary form fixed by SU(d,q) is AntiDiag $[1, \ldots, 1]$ . We may, alternatively, use an orthonormal basis  $[v_1, \ldots, v_d]$ , with form matrix  $F = I_d$ .

In this section we describe how to write down generators of conjugacy class representatives of the reducible subgroups G of  $\Omega$  that arise in Theorem 1.1. Such a group G is the stabiliser of a space W of dimension k, or the stabiliser of spaces W and U of dimension k and d-k, as described in Table 1, which comes from [15, Table 4.1.A]. Note the abbreviations 't.s.' for totally singular, and 'n.d.' for nondegenerate.

The meanings of the 'types' in the second column of Table 1 are as follows. The groups of type  $P_k$  are parabolic subgroups, which are the stabilisers of totally singular k-dimensional subspaces. A group of type  $P_{k,d-k}$  is the stabiliser of both a k-dimensional subspace W and a (d-k)-dimensional subspace U containing U: these groups are non-maximal in PSL(d,q) but extend to maximal subgroups of PSL(d,q). Groups of type  $GL(k,q) \oplus GL(d-k,q)$  stabilise a space W of dimension k and a (d-k)-dimensional complement U of W: as in the previous row, these groups are maximal only in groups containing a graph automorphism. Groups of type  $Sp(k,q) \perp Sp(d-k,q)$  stabilise a nondegenerate symplectic subspace W of dimension k, and a complement U to W (which is also nondegenerate). Groups of type  $GU(k,q) \perp GU(d-k,q)$  stabilise a nondegenerate unitary subspace W of dimension k, and a complement U to W (which is also nondegenerate).

| Case    | Туре                                                    | Description    | Conditions                      |
|---------|---------------------------------------------------------|----------------|---------------------------------|
| L, S, U | $P_k$                                                   | W t.s.         | $1 \leqslant k \leqslant d/2$   |
| L       | $P_{k,d-k}$                                             | W < U          | $1 \leqslant k < d/2$           |
| L       | $GL(k,q) \oplus GL(d-k,q)$                              | $W \cap U = 0$ | $1 \leqslant k < d/2$           |
| S       | $\operatorname{Sp}(k,q) \perp \operatorname{Sp}(d-k,q)$ | W n.d.         | $k$ even, $1 \leqslant k < d/2$ |
| U       | $GU(k,q) \perp GU(d-k,q)$                               | W n.d.         | $1 \leqslant k < d/2$           |

Table 1: Maximal reducible groups.

## 4.1. Linear reducible groups

PROPOSITION 4.1. A set of representatives for the k-space stabilisers  $P_k$  in SL(d, q) can be constructed in time  $O(d^3 \log q)$ .

*Proof.* Let G be the stabiliser of  $\langle e_1, \ldots, e_k \rangle$  in SL(d,q); then by [15, Section 4.1],  $G \cong [q^{k(d-k)}] : (SL(k,q) \times SL(d-k,q)).(q-1)$ , and G consists of all matrices of determinant 1 whose top right corner is a  $k \times (d-k)$  block of zeros.

We generate  $SL(k,q) \times SL(d-k,q)$  with 4 block matrices  $A_i$ , for  $1 \le i \le 4$ , in the obvious fashion, with SL(k,q) acting on  $\langle e_1, \ldots, e_k \rangle$  and SL(d-k,q) acting on  $\langle e_{k+1}, \ldots, e_d \rangle$ . Identify SL(k,q) and SL(d-k,q) with the direct factors that we have just constructed.

Next we define  $A_5 := \text{Diag}[\zeta, 1, ..., 1, \zeta^{-1}] \in \text{SL}(d, q)$ . Then  $\langle A_i : 1 \leq i \leq 5 \rangle \cong (\text{SL}(k, q) \times \text{SL}(d - k, q)).(q - 1)$ .

Finally, we define  $T:=t_{\omega_{k+1},e_1}=I_d+E_{(k+1),1}$ , where  $[\omega_1,\ldots,\omega_d]$  is the dual basis to  $[e_1,\ldots,e_d]$  and, for  $u\in V$  and  $\omega\in V^*$ , the transvection  $t_{\omega,u}$  is defined by  $t_{\omega,u}(v)=v+\omega(v)u$  for  $v\in V$ . We wish to prove that  $|\langle T\rangle^{\langle A_i:1\leqslant i\leqslant 4\rangle}|=q^{k(d-k)}$ .

For all  $X \in \operatorname{GL}(d,q)$ , we have  $X^{-1}t_{\omega_{k+1},e_1}X = t_{\omega_{k+1}X,e_1X}$ . If  $X \in \operatorname{SL}(k,q)$ , then  $\omega_{k+1}X = \omega_{k+1}$  and  $\{e_1X : X \in \operatorname{SL}(k,q)\}$  contains a  $\operatorname{GF}(p)$  basis for  $\langle e_1,\ldots,e_k\rangle$ . Similarly, if  $X \in \operatorname{SL}(d-k,q)$ , then  $e_iX = e_i$  for  $1 \leqslant i \leqslant k$ , but  $\{\omega_{k+1}X : X \in \operatorname{SL}(d-k,q)\}$  contains a basis for  $\langle \omega_{k+1},\ldots,\omega_d\rangle$ . Thus T may be conjugated to any transvection  $t_{\omega,v}$ , where  $v \in \langle e_1,\ldots,e_k\rangle$  and  $\omega \in \langle \omega_{k+1},\ldots,\omega_d\rangle$ . These generate a group of order  $q^{k(d-k)}$ , as required.

Thus, up to conjugacy,  $G = \langle A_i, T : 1 \leq i \leq 5 \rangle$ . Since each matrix is constructed in time  $O(d^2 \log q)$  and there are O(d) classes of such stabilisers, the total time requirement is  $O(d^3 \log q)$ .

The two types of linear reducible groups in the second section of Table 1 arise as the intersection of the maximal subgroups of  $GL(d, q)\langle \iota \rangle$  with SL(d, q), where  $\iota$  is the graph automorphism.

PROPOSITION 4.2. A set of representatives for the intersections of the maximal reducible subgroups of  $GL(d, q)\langle \iota \rangle$  with SL(d, q) can be constructed in time  $O(d^3 \log q)$ .

*Proof.* There are two types of group G to be constructed. The first stabilises a k-space U and a (d-k)-space W such that  $U \cap W = \{0\}$ . The second stabilises a k-space U and a (d-k)-space W with U < W. In both cases, k < d/2.

In the first case,  $G \cong (\operatorname{SL}(k,q) \times \operatorname{SL}(d-k,q)).(q-1)$ , by [15, Section 4.1]. The group G consists of block-diagonal matrices, where the first block has size  $k \times k$  and the second block has size  $(d-k) \times (d-k)$ . The first block can be any matrix from  $\operatorname{GL}(k,q)$ . The second can then be any element of  $\operatorname{GL}(d-k,q)$  whose determinant is the inverse of the determinant of the first block. Let  $A_i$ , for  $1 \le i \le 5$ , be as in Proposition 4.1; then, up to conjugacy,  $G = \langle A_i : 1 \le i \le 5 \rangle$ .

In the second case, let G be the stabiliser in SL(d,q) of the subspaces  $\langle e_1,\ldots,e_k\rangle$  and  $\langle e_1,\ldots,e_{d-k}\rangle$ . Then  $G\cong [q^{2dk-3k^2}].(SL(k,q)^2\times SL(d-2k,q)).(q-1)^2$ . The group G consists of all matrices of the form:

m:  $\begin{pmatrix} A & 0 & 0 \\ B & C & 0 \\ D & E & F \end{pmatrix}$ ,

where  $A \in GL(k, q)$ ,  $C \in GL(d - 2k, q)$ ,  $F \in GL(k, q)$ , and Det(A) Det(C) Det(F) = 1.

We define  $\{X_i: 1 \le i \le 6\}$  to generate  $H := \operatorname{SL}(k,q) \times \operatorname{SL}(d-2k,q) \times \operatorname{SL}(k,q)$  in the obvious fashion. Let  $D_1$  and  $D_2$  be diagonal matrices, where both have  $\zeta$  in row 1, matrix  $D_1$  has  $\zeta^{-1}$  in row k+1, matrix  $D_2$  has  $\zeta^{-1}$  in row d-k+1, and both have 1s elsewhere. Clearly  $\langle D_1, D_2 \rangle \cong (q-1)^2$  and normalises H.

Finally, we let matrix  $T_1 := I_d + E_{k+1,1}$ , matrix  $T_2 := I_d + E_{d-k+1,1}$ , and matrix  $T_3 := I_d + E_{d-k+1,k+1}$ . In a similar fashion to Proposition 4.1, one may show that  $P_1 := \langle T_1 \rangle^H$  has order  $q^{k(d-2k)}$ , and by symmetry that the same is true for  $P_3 := \langle T_3 \rangle^H$ . Similarly,  $P_2 := \langle T_2 \rangle^H$  has order  $q^{k^2}$ . Since  $\langle H, D_1, D_2 \rangle$  fixes  $\langle e_1, \dots, e_k \rangle$  and  $\langle e_1, \dots, e_{d-k} \rangle$ , the groups  $P_i$  have trivial pairwise intersections, and so  $G = \langle H, D_1, D_2, T_1, T_2, T_3 \rangle$ .

Each of the O(d) groups requires at most eleven generating matrices, each of which can be written down in time  $O(d^2 \log q)$ .

## 4.2. Symplectic reducible groups

PROPOSITION 4.3. A set of representatives of the maximal reducible subgroups of Sp(d, q) that stabilise isotropic k-spaces can be constructed in time  $O(d^3 \log q)$ .

*Proof.* Let G be the stabiliser in Sp(d, q) of the isotropic subspace  $U := \langle e_1, \dots, e_k \rangle$ , then by [15, Section 4.1],

$$G \cong [q^{k(k+1)/2 + k(d-2k)}] : (GL(k, q) \times Sp(d - 2k, q)).$$

The matrices in G are all matrices in Sp(d, q) that are of the following form:

$$\left(\begin{array}{ccc} A & 0 & 0 \\ B & C & 0 \\ D & E & F \end{array}\right).$$

Here  $A \in GL(d, q)$ ,  $F = JA^{-1TJ}$ , for  $J := AntiDiag[1, ..., 1] \in GL(k, q)$ , and  $C \in Sp(d, q)$ . The matrices B, D and E are arbitrary.

Let  $A_1$  and  $A_2$  generate GL(k, q), and define  $X_i := Diag[A_i, I_{d-2k}, J(A_i^{-1})^T J]$  for i = 1, 2. The description in [23] of the generators  $A_1$  and  $A_2$  of GL(k, q) is particularly simple, and hence may easily be adapted to give a description of  $J(A_i^{-1})^T J$  (for i = 1, 2) that can be computed directly in time  $O(k^2 \log q)$  rather than requiring a succession of matrix operations. We identify GL(k, q) with  $\langle X_1, X_2 \rangle$ . Let  $B_1$  and  $B_2$  generate Sp(d - 2k, q), and for i = 1, 2 define  $Y_i := Diag[I_k, B_i, I_k]$ . Identify Sp(d - 2k, q) with  $\langle Y_1, Y_2 \rangle$ .

Next, define  $T_1 := I_d + E_{d,1}$ . The reader may check that conjugation by elements of GL(k,q) can map  $T_1$  to any matrix with 1s down the diagonal, a  $(k \times k)$  block in the bottom left corner that is symmetric about the anti-diagonal, and zeros elsewhere. Conjugation by elements of Sp(d-2k,q) fixes  $T_1$ . Thus  $\langle T_1 \rangle^{(GL(k,q)\times Sp(d-2k,q))}$  has order  $q^{k(k+1)/2}$ . If d=2k, then  $G=\langle X_i,Y_i,T_1:i=1,2\rangle$ .

If d>2k, then define  $T_2:=I_d+E_{d,d-k}-E_{k+1,1}$ . It is routine to check that  $T_2\in \operatorname{Sp}(d,q)$ , and clear that  $T_2$  stabilises  $\langle e_1,\ldots,e_k\rangle$ . The argument that the normal closure of  $\langle T_2\rangle$  under  $\operatorname{GL}(k,q)\times\operatorname{Sp}(d-2k,q)$  has order  $q^{k(d-2k)}$  is similar to that of Proposition 4.1, as

$$\langle e_1, \ldots, e_k \rangle \perp \langle e_{k+1}, \ldots, e_l, f_l, \ldots, f_{k+1} \rangle.$$

Then  $G = \langle X_i, Y_i, T_i : i = 1, 2 \rangle$ .

There are O(d) possibilities for G, giving a total time of  $O(d^3 \log q)$ .

PROPOSITION 4.4. A set of representatives of the maximal reducible subgroups of Sp(d, q) that stabilise symplectic subspaces may be constructed in time  $O(d^3 \log q)$ .

*Proof.* Let G be the stabiliser in Sp(d, q) of  $\langle e_1, \dots e_k, f_k, \dots, f_1 \rangle$ ; then, by [15, Section 4.1],

$$G \cong \operatorname{Sp}(2k, q) \times \operatorname{Sp}(d - 2k, q).$$

The group G consists of all matrices from Sp(d, q) of the form

$$\begin{pmatrix} A & 0 & B \\ 0 & C & 0 \\ D & 0 & E \end{pmatrix}, \quad \text{where} \quad \begin{pmatrix} A & B \\ D & E \end{pmatrix} \in \operatorname{Sp}(2k, q).$$

Here, A, B, D and E are  $k \times k$  matrices, and  $C \in \text{Sp}(d-2k, q)$ .

Let  $A_1$ ,  $A_2$  generate Sp(2k, q). Let  $A_{ijk}$ , where  $i, j, k \in \{1, 2\}$ , be  $k \times k$  submatrices of  $A_i$  such that

$$A_i := \left( \begin{array}{cc} A_{i11} & A_{i12} \\ A_{i21} & A_{i22} \end{array} \right).$$

For i=1,2, define  $X_i \in G$  to be block matrices with  $A_{ijk}$  in the corners in the obvious fashion, and  $I_{d-2k}$  in the centre. Let  $B_1$  and  $B_2$  generate  $\operatorname{Sp}(d-2k,q)$ , and for i=1,2 define  $Y_i := \operatorname{Diag}[I_k, B_i, I_k]$ . Then  $G = \langle X_1, X_2, Y_1, Y_2 \rangle$ .

There are O(d) conjugacy classes of symplectic groups stabilising isotropic subspaces, so the result follows.

## 4.3. Unitary reducible groups

Here we use the unitary form F = AntiDiag[1, ..., 1]. Recall that, for  $A \in GL(d, q^2)$ , we denote by  $A^*$  the matrix resulting from transposing A and then replacing all entries in A by their qth powers.

PROPOSITION 4.5. A set of representatives of the maximal reducible subgroups of SU(d, q) that stabilise isotropic k-spaces can be constructed in time  $O(d^3 \log^2 q)$ .

*Proof.* Let  $G \leq SU(d, q)$  be the maximal subgroup that stabilises  $U := \langle e_1, \dots, e_k \rangle$ . Then by [15, Section 4.1],

$$G \cong [q^{k(2d-3k)}] : (SL(k, q^2) \times SU(d-2k, q)).[q^2-1].$$

The group G consists of matrices of the same shape as those in Proposition 4.3.

We require various field elements. If q is odd, then set  $\nu := \zeta^{(q+1)/2}$ ; otherwise, set  $\nu := 1$ , so that  $\nu$  satisfies  $\nu + \nu^q = 0$ . If q is odd, then let  $\mu \in GF(q^2)$  satisfy  $\mu^{q+1} = -2$ . By Lemma 2.2,  $\mu$  may be found in time  $O(\log q)$ .

To construct G, we start by taking a direct product of  $GL(k, q^2)$  with SU(d-2k, q), where the generators  $A_1, A_2$  of  $GL(k, q^2)$  act as  $JA_i^{-*}J$  on  $\langle f_k, \ldots, f_1 \rangle$ , where  $J := AntiDiag[1, \ldots, 1] \in GL(k, q^2)$ . As in the symplectic case, we may adapt the description of the generators  $A_1$  and  $A_2$  of  $GL(k, q^2)$  in [23] to describe the coefficients of  $JA_i^{-*}J$ , and hence we construct the direct product in time  $O(d^2 \log q + \log^2 q)$ .

We need two unitary transvections. The first is  $T_1 := I_d + \nu E_{d,1}$ . The second is  $T_2 := I_d + E_{d,d-k} + E_{k+1,1}$ , provided that d-2k > 1. If d-2k = 1, then the second transvection is  $T_2 := I_d + \lambda_1 E_{d,1} + \lambda_2 E_{d,\lceil d/2 \rceil} + \lambda_3 E_{\lceil d/2 \rceil,1}$ , where  $(\lambda_1, \lambda_2, \lambda_3)$  is  $(\zeta, 1, 1)$  if q is even, and  $(1, \mu, \mu^q)$  when q is odd. The proof that the normal closure of  $\langle T_1 \rangle$  has order  $q^{k^2}$ , and that the normal closure of  $\langle T_2 \rangle$  has order  $q^{2k(d-2k)}$ , is similar to the proof of Proposition 4.3.

Finally, we add a diagonal matrix, which has entry  $\zeta$  in row 1, entry  $\zeta^{-1}$  in row (k+1), entry  $\zeta^{-p}$  in row d, entry  $\zeta^{p}$  in row d-k, and 1 elsewhere. If d=2k or d=2k+1, we make some obvious minor variations, which we leave to the reader.

Each group is generated by at most seven matrices, and there are O(d) conjugacy classes of such groups, and so the result follows.

Proposition 4.6. A set of representatives of the maximal reducible subgroups of SU(d,q)that fix unitary subspaces can be constructed in time  $O(d^3 \log q + \log^2 q)$ .

*Proof.* Let  $k \leq d/2$  be given, and define  $U := \langle e_1, \dots, e_{\lfloor k/2 \rfloor}, f_{\lfloor k/2 \rfloor}, \dots, f_1 \rangle$ . If k is even, then let G be the stabiliser in SU(d,q) of  $U \perp U^{\perp}$ . If k and d are both odd, then let G stabilise  $\langle U, w \rangle$  and its complement. Suppose that k is odd and d is even. Let  $\alpha \in GF(q^2)$ satisfy  $\alpha + \alpha^q = 1$ ; by Lemma 2.2,  $\alpha$  can be found in time  $O(\log q)$ . Let  $\beta \in GF(q^2)$ satisfy  $\beta^{q+1} = -1$ ; we may set  $\beta$  to be  $\zeta^{(q-1)/2}$  if q is odd, and to be 1 if q is even. The reader may verify that the vectors  $w_1 := \alpha e_l + f_l$  and  $w_2 := -\alpha^q \beta e_l + \beta f_l$ , with l = d/2, are such that  $U_1 := \langle U, w_1 \rangle$  and  $U_2 := \langle V, w_2 \rangle$  are orthogonal unitary subspaces, where  $V := \langle e_{|k/2|+1}, \dots, e_{l-1}, f_{l-1}, \dots, f_{|k/2|+1} \rangle$ . We let G stabilise  $U_1 \perp U_2$ .

The construction of  $G \cong (SU(k, q) \times SU(d - k, q)).(q - 1)$  is straightforward, and we leave it to the reader.

## 5. *Imprimitive groups*

In this section, we describe how to construct representatives of the maximal imprimitive subgroups G of  $\Omega$  that arise in Theorem 1.1. Such a group G is the stabiliser in  $\Omega$  of an *m*-space decomposition

$$\mathcal{D}: V = V_1 \oplus \cdots \oplus V_t,$$

where d = mt and t > 1, such that the conditions of Table 2 (from [15, Table 4.2.A]) hold.

| The types of the imprimitive groups are as follows. The groups of type $GL(m, q) \wr Sym(t)$        |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|--|--|--|--|
| stabilise a decomposition of $V$ into a direct sum of $t$ subspaces, each of dimension $m$ . The    |  |  |  |  |
| groups of type $Sp(m, q) \wr Sym(t)$ stabilise a decomposition of $V$ into a direct sum of $t$ non- |  |  |  |  |
| degenerate symplectic subspaces, each of dimension $m$ . The groups of type $GL(d/2, q).2$          |  |  |  |  |
| stabilise a decomposition of $V$ into a direct sum of two totally singular subspaces, each          |  |  |  |  |
| of dimension $d/2$ . The groups of type $GU(m, q) \wr Sym(t)$ stabilise a decomposition of          |  |  |  |  |
| V into a direct sum of $t$ nondegenerate unitary subspaces, each of dimension $m$ . Finally,        |  |  |  |  |
| the groups of type $GL(d/2, q^2)$ .2 stabilise a decomposition of V into a direct sum of two        |  |  |  |  |
| totally singular subspaces, each of dimension $d/2$ (recall that in case U, the vector space V      |  |  |  |  |
| is defined over $GF(q^2)$ ).                                                                        |  |  |  |  |
|                                                                                                     |  |  |  |  |

| Case | Type                                               | Description of $V_i$ | Conditions |
|------|----------------------------------------------------|----------------------|------------|
| L    | $GL(m,q) \wr Sym(t)$                               |                      |            |
| S    | $\operatorname{Sp}(m,q) \wr \operatorname{Sym}(t)$ | non-degenerate       |            |
| S    | GL(d/2,q).2                                        | totally singular     | q odd      |
| U    | $GU(m,q) \wr Sym(t)$                               | non-degenerate       |            |
| U    | $GL(d/2, q^2).2$                                   | totally singular     |            |
|      |                                                    |                      |            |

Table 2: Maximal imprimitive groups.

## 5.1. Linear imprimitive groups

PROPOSITION 5.1. A set of representatives of the maximal imprimitive subgroups of SL(d, q) can be constructed in time  $O(d^{2+\varepsilon} \log q)$ , for any  $\varepsilon > 0$ .

*Proof.* Let t > 1 divide d, and for  $0 \le i \le t - 1$ , set  $V_{i+1} := \langle e_{im+1}, \dots, e_{(i+1)m} \rangle$ . Let G be the stabiliser in SL(d, q) of the decomposition  $V = V_1 \oplus \cdots \oplus V_t$ , and let m := d/t. Then, by [15, Section 4.2],

$$G \cong SL(m,q)^t \cdot (q-1)^{(t-1)} \cdot Sym(t)$$
.

The group consists of all matrices in SL(d, q) that are composed of  $m \times m$  block matrices, where each row and column can contain only one nonzero block matrix. The determinants of the first t-1 blocks can be chosen freely, but the final block must ensure that the determinant of the overall matrix is 1.

Let  $A, B \in \mathrm{GL}(d,q)$  have the generators for  $\mathrm{SL}(m,q)$  in the initial  $m \times m$  block, and the identity elsewhere. Let  $C, D \in \mathrm{GL}(d,q)$  be block matrices preserving  $\mathcal{D}$ , with blocks of size  $(m \times m)$ , where  $C^{\mathcal{D}} := (1,2,\ldots,t)$  and  $D^{\mathcal{D}} := (1,2)$ . The nonzero block in rows 1 to m is defined to be  $-I_m$  in C and D, unless m and t are both odd, when it is  $I_m$  in C. All other blocks in C and D are  $I_m$ , so  $\mathrm{Det}(C) = \mathrm{Det}(D) = 1$ . We have  $\langle A, B, C, D \rangle \cong \mathrm{SL}(m,q)^t$ . Sym(t) or  $\mathrm{SL}(m,q)^t$ . Sym(t).

Let  $E := \text{Diag}[\zeta, 1, \dots, 1, \zeta^{-1}, 1, \dots 1]$ , with  $\zeta^{-1}$  in row m+1. Then, up to conjugacy,  $G = \langle A, B, C, D, E \rangle$ .

The number of types of imprimitive decomposition is equal to the number of proper divisors k of d, which is  $O(d^{\varepsilon})$  for any real  $\varepsilon > 0$ , by Lemma 2.1.

# 5.2. Symplectic imprimitive groups

PROPOSITION 5.2. A set of representatives of the maximal imprimitive subgroups of Sp(d, q) that stabilise decompositions into non-degenerate subspaces can be constructed in time  $O(d^{2+\varepsilon} \log q)$ , for any real  $\varepsilon > 0$ .

*Proof.* Let *G* be the stabiliser in Sp(*d*, *q*) of  $\mathcal{D}: V = V_1 \oplus \cdots \oplus V_t$ , where each  $V_i$  is a symplectic *m*-space. Then by [15, Section 4.2],  $G \cong \operatorname{Sp}(m, q) \wr \operatorname{Sym}(t)$ . Note that *m* is even, and set k := m/2. For  $0 \le i \le t-1$  we may set  $V_{i+1} := \langle e_{ik+1}, \ldots, e_{(i+1)k}, f_{(i+1)k}, \ldots, f_{ik+1} \rangle$ .

Let  $A_1$  and  $A_2$  generate  $\mathrm{Sp}(m,q)$ ; use them to construct  $X_1$  and  $X_2$  as in the proof of Proposition 4.4. Let  $C \in \mathrm{SL}(d,q)$  interchange  $e_i$  with  $e_{i+k}$  and  $f_i$  with  $f_{i+k}$  for  $1 \leqslant i \leqslant k$ , and fix the other basis vectors. Let  $D \in \mathrm{SL}(d,q)$  map  $e_i \mapsto e_{((i+k-1) \bmod l)+1}$  and  $f_i \mapsto f_{((i+k-1) \bmod l)+1}$ , for  $1 \leqslant i \leqslant l$ . Then, up to conjugacy,  $G = \langle X_1, X_2, C, D \rangle$ .

The number of types of imprimitive decomposition is equal to the number of even proper divisors of d, namely  $O(d^{\varepsilon})$  for any  $\varepsilon > 0$ .

When q is odd, there is a second conjugacy class of maximal imprimitive subgroups of Sp(d, q).

PROPOSITION 5.3. A representative of the maximal imprimitive groups in Sp(d, q) that stabilise a decomposition into two isotropic subspaces can be constructed in time  $O(d^2 \log q)$ .

*Proof.* Let G be the maximal subgroup of Sp(d, q) that stabilises the decomposition  $\mathcal{D}$ :  $V = \langle e_1, \ldots, e_l \rangle \oplus \langle f_l, \ldots, f_1 \rangle$ . Then by [15, Section 4.2],  $G \cong GL(l, q)$ .2. Elements of G can either stabilise each space in the decomposition (in which case they can act as any element of GL(l, q) on the first k-dimensional subspace, provided that the action on

the second k-dimensional subspace preserves the isotropic form), or they can interchange  $\langle e_1, \ldots, e_l \rangle$  with  $\langle f_l, \ldots, f_1 \rangle$ .

Let  $A_1$ ,  $B_1$  generate GL(l,q), and let  $J := AntiDiag[1, ..., 1] \in GL(l,q)$ . Define  $A := Diag[A_1, J(A_1^{-1})^T J]$  and  $B := Diag[B_1, J(B_1^{-1})^T J]$ . A short calculation shows that A and B preserve both F and  $\mathcal{D}$ , and so are in G.

Let  $C := \text{AntiDiag}[I_l, -I_l]$ ; then, up to conjugacy,  $G = \langle A, B, C \rangle$ .

## 5.3. Unitary imprimitive groups

In the next proposition, we use the form  $F = I_d$ .

Proposition 5.4. A set of representatives of the imprimitive maximal subgroups of SU(d,q) that stabilise decompositions into unitary subspaces can be constructed in time  $O(d^{\varepsilon}(d^2 \log q + \log^2 q))$ , for any real  $\varepsilon > 0$ .

*Proof.* Let t > 1 be a divisor of d, let m := d/t, and for  $0 \le i \le t - 1$  set  $V_{i+1} := \langle v_{im+1}, \ldots, v_{(i+1)m} \rangle$ . Let G be the stabiliser in SU(d, q) of the decomposition  $\mathcal{D}: V = V_1 \perp \cdots \perp V_t$ . Then, by [15, Section 4.2],

$$G \cong SU(m, q)^t \cdot (q+1)^{t-1} \cdot Sym(t)$$
.

Let  $A_1$  and  $B_1$  generate SU(m,q), and let  $A := Diag[A_1, I_m ..., I_m]$  and  $B := Diag[B_1, I_m, ..., I_m]$ . Then both A and B preserve F and  $\mathcal{D}$ , so  $A, B \in G$ . Identify  $\langle A, B \rangle$  with SU(m,q).

Let  $C \in \operatorname{GL}(d,q^2)$  interchange  $v_i$  with  $-v_{i+m}$ , for  $1 \le i \le m$ , and fix everything else. A short calculation shows that  $\operatorname{Det}(C) = 1$ , and that  $CC^* = I_d$ , so  $C \in G$ . Let  $D_1 \in \operatorname{GL}(d,q^2)$  map  $v_i \mapsto v_{((i+m-1) \bmod d)+1}$  for  $1 \le i \le d$ . If m or q is even or t is odd, let  $D = D_1$ ; otherwise, let  $D := \operatorname{Diag}[-1,1,\ldots,1]D_1$ . It may be checked that  $DD^* = I_d$  and that  $\operatorname{Det}(D) = 1$ .

Let  $E := \text{Diag}[\zeta^{q-1}, 1, \dots, 1, \zeta^{1-q}, 1, \dots, 1] \in \text{GL}(d, q^2)$  have nontrivial entries in rows 1 and m+1. Then, up to conjugacy,  $G = \langle A, B, C, D, E \rangle$ .

The number of choices of t is equal to the number of proper divisors of d, which is  $O(d^{\varepsilon})$  for any real  $\varepsilon > 0$ .

In the next proposition, we use the form F := AntiDiag[1, ..., 1].

PROPOSITION 5.5. If d is even, a representative of the maximal imprimitive subgroups of SU(d, q) that preserve a decomposition into two isotropic subspaces can be constructed in time  $O(d^2 \log q + \log^2 q)$ .

*Proof.* Let *G* be the stabiliser in SU(d, q) of the decomposition  $\mathcal{D}: V = \langle e_i : 1 \leq i \leq l \rangle$   $\oplus \langle f_i : l \geq i \geq 1 \rangle$ . Then by [15, Section 4.2],  $G \cong SL(l, q^2).(q - 1).2$ .

Let  $A_1$ ,  $B_1 \in SL(l, q^2)$  generate  $SL(l, q^2)$ , and let  $J := AntiDiag[1, ..., 1] \in GL(l, q^2)$ . Define  $A := Diag[A_1, JA_1^{-*}J]$  and  $B := Diag[B_1, JB_1^{-*}J]$ . Identify  $\langle A, B \rangle$  with  $SL(l, q^2)$ . A short calculation shows that A and B preserve both F and  $\mathcal{D}$ , and so  $A, B \in G$ .

Define  $C_1 := \operatorname{AntiDiag}[I_l, I_l]$  and  $M := \operatorname{Diag}[\zeta^{(q+1)/2}, 1, \dots, 1, \zeta^{-q(q+1)/2}] \in \operatorname{GU}(d, q)$ , a matrix of determinant -1 that squares to  $I_d$ . If  $d \equiv 0 \mod 4$  or q is even, then let  $C := C_1$ ; otherwise, set  $C := C_1 M$ . If  $C = C_1$ , then  $C^2 \in \operatorname{SL}(l, q^2)$ ; otherwise,  $C^2$  is a diagonal matrix such that  $\operatorname{Det}(C^2|_{\langle e_i:1 \leq i \leq l \rangle}) = -1$ . We see that  $C \in N_G(\operatorname{SL}(l, q^2))$ .

Define  $D \in GL(d, q^2)$  to be diagonal with entry  $\zeta$  in row 1, entry  $\zeta^q$  in row 2, entry  $\zeta^{-1}$  in row d-1 and  $\zeta^{-q}$  in row d. Then D preserves F and  $\mathcal{D}$ , so  $D \in N_G(SL(l, q^2)) \setminus SL(l, q^2)$ . Up to conjugacy,  $G = \langle A, B, C, D \rangle$ .

## 6. Semilinear groups

In this section we describe how to write down generators for the semilinear subgroups G of  $\Omega$  that arise in Theorem 1.1. Let u := 1 in cases L and S, and u := 2 in case U. A group is semilinear if it can be embedded in  $\Gamma L(d/s, q^{su})$  for some divisor s of d. From [15, Table 4.3.A], we find that, for each such s, there is one maximal semilinear subgroup G having the same type (L, S or U) as  $\Omega$ . In addition, in case S with q odd, there is a conjugacy class of semilinear groups isomorphic to GU(d/2, q).2.

We denote a primitive element of  $GF(q^{su})$  by  $\omega$ . The symbol  $\nu_q$  denotes the field automorphism  $x \mapsto x^q$  of  $GF(q^{su})$ , and  $\sigma_q$  denotes the matrix operation  $(a)_{ij} \mapsto (a^q)_{ij}$ .

LEMMA 6.1. Let q be a prime power. A subgroup of GL(s, q) that is isomorphic to  $\Gamma L(1, q^s)$  may be constructed in time  $O(s^2 \log q + \log^2 q)$ .

*Proof.* Fix a basis  $\mathcal{B} := [1, \omega, \omega^2, \dots, \omega^{s-1}]$  of  $GF(q^s)$  over GF(q). This determines an embedding  $\phi : GF(q^s)^{(1)} \longrightarrow GF(q)^{(s)}$ , and induces an embedding  $\psi : \Gamma L(1, q^s) \longrightarrow GL(s, q)$ .

Let f(x) be a primitive polynomial for  $GF(q^s)$  over GF(q) with root  $\omega$ , and let  $A \in GL(s,q)$  be the companion matrix for f. Then A acts on the natural basis in the same way as  $\omega$  acts by multiplication on  $\mathcal{B}$ , so  $A_s = \psi(\omega)$ .

For  $0 \le i, j \le s-1$ , let  $\xi_{ij}$  be the coefficient of  $\omega^j$  in the expression for  $\omega^{iq}$ , written as a linear combination of  $\omega^k$  with  $0 \le k \le s-1$ . Define  $B \in GL(s,q)$  by  $B_{ij} := \xi_{i-1,j-1}$ . Then B acts on the natural basis of  $GF(q)^{(s)}$  in the same way as  $v_q$  acts on  $\mathcal{B}$ , so  $B = \psi(v_q)$ . Then  $\langle A, B \rangle \cong \langle \omega, v_q \rangle = \Gamma L(1, q^s)$ .

We construct the field elements in time  $O(\log^2 q)$  for  $\omega^q$ ; then  $O(\log q)$  time for each additional power. Writing down the matrix B then takes an additional time  $O(s^2 \log q)$ , yielding a total time of  $O(s^2 \log q + \log^2 q)$ .

Retaining the notation of the proof above, the map  $\psi$  can be used to construct a map  $\theta$ :  $\Gamma L(d/s, q^s) \longrightarrow GL(d, q)$ , where  $\theta : (\lambda \omega^i)_{jk} \mapsto (\lambda A^i)_{jk}$  and  $\theta : \sigma_q \mapsto \text{Diag}[B, \ldots, B]$  for  $\lambda \in GF(q)$ . It is clear that  $\theta$  is an injection. The reader may verify that  $\theta$  restricted to  $GL(d/s, q^s)$  is a homomorphism by checking that the (m, n)th block of  $\theta(X).\theta(Y)$  is  $\psi(x)$ , where x is the (m, n)th entry of XY, for  $X, Y \in GL(d/s, q^s)$ . Furthermore,  $\theta(\sigma_q)$  acts by conjugation on  $\text{Im}(\theta|_{GL(d/s, q^s)})$  by conjugating each block by B, which corresponds to the action of  $\sigma_q$  on  $GL(d/s, q^s)$ . So  $\theta$  is a homomorphism.

LEMMA 6.2. Let A and B be as in Lemma 6.1. Then  $|\operatorname{Det}(A)|$  is equal to q-1 and  $\operatorname{Det}(B)$  is equal to 1 if s is odd or q is even, or to -1 if s is even and q is odd.

*Proof.* The first claim follows from the fact that when it is represented as a subgroup of GL(d, q), we have  $|Det(GL(d/s, q^s))| = (q - 1)$  [15, Proposition 4.3.6].

The normal basis theorem (see, for instance, [16, Theorem 2.35]) states that there exists an element  $\alpha$  in  $GF(q^s)$  such that  $[\alpha, \alpha^q, \alpha^{q^2}, \dots, \alpha^{q^{s-1}}]$  is a basis for  $GF(q^s)$  over GF(q). Relative to this basis, the matrix for  $\psi(v_q)$  is a permutation matrix with a 1 in position (i, i+1) for  $1 \le i \le s-1$  and a 1 in position (s, 1). Thus Det(B) is as stated.

#### 6.1. Linear semilinear groups

Proposition 6.3. A set of representatives of the maximal semilinear subgroups of SL(d,q) can be constructed in time  $O(d^{\Psi} \log d \log^2 q)$ .

*Proof.* Let G be a maximal semilinear subgroup of SL(d, q). Then, by [15, Proposition 4.3.6], there exists a prime divisor s of d such that

$$G \cong \operatorname{SL}(d/s, q^s). \frac{q^s - 1}{q - 1}.s.$$

We use Lemma 6.1 to construct matrices  $A_s$ ,  $B_s \in GL(s, q)$  with  $\langle A_s, B_s \rangle \cong \Gamma L(1, q^s)$ . We compute  $C_s := \psi(\omega^{q-1}) = A_s^{q-1}$  in time  $O(s^{\Psi} \log^2 q)$ .

If s = d and d is odd, then let  $H := \langle C_s, B_s \rangle$ . Since s is odd,  $Det(B_s) = Det(C_s) = 1$ , so  $H \leq SL(d,q)$ . It is clear that  $H \cong ((q^s - 1)/(q - 1)).s$ , so G = H. If s = d = 2, then set  $F_s := B_s A_s^{(q-1)/2}$  and let  $H := \langle C_s, F_s \rangle$ . Then  $Det(F_s) = 1$  and  $C_s^{F_s} = C_s^q$ , so G = H.

If  $s \neq d$ , then let  $X, Y \in GL(d/s, q^s)$  generate  $SL(d/s, q^s)$ . We may assume that  $X = Diag[\omega, \omega^{-1}, 1..., 1]$ , and that Y has all nonzero entries equal to  $\pm 1$ ; see [23]. Let  $A := \theta(X) \in GL(d, q)$ , and  $B := \theta(Y) \in GL(d, q)$ . Then  $\langle A, B \rangle \cong SL(d/s, q^s) \leq SL(d, q)$ . Note that since all nonzero entries of X and Y lie in the set  $\{\omega^{\pm 1}, \pm 1\}$ , we do not have to power  $A_s$  or compute discrete logs. Thus, given  $A_s$ , we construct A and B in time  $O(d^2 \log q)$ .

Let  $C := \theta(\operatorname{Diag}[\omega^{q-1}, 1, \dots, 1])$ . Then  $C = \operatorname{Diag}[C_s, I_s, \dots, I_s]$ , and  $\operatorname{Det}(C) = 1$ . Finally, let  $D_1 := \theta(\sigma_q)$ . If s = 2, where d/s is odd and q is odd, then let  $D := D_1 Z$ , where Z is a block-diagonal matrix with nonzero blocks equal to  $A_s^{(q-1)/2}$ ; otherwise, set  $D := D_1$ . In both cases, we have  $G = \langle A, B, C, D \rangle$ .

The generating matrices for G are written down in time  $O(d^{\Psi} \log^2 q)$ , and the number of types of semilinear group is equal to the number of prime divisors of d, which is  $O(\log d)$  by Lemma 2.1.

## 6.2. Symplectic semilinear groups

PROPOSITION 6.4. A set of representatives of the maximal semilinear subgroups of Sp(d, q) of symplectic type can be constructed in time  $O(d^3 \log d \log^2 q)$ .

*Proof.* Let G be a maximal semilinear subgroup of Sp(d, q), of symplectic type. Then, by [15, Proposition 4.3.10], there exists a prime divisor s of d such that d/s is even and  $G \cong Sp(d/s, q^s).s$ .

As in Lemma 6.1, construct  $A_s := \psi(\omega)$  and  $B_s := \psi(v_q)$  in time  $O(s^2 \log q + \log^2 q)$ . Then let  $X_{d/s}$  and  $Y_{d/s}$  be generating matrices for  $\operatorname{Sp}(d/s, q^s)$ , and let  $A := \theta(X_{d/s})$  and  $B := \theta(Y_{d/s})$ . By [23] we may assume that all nonzero entries of  $X_{d/s}$  and  $Y_{d/s}$  are in the set  $\{\pm 1, \omega^{\pm 1}\}$ , so this construction takes time  $O(d^2 \log q)$ . Let  $C := \theta(\sigma_q)$ . Since if s = 2 then  $d \equiv 0 \mod 4$ , we always have  $\operatorname{Det}(C) = 1$ . Then setting  $H := \langle A, B, C \rangle$  gives  $H \cong G$ .

A short calculation shows that if  $\beta(\_,\_)$  is a symplectic form on  $GF(q^s)^{d/s}$ , then  $\beta'(\_,\_) := Tr(\beta(\_,\_))$  is a symplectic form over GF(q). As we have a fixed symplectic form, and we know our basis for  $GF(q^s)$  over GF(q), we can calculate a matrix for this form in  $O(d^2 \log^2 q)$ . By the results of Section 3, we conjugate H to a subgroup of Sp(d,q) in time  $O(d^3 \log q)$ . Noting that there are  $O(\log d)$  groups to be constructed completes the proof.

PROPOSITION 6.5. A representative of the maximal semilinear subgroups of Sp(d, q) of unitary type can be constructed in time  $O(d^3 \log^2 q)$ 

*Proof.* Let G be a maximal semilinear subgroup of  $\operatorname{Sp}(d,q)$ , of unitary type. Then, by [15, Proposition 3.2.7],  $G \cong \operatorname{GU}(l,q).2$ . Let  $\omega$  be a primitive element of  $\operatorname{GF}(q^2)$ , let  $A_2 := \psi(\omega) \in \operatorname{GL}(2,q)$ , and let  $B_2 := \psi(\nu_q) \in \operatorname{GL}(2,q)$ . Also, let  $X,Y \in \operatorname{GL}(l,q^2)$  generate  $\operatorname{GU}(l,q)$ . We then construct  $A := \theta(X)$  and  $B := \theta(Y)$ . Let i be such that  $(q+1)/2^i$  is odd, and let  $m := (q^2-1)/2^{i+1}$ . Let  $C := \operatorname{Diag}[B_2A_2^m, \ldots, B_2A_2^m]$ , so that each block has determinant 1. Since  $A_2$  is a  $(2 \times 2)$  matrix, we construct C in time  $O(d^2 \log q + \log^2 q)$ .

A short calculation shows that if  $\beta(\_,\_)$  is a unitary form over  $GF(q^2)$ , then  $\beta'(\_,\_) := Tr(\lambda\beta(\_,\_))$  is a symplectic form over GF(q), for  $\lambda \in GF(q^2)$  of trace zero. We can choose  $\lambda$  to be a primitive 4th root of unity, and then construct  $\beta'$  in time  $O(d^2 \log^2 q)$ . We use Proposition 3.2 to conjugate H to  $G \leq Sp(d,q)$ .

## 6.3. Unitary semilinear groups

PROPOSITION 6.6. A set of representatives of the maximal semilinear subgroups of SU(d, q) can be constructed in time  $O(d^3 \log d \log^2 q)$ .

*Proof.* Let G be a maximal semilinear subgroup of SU(d, q). Then

$$G \cong SU(d/s, q^s). \frac{q^s + 1}{q + 1}.s$$

for some odd prime s dividing d. The construction of  $H \cong G$  is virtually identical to that of Proposition 6.3, and we leave it to the reader.

A short calculation shows that if  $\beta(\_,\_)$  is a unitary form over  $GF(q^s)$ , then  $\beta'(\_,\_) := Tr(\beta(\_,\_))$  is a unitary form over GF(q). Thus we may use the results of Section 3 to conjugate H to G in time  $O(d^3 \log q)$ . Noting that there are  $O(\log d)$  maximal semilinear subgroups completes the proof.

#### 7. Tensor product groups

In this section we describe how to write down generators for the tensor product subgroups G of  $\Omega$  that arise in Theorem 1.1. A group is *tensor product* if it preserves a decomposition  $V = V_1 \otimes V_2$ . From [15, Table 4.4.A] we find that in cases L and U, for each divisor  $d_1 < \sqrt{d}$  of d there is a unique such G. Its socle mod scalars is  $PSL(d_1, q) \times PSL(d_2, q)$  or  $PSU(d_1, q) \times PSU(d_2, q)$ , in cases L and U respectively, where  $d = d_1d_2$ . In case S, these groups G occur only for odd q. In this case, for each even divisor  $d_1$  of d for which  $d_2 \geqslant 3$ , there are (one or two) groups G with socle mod scalars equal to  $PSp(d_1, q) \times P\Omega^{\varepsilon}(d_2, q)$ . We note that the determinant of  $A \otimes B \in GL(d_1, q) \otimes GL(d_2, q)$  is  $Det(A)^{d_2} Det(B)^{d_1}$ .

## 7.1. Linear tensor product groups

PROPOSITION 7.1. A set of representatives of the maximal tensor product subgroups of SL(d,q) can be constructed in time  $O(d^{2+\varepsilon} \log q)$ , for any real  $\varepsilon > 0$ .

*Proof.* We let G be a maximal tensor product subgroup of SL(d,q), we set Z:=Z(SL(d,q)), and we let  $\bar{G}:=G/(G\cap Z)$ . Then Z(G)=Z, and by [15, Section 4.4] there exists a divisor  $d_1<\sqrt{d}$  of d such that, with  $d_2:=d/d_1$  and

$$c := \frac{(d_1, q - 1)(d_2, q - 1)(d_1, d_2, q - 1)}{(d_1, q - 1)},$$

we have  $\bar{G} \cong (PSL(d_1, q) \times PSL(d_2, q)).[c]$ . Elements of G are the Kronecker products of elements of  $GL(d_1, q)$  with those of  $GL(d_2, q)$ ; the quotient group of order c measures the freedom in the choice of determinant in each tensor factor.

For i=1,2, let  $A_i$  and  $B_i$  generate  $SL(d_i,q)$ . Let S and T be the Kronecker products of  $A_1$  and  $B_1$  with  $I_{d_2}$ , and let U and V be the products of  $I_{d_1}$  with  $A_2$  and  $B_2$ . Let  $C_1 := \zeta^{(q-1)/(q-1,d)}I_d$ , so that  $\langle C \rangle = Z$ , and set  $H := \langle S, T, U, V, C \rangle$ . If c=1, then, up to  $SL(d, p^e)$  conjugacy, G=H.

When c > 1, G may be generated by H together with certain matrices of the form  $D := D_1 \otimes D_2$ , where  $D_1 := \text{Diag}[\zeta^x, 1, \ldots, 1] \in \text{GL}(d_1, q)$  and  $D_2 := \text{Diag}[\zeta^y, 1, \ldots, 1] \in \text{GL}(d_2, q)$ . We want to make all matrices D such that Det(D) = 1, which implies that  $d_2x + d_1y = 0 \mod q - 1$ . So the required generators D correspond to generators of the nullspace of the  $3 \times 1$  matrix  $[d_2, d_1, q - 1]$ .

Finding this nullspace involves transforming the matrix to one with a single nonzero entry, by using elementary row operations over the integers. This can be done in time polynomial in the 'size' of the entries, where 'size' here means the number of bits. In fact, only one division involving q-1 is required, and all other operations involve numbers of size  $O(\log d)$ , so the nullspace can be found in time  $O(d \log q)$ .

The number of groups to be constructed is equal to half of the number of divisors of d, which by Lemma 2.1 is  $O(d^{\varepsilon})$  for any real  $\varepsilon > 0$ .

## 7.2. Symplectic tensor product groups

PROPOSITION 7.2. A set of representatives of the maximal tensor product subgroups of  $\operatorname{Sp}(d,q)$  may be constructed in time  $O(d^{\Psi+\varepsilon}\log^3 q)$ .

*Proof.* Let G be a maximal tensor product subgroup of  $\operatorname{Sp}(d, p^e)$ . Then by [15, Section 4.4], we see that q is odd, there exists an even divisor  $d_1$  of d such that  $d_2 := d/d_1 \geqslant 3$ , and  $\bar{G} \cong (\operatorname{PSp}(d_1, q) \times \operatorname{PO}^{\varepsilon}(d_2, q)).(d_2, 2)$ ,

where  $\varepsilon \in \{+, -, \circ\}$  and  $Z(G) = \{\pm I\} = Z(\operatorname{Sp}(d, q))$ .

Let  $X_1, Y_1$  generate  $\operatorname{Sp}(d_1, q)$ , and let  $Z_1 := \operatorname{Diag}[\zeta, \ldots, \zeta, 1, \ldots, 1] \in \operatorname{GL}(d_1, q)$ , so that  $\langle X_1, Y_1, Z_1 \rangle \cong \operatorname{GSp}(d_1, q)$ . Let X, Y and Z be the Kronecker products of  $X_1, Y_1$  and  $Z_1$  with  $I_{d_2}$ .

Suppose that  $d_2$  is odd, and let  $A_\circ$ ,  $B_\circ$ ,  $D_\circ$  generate  $O(d_2,q)$  as in Lemma 2.4. Let A, B and D be the Kronecker products of  $I_{d_1}$  with  $A_\circ$ ,  $B_\circ$  and  $D_\circ$  respectively, and set  $H := \langle X, Y, A, B, D \rangle$ .

Now suppose that  $d_2$  is even, and for  $\varepsilon=\pm$  let  $A_{\varepsilon}$ ,  $B_{\varepsilon}$ ,  $D_{\varepsilon}$ ,  $E_{\varepsilon}$  generate  $\mathrm{GO}^{\varepsilon}(d_2,q)$  as in Lemma 2.4. Let  $A^{\varepsilon}$ ,  $B^{\varepsilon}$ ,  $D^{\varepsilon}$  and  $E^{\varepsilon}$  be the tensor products of  $I_{d_1}$  with  $A_{\varepsilon}$ ,  $B_{\varepsilon}$ ,  $D_{\varepsilon}$  and  $E_{\varepsilon}$ , and let  $Z^{\varepsilon}$  be the product of  $Z^{-1}$  with  $E^{\varepsilon}$ . Finally, let  $H^{\varepsilon}:=\langle X,Y,Z^{\varepsilon},A^{\varepsilon},B^{\varepsilon},D^{\varepsilon}\rangle$ . Since  $d_1$  and  $d_2$  are even, we have  $H^{\varepsilon}\leqslant \mathrm{SL}(d,q)$ .

The reader may check that in each case, H preserves a symplectic form given by  $\beta(S_1 \otimes T_1, S_2 \otimes T_2) = \beta_1(S_1, S_2).\beta_2(T_1, T_2)$ , where  $\beta_1$  is a symplectic form on  $GF(q)^{d_1}$  and  $\beta_2$  is a symmetric bilinear form on  $GF(q)^{d_2}$ . The form  $\beta_1$  is the standard one, and (as we discussed in the remark following Lemma 2.4) the form  $\beta_2$  is almost antidiagonal (it is antidiagonal apart from a  $2 \times 2$  matrix in the centre of the matrix defining the form), and can be transformed to antidiagonal in  $O(\log q)$ . So we can compute  $\beta$  and then transform it to the standard symplectic form, all in time  $O(d^2 \log q)$ . Hence we may find M and compute G with  $G := H^M \leq Sp(d, q)$  in time  $O(d^4 \log q)$ .

By Lemma 2.1, there are  $O(d^{\varepsilon})$  groups to be constructed, for any real  $\varepsilon > 0$ .

## 7.3. Unitary tensor product groups

We use the form  $F = I_d$ , and we let Z := Z(SU(d, q)).

PROPOSITION 7.3. A set of representatives of the maximal tensor product subgroups of SU(d, q) can be constructed in time  $O(d^{2+\varepsilon} \log q + \log^2 q)$ .

*Proof.* Let G be a maximal tensor product subgroup of SU(d, q), and let  $\bar{G} := G/(G \cap Z)$ . Then Z(G) = Z, and by [15, Section 4.4] there exists a divisor  $d_1 < \sqrt{d}$  of d such that, with  $d_2 := d/d_1$  and

$$c := \frac{(d_1, q+1)(d_2, q+1)(d_1, d_2, (q+1))}{(d, q+1)},$$

we have  $\bar{G} = (PSU(d_1, q) \times PSU(d_2, q)).[c].$ 

Let S, T, U and V generate  $SU(d_1, q) \circ SU(d_2, q)$  as in Proposition 7.1. Let  $C := \zeta^{(q^2-1)/(q+1,d)}I_d$ , so that  $\langle C \rangle = Z$ , and set  $H := \langle S, T, U, V, C \rangle$ . Then H preserves a unitary form  $\beta(A_1 \otimes B_1, A_2 \otimes B_2) = \beta_1(A_1, A_2).\beta_2(B_1, B_2)$ , where  $\beta_i$  is represented by  $I_{d_i}$ . Therefore  $\beta$  has matrix  $I_d$ , and we assume that  $H \leq G$ .

If c=1, then, up to SU-conjugacy, G=H, so we suppose that  $c\neq 1$ . A diagonal matrix preserves F if and only if all of its entries are powers of  $\eta:=\zeta^{q-1}$ . We generate G with H together with matrices of the form  $D:=D_1\otimes D_2$ , where  $D_1:=\mathrm{Diag}[\eta^x,1,\ldots,1]\in \mathrm{GU}(d_1,q)$  and  $D_2:=\mathrm{Diag}[\eta^y,1,\ldots,1]\in \mathrm{GU}(d_2,q)$ , and  $\mathrm{Det}(D)=1$ . The condition  $\mathrm{Det}(D)=1$  is equivalent to  $d_2x+d_1y=0$  mod (q+1). So the required generators D correspond to generators of the nullspace of the integral  $3\times 1$  matrix  $[d_2,d_1,q+1]$ , which, as in the linear case, can be found in time  $O(d\log q)$ .

By Lemma 2.1, there are  $O(d^{\varepsilon})$  decompositions, for any real  $\varepsilon > 0$ .

## 8. Subfield groups

In this section we describe how to write down generators for the subfield subgroups G of the group  $\Omega$  that arise in Theorem 1.1. Let u:=1 in cases L and S, and let u:=2 in case U. A group is *subfield* if, modulo scalars, it can be written over a proper subfield of  $GF(q^u)$ . Throughout this section, f denotes a divisor of e (recall that  $q=p^e$ ), and  $\omega$  denotes a primitive element of  $GF(p^{fu})$ . From [15, Table 4.5.A], we find that, for each such f for which e/f is prime, there is one maximal subfield subgroup G having the same type (L, S or U) as  $\Omega$ . In addition, in case U with f odd, there are (one or two) groups f of orthogonal type, and in case U with f even, there is a group of symplectic type.

Recall that [a, b] denotes the lowest common multiple of integers a and b.

#### 8.1. Linear subfield groups

PROPOSITION 8.1. The maximal subfield subgroups of SL(d, q) can be constructed in time  $O((d^2 \log q + \log^2 q) \log \log q)$ .

*Proof.* Let  $Z := Z(SL(d, p^e))$ , and let  $G \leq SL(d, p^e)$  be a maximal subfield group. Then Z(G) = Z, and by [15, Section 4.5] there exists a prime divisor b of e such that  $|PGL(d, p^f): G/Z| = c$ , where f := e/b. We define  $k := (p^e - 1, d)$  and

$$c := \frac{k[p^f - 1, (p^e - 1)/k]}{(p^e - 1)}.$$

The group G consists of all matrices from  $\langle GL(d, p^f), Z(GL(d, p^e)) \rangle$  that have determinant 1.

Let A and B generate  $\mathrm{SL}(d,\,p^f)$ ; then A and B may be thought of as elements of  $\mathrm{SL}(d,\,p^e)$ . Let  $C:=\zeta^{(p^e-1)/k}I_d$ . Then  $\langle C\rangle=Z$ , so if  $c=(p^f-1,d)$ , we may set  $G=\langle A,B,C\rangle$ .

Suppose then that  $c \neq (p^f - 1, d)$ , and define  $H := \langle A, B, C \rangle$  and

$$Y := \text{Diag}[\omega, 1, \dots, 1] \in \text{GL}(d, p^e).$$

Then  $\langle \operatorname{SL}(d, p^f), Y \rangle = \operatorname{GL}(d, p^f)$ . Let  $D := Y^c$ ; then, since  $c \mid (p^f - 1, d)$ , we see that  $|\operatorname{GL}(d, p^f) : \langle \operatorname{SL}(d, p^f), D \rangle| = c$ . We compute  $\omega^c$ , and hence D, in time  $O(\log d \log q)$ . Now we construct a scalar  $X \in \operatorname{GL}(d, p^e)$  such that  $\operatorname{Det}(XD) = 1$ . We have  $\operatorname{Det}(D) = \zeta^z$ , where

$$z = \frac{p^e - 1}{p^f - 1} \cdot \frac{k \cdot [p^f - 1, (p^e - 1)/k]}{p^e - 1} = \frac{k(p^f - 1)(p^e - 1)/k}{(p^f - 1)(p^f - 1, (p^e - 1)/k)}$$
$$= \frac{p^e - 1}{(p^f - 1, (p^e - 1)/k)}.$$

By [11, Theorem 57], since k divides z, the equation  $\lambda d = z \mod p^e - 1$  has k solutions, and solving it is equivalent to solving  $\lambda d/k = z/k \mod (p^e - 1)/k$ . We use the Euclidean algorithm to find integers x and y such that  $x.(d/k) + y.((p^e - 1)/k) = 1$ , in time  $O(\log(d/k))$ . Then  $x = (d/k)^{-1} \mod (p^e - 1)/k$ . Given x, we compute  $\lambda$  in constant time. We set  $X := \zeta^{-\lambda} I_d$ ; then, up to conjugacy,  $G = \langle H, XD \rangle$ . Computing  $\zeta^{-\lambda}$  requires time  $O(\log^2 q + \log d)$ , and then computing XD requires time  $O(d^2 \log q)$ , since X is a scalar.

By Lemma 2.1, there are  $O(\log e) = O(\log \log q)$  groups to construct.

# 8.2. Symplectic subfield groups

PROPOSITION 8.2. A set of representatives of the maximal subfield subgroups of  $\operatorname{Sp}(d,q)$  may be constructed in time  $O((d^2 \log q + \log^2 q) \log \log q)$ .

*Proof.* Let G be a maximal subfield subgroup of  $Sp(d, p^e)$ . Then, by [15, Proposition 4.5.4], there exists a divisor f of e such that e/f is prime and

$$G \cong \operatorname{Sp}(d, p^f).(2, e/f, p-1).$$

A symplectic form on  $GF(p^f)^d$  extends naturally to a symplectic form with the same form matrix on  $GF(p^e)^d$ , so  $Sp(d, p^f)$  may be considered as a subgroup of  $Sp(d, p^e)$ .

If (2, e/f, p-1) = 1, then we may set  $G = \operatorname{Sp}(d, p^f)$ , so suppose that (2, e/f, p-1) = 2. Let  $D \in \operatorname{GL}(d, p^f)$  map  $e_i \mapsto \omega e_i$  and  $f_i \mapsto f_i$ , for  $1 \le i \le l$ . Then  $D \in \operatorname{GSp}(d, p^f)$ , and  $\operatorname{Det}(D) = \zeta^{kd/2}$ , where  $k := (p^e - 1)/(p^f - 1)$ . Since e/f = 2 and p is odd, d divides kd/2. Let  $S := \zeta^{-k/2}I_d$ , and define C := SD. A short calculation shows that C preserves F and has determinant 1, so  $C \in N_{\operatorname{Sp}(d, p^e)}(\operatorname{Sp}(d, p^f))$ , and we may set  $G = \langle \operatorname{Sp}(d, p^f), C \rangle$ .

The matrices S and D are diagonal, so computing C takes time  $O(d^2 \log q + \log^2 q)$ . By Lemma 2.1, there are  $O(\log \log q)$  groups to be constructed.

#### 8.3. Unitary subfield groups

Here we use the form F = AntiDiag[1, ..., 1]. We let Z := Z(SU(d, q)) and  $C := \zeta^{(q^2-1)/(q+1,d)}I_d$ , so that  $\langle C \rangle = Z$ . We define  $k := (q+1,d) = (p^e+1,d)$ . Recall that for a matrix  $A \in \text{GL}(d,q^2)$ , by  $A^{\sigma_q}$  we mean the matrix whose entries are qth powers of the entries of A.

PROPOSITION 8.3. A set of representatives of the maximal subfield subgroups of SU(d, q) of unitary type can be constructed in time  $O((d^2 \log q + \log^2 q) \log \log q)$ .

*Proof.* Let G be a maximal subfield subgroup of  $SU(d, p^e)$  of unitary type. Then Z(G) = Z and by [15, Section 4.5] there exists an odd prime divisor b of e such that  $|PGU(d, p^f)|$ : G/Z| = c, where f := e/b and

$$c := \frac{k[p^f + 1, (p^e + 1)/k]}{(p^e + 1)}.$$

A unitary form on  $GF(p^{2f})^d$  extends naturally to a unitary form on  $GF(p^{2e})^d$ , so  $GU(d, p^f)$  may be considered as a subgroup of  $GU(d, p^e)$ .

The construction of G is similar to Proposition 8.1; we sketch it briefly. Let A and B generate  $SU(d, p^f)$ , and let  $H := \langle A, B, C \rangle \leq SU(d, p^e)$ .

If  $c = (p^f + 1, d)$ , then we may choose G = H, so suppose that  $c \neq (p^f + 1, d)$ , let  $Y := \text{Diag}[\omega, 1, \dots, 1, \omega^{-p^f}] \in \text{GU}(d, p^f)$ , and let  $D := Y^c$ . A short calculation shows that  $\text{Det}(D) = \zeta^z$ , where  $z = -(p^{2e} - 1)/(p^f + 1, (p^e + 1)/k)$ . We find a  $\lambda$  such that  $\lambda(p^e - 1)d = -z \mod p^{2e} - 1$ , by finding  $(d/k)^{-1} \mod (p^e + 1)/k$  in time  $O(\log(d/k))$ . We then set  $X := \zeta^{\lambda(p^e - 1)}I_d$ , so that  $XD \in \text{SU}(d, p^e)$ , and we choose  $G = \langle H, XD \rangle$ .

By Lemma 2.1 there are  $O(\log e) = O(\log \log q)$  groups to be constructed.

PROPOSITION 8.4. A set of representatives of the maximal subfield subgroups of SU(d, q) of orthogonal type can be constructed in time  $O(d^3 \log q + \log^3 q)$ .

*Proof.* These occur only for q odd. For  $\varepsilon \in \{+, -, \circ\}$ , let  $F^{\varepsilon}$  denote the matrix of the symmetric bilinear form preserved by  $O^{\varepsilon}(d, q)$ .

Suppose first that d is even. Then by [15, Proposition 4.5.5],  $G \cong Z. PSO^+(d, q).2$  or  $Z. PSO^-(d, q).2$ .

First we deal with the G of plus type. Let A, B,  $D_+$  and  $E_+$  be the generators of  $\mathrm{GO}^+(d,q)$ , as in Lemma 2.4. In this case, we have  $F^+=\mathrm{AntiDiag}[1,\ldots,1]$ . From the remarks following the proof of Proposition 3.3, we can take this to be the standard orthogonal form. All matrices in  $\mathrm{O}^+(d,q)$  are fixed by  $A\mapsto A^{\sigma_q}$ , so we may think of  $\mathrm{O}^+(d,q)$  as a subgroup of  $\mathrm{GU}(d,q)$ . Therefore  $H_0:=\langle A,B,C\rangle\cong Z.\,\mathrm{SO}^+(d,q)\leqslant\mathrm{SU}(d,q)$ .

We construct the outer involution. Let  $X := \zeta I_d$ , and let  $E := E_+ X^{-1}$ . Then  $EFE^* = F$ , so  $E \in N_{\mathrm{GU}(d,q)}(\mathrm{SO}^+(d,q))$ , and  $\mathrm{Det}(E) = \zeta^{d(q-1)/2}$ . Set  $H_1 := \langle H_0, D_+, E, X^{q-1} \rangle \leqslant \mathrm{GU}(d,q)$ . We construct an element W of  $H_1 \setminus H_0$  of determinant 1; then, up to conjugacy, we have  $G = \langle H_0, W \rangle$ .

First suppose that (q+1)/k is even, and let  $i_1 := (q^2-1)/2k$ . Then  $X^{i_1} \in H_1$ , and  $\operatorname{Det}(X^{i_1}) = -1$ , so  $\operatorname{Det}(X^{i_1}D_+) = 1$ . We must show that  $X^{i_1}D_+ \notin H_0$ . Suppose otherwise; then there exists a scalar  $S \in Z$  such that  $SX^{i_1}D_+ \in \operatorname{SO}^+(d,q)$ , so in particular  $SX^{i_1}D_+F^+(SX^{i_1}D_+)^T = F^+$ . This implies that  $S = \pm X^{-i_1}$ , contradicting  $S \in Z$ . We put  $W := X^{i_1}D_+$ .

Next suppose that d/k is even, and let m := (q+1)/k. Let  $i_2 := (q-1)(m+1)/2$ ; then the exponent z of  $\zeta$  in  $Det(X^{i_2})$  is

$$z = \frac{d(q-1)(m+1)}{2} = \frac{(q-1)dm}{2} + \frac{d(q-1)}{2}$$
$$= \frac{(q-1)(q+1)d}{2(d/2, q+1)} + \frac{d(q-1)}{2}$$
$$= \frac{d(q-1)}{2}.$$

Since  $X^{-i_2} \in \mathrm{GU}(d,q)$ , we see that  $EX^{-i_2} \in H_1$ . A short calculation shows that if there exists an S such that  $EX^{-i_2}S$  preserves  $F^+$ , then  $S = \pm X^{i_2+1-(q+1)/2}$ . But then  $S \notin Z$ , a contradiction. Thus  $EX^{-i_2} \notin H_0$ , and we put  $W := EX^{-i_2}$ .

Finally, suppose that m := d/k and (q + 1)/k are both odd. We have

$$Det(D_+E) = \zeta^{(d+q+1)(q-1)/2}.$$

Since ((q+1)/k, m) = 1, there exists an  $n \in \mathbb{Z}$  such that  $nm = 1 \mod (q+1)/k$ . We compute n in time  $O(\log m) = O(\log d)$ . Let

$$i_3 := \frac{(q-1)n(d+q+1)}{2k};$$

note that  $i_3$  is divisible by (q-1). Then

$$Det(X^{i_3}) = \zeta^{d(q-1)n(d+q+1)/2k} = \alpha^{nm},$$

where  $\alpha := \zeta^{(d+q+1)(q-1)/2}$ . Now,

$$|\alpha| = \frac{(q+1)}{(q+1,(d+q+1)/2)} = \frac{(q+1)}{k},$$

by our assumptions on d and (q+1). Then, since  $\alpha^{mn}=\alpha^{1+o(q+1)/k}$  for some  $o\in\mathbb{Z}$ , we have  $\alpha^{mn}=\alpha$ . Therefore  $\mathrm{Det}(D_+EX^{-i_3})=1$ . A short calculation shows that  $D_+EX^{-i_3}\not\in H_0$ , so we may set  $W:=D_+EX^{-i_3}$ .

Next we show how to construct  $G \cong Z$ . PSO $^-(d,q).2$  of minus type. We may assume that  $F^-$  is either  $I_d$  or  $\mathrm{Diag}[\omega,1,\ldots,1]$ , according to whether (q-1)d/4 is odd or even. Let  $A,B,D_-$  and  $E_-$  be as in Lemma 2.4, let X be as before, and let  $E:=X^{-1}E_-$  so that E preserves a unitary form with matrix  $F^-$ . If (q+1)/k is even, then  $W:=X^{i_1}D_-$ . If d/k is even, then  $W:=EX^{-i_2}$ . If the same power of 2 divides both (q+1) and d, then if d/2 is even,  $W:=D_-EX^{-i_3}$ , and if d/2 is odd,  $W:=EX^{-i_3}$ . We find a change of form matrix M using Proposition 3.2; then, up to conjugacy,  $G=\langle H_0^M,W^M\rangle$ .

The case when d is odd is similar but easier. It is shown in [15, Proposition 4.5.5] that  $G \cong Z$ . SO $^{\circ}(d, q)$ , and we leave the construction to the reader.

PROPOSITION 8.5. A representative of the maximal subfield symplectic subgroups of SU(d, q) can be constructed in time  $O(d^2 \log q + \log^2 q)$ .

*Proof.* Let d be even, let G be a maximal subfield subgroup of SU(d, q) of symplectic type, and let c := (2, q - 1)(q + 1, d/2)/(q + 1, d). Then, by [15, Proposition 4.5.6],

$$G \cong Z. \operatorname{PSp}(d, q).c.$$

Let F' be the symplectic form matrix AntiDiag[1, ..., 1, -1, ..., -1].

Let  $A, B \in SL(d, q)$  generate Sp(d, q), and consider A and B as elements of  $SL(d, q^2)$ . If c = 1, then let  $H := \langle A, B, C \rangle$ , so that  $G \cong H$ .

If  $c \neq 1$ , then q is odd. Let  $D \in \operatorname{SL}(d,q^2)$  map  $e_i \mapsto \zeta^{(q+1)/2}e_i$  and  $f_i \mapsto -\zeta^{-(q+1)/2}f_i$  for  $1 \leqslant i \leqslant l$ . Then  $D \in N_{\operatorname{SL}(d,q^2)}(\operatorname{Sp}(d,q))$ , as D preserves F' up to multiplication by -1. Let  $H := \langle A, B, C, D \rangle$ ; then  $H \cong G$ . We use the results in Section 3 to find M with  $H^M \leqslant \operatorname{SU}(d,q)$ , then up to conjugacy  $G = H^M$ . In fact, H preserves the form YF' with  $Y := -\zeta^{(q+1)/2}I_d$ , so the change of form can be carried out in time  $O(d^2\log q)$ .  $\square$ 

## 9. Groups of extraspecial and symplectic type

In this section we describe how to write down generators for the maximal subgroups of SL(d,q), Sp(d,q) and  $SU(d,q^{1/2})$  which are normalisers of extraspecial groups or of 2-groups of symplectic type.

## 9.1. Structure and conjugacy

For any prime r and any integer  $m \ge 1$ , there are two isomorphism types of extraspecial groups of order  $r^{2m+1}$ ; see, for example, [10, Theorem 5.2]. For r odd, we are concerned only with the isomorphism type that has exponent r, since the normaliser in  $\mathrm{GL}(r^m,q)$  of the other type of extraspecial group is a proper subgroup of the normaliser of an extraspecial group of exponent r.

For r=2, the extraspecial group of minus type is a central product of a quaternion group of order 8 with zero or more dihedral groups of order 8. By taking a central product of an extraspecial 2-group with a cyclic group of order 4, we obtain a 2-group of symplectic type.

In Table 3 we describe the maximal subgroups of extraspecial normaliser type in GL(d,q),  $GU(d,q^{1/2})$  and GSp(d,q), taken from [15, Table 4.6.B]. The extraspecial or symplectic-type groups E are represented in  $d=r^m$  dimensions over the field of  $q=p^e$  elements, where e is minimal subject to  $p^e\equiv 1 \mod |Z(E)|$  (equal to r or 4). Groups of type  $r^{1+2m}$ . Sp(2m,r) are the full normalisers in  $GL(r^m,q)$  or  $GU(r^m,q^{1/2})$  of an extraspecial r-group of order  $r^{1+2m}$  and exponent r, where r is odd. These groups are maximal in GL(d,q) if q is a nonsquare, and in  $GU(d,q^{1/2})$  if q is square. Groups of type  $(4\circ 2^{1+2m})$ . Sp(2m,2) are the normalisers in  $GL(2^m,q)$  or  $GU(2^m,q^{1/2})$  of a 2-group of symplectic type of order  $2^{1+2m}$ . Such a group is maximal in  $GL(2^m,q)$  if q is prime, and in  $GU(2^m,q^{1/2})$  if q is a square of a prime. Groups of type  $2^{1+2m}_-$ .  $O^-(2m,2)$  are the normalisers of a 2-group of minus type and order  $2^{1+2m}_-$  in GL(2,q) or  $Sp(2^m,q)$ . Such a group is maximal in GL(2,q) when q is prime and m=1, and is maximal in  $Sp(2^m,q)$  for m>1 and q prime.

## 9.2. Construction of the groups

We assume throughout this subsection that  $d = r^m$ , where r is a prime divisor of q - 1, and we let  $\omega$  be a primitive rth root of 1 in GF(q), constructed in time  $O(\log^2 q)$ .

We describe how to write down generators of E and of  $N_{GL(d,q)}(E)$ , but we do this in such a way that a set X of generators of  $N_{SL(d,q)}(E)$  occurs as a subset. The group generated by X will necessarily preserve a form of unitary or symplectic type, as appropriate. In the unitary case, the form preserved will be  $I_d$ , whereas in the symplectic case it will require a permutation of the basis to transform it to the standard antidiagonal form.

| Type                                | Case | Conditions               |
|-------------------------------------|------|--------------------------|
| $r^{1+2m}$ . Sp $(2m, r)$           | L    | q nonsquare, $r$ odd     |
|                                     | U    | q square, $r$ odd        |
| $(4 \circ 2^{1+2m})$ . Sp $(2m, 2)$ | L    | q prime, $d \geqslant 4$ |
|                                     | U    | $q = p^2$                |
| $2^{1+2m}_{-}$ . $O^{-}(2m,2)$      | L    | q prime, $d = 2$         |
|                                     | S    | q prime                  |

Table 3: Structure of extraspecial normalisers.

We describe this process first for the case when r is odd. The cases for r=2 require minor variations of the same recipe.

LEMMA 9.1. Let  $E \leq GL(d, q)$  be an extraspecial group of odd order and exponent r, with  $|E| = r^{2m+1}$ . Then E can be constructed in time  $O(d^2 \log d \log q + \log^2 q)$ .

*Proof.* Let  $X \in GL(r,q)$  be diagonal with  $X_{ii} = \omega^{i-1}$  for  $1 \le i \le r$ , and let  $Y \in GL(r,q)$  be the permutation matrix defined by the permutation  $(1,2,\ldots,r)$ . That is,  $Y_{i(i+1)} = 1$  for  $1 \le i < r$ , entry  $Y_{r1} = 1$ , and  $Y_{ij} = 0$  otherwise. Then the commutator [Y,X] is equal to  $\omega I_r$ , and so X and Y generate an extraspecial group M of order  $r^3$  and of exponent r.

Now for  $1 \le i \le m$ , we define  $X_i := I_{r^{m-i}} \otimes X \otimes I_{r^{i-1}}$  and  $Y_i := I_{r^{m-i}} \otimes Y \otimes I_{r^{i-1}}$ , where  $\otimes$  is the Kronecker product operation. The group E generated by the  $X_i$  and  $Y_i$  is a central product of m copies of  $\langle X, Y \rangle$ , and so it is an extraspecial group of the required type.

If r = 2, then the construction described above will produce an extraspecial 2-group of plus type.

LEMMA 9.2. Let E be as in Lemma 9.1. Then  $N_{GL(d,q)}(E)$  can be constructed in time  $O(d^2 \log d \log q + \log^2 q)$ .

*Proof.* Let  $U \in \operatorname{GL}(r,q)$  be diagonal, with  $U_{ii} = \omega^{i(i-1)/2}$ , and let  $V \in \operatorname{GL}(r,q)$  with  $V_{ij} = \omega^{(i-1)(j-1)}$  for  $1 \leqslant i, j \leqslant r$ . The reader can verify that  $X^U = X$  and  $Y^U = YX$ . One may also check that  $X^V = Y^{-1}$  and  $Y^V = X$ . So the group  $\langle U, V \rangle$  induces  $\operatorname{SL}(2,r) = \operatorname{Sp}(2,r)$  on  $\bar{M} := M/Z(M)$ . For  $1 \leqslant i \leqslant m$ , we define  $U_i := I_{r^{m-i}} \otimes U \otimes I_{r^{i-1}}$  and  $V_i := I_{r^{m-i}} \otimes V \otimes I_{r^{i-1}}$ .

Then the  $U_i$  and  $V_i$  all normalise E, and the group that they generate induces a direct product of m copies of  $\operatorname{Sp}(2, r)$  on  $\bar{E} := E/Z(E)$ .

Let  $W \in GL(r^2, q)$  be the permutation matrix defined by the permutation  $w \in S := \operatorname{Sym}(\{0, \dots, r^2 - 1\})$  that maps  $a \mapsto (a + ((a - 1) \mod r)r) \mod r^2$ . The matrix  $I_r \otimes Y$  is a permutation matrix coming from the permutation  $y_1 \in S$ , where  $ay_1 = (((a - 1) \operatorname{div} r)r + (a \mod r) + 1) \mod r^2$ . Similarly,  $Y \otimes I_r$  is a permutation matrix for  $y_2 \in S$ , where  $ay_2 = a + r \mod r^2$ . The reader can check that  $wy_2 = y_2w$ , and that  $y_1w = wy_1y_2$  satisfies

$$ay_1w = (((a-1)\operatorname{div} r + a \bmod r)r + (a \bmod r) + 1) \bmod r^2.$$

In general, if R is a diagonal matrix, and S is a permutation matrix defined from the permutation  $\sigma$ , then  $T := R^S$  is the diagonal matrix with  $T_{i^{\sigma},i^{\sigma}} = R_{ii}$ . Using this fact, the reader can check that  $I_r \otimes X$  is centralised by W, whereas  $(X \otimes I_r)^W = (I_r \otimes X)(X \otimes I_r)^{-1}$ .

For  $1 \le i \le m-1$ , we define  $W_i := I_{r^{m-1-i}} \otimes W \otimes I_{r^{i-1}}$ . From the relations on  $(X \otimes I_r)$  and W, we see that  $X_j^{W_i} = X_j$  for  $j \ne i+1$  and  $X_{i+1}^{W_i} = X_i X_{i+1}^{-1}$ , whereas  $Y_i^{W_i} = Y_j$  for  $j \ne i$  and  $Y_i^{W_i} = Y_i Y_{i+1}$ .

We claim that all of the elements  $U_i$ ,  $V_i$ ,  $W_i$ ,  $X_i$  and  $Y_i$ , together with the scalar matrices, generate  $N_{GL(d,q)}(E)$ . We have already seen that the group induced on  $\bar{E}$  by the  $U_i$  and  $V_i$  is the direct product of n copies of Sp(2,r). Now the only maximal subgroup of Sp(4,r), acting on the subspace  $\bar{E}_2 := \langle X_1, X_2, Y_1, Y_2 \rangle \leqslant \bar{E}$ , which contains  $Sp(2,r) \times Sp(2,r)$ , is the wreath product  $Sp(2,r) \wr C_2$ . This latter group acts imprimitively (as a group of linear transformations) on  $\bar{E}_2$ , and the blocks are the subspaces spanned by  $X_1, Y_1$  and  $X_2, Y_2$ . Now  $W_1$  fixes  $\bar{E}_2$ , but does not fix or interchange these two subspaces, so  $X_1, X_2, Y_1, Y_2$  and  $W_1$  must generate Sp(4,r) on  $\bar{E}_2$ . Since  $Sp(2k,r) \times Sp(2,r)$  is a maximal

subgroup of  $\operatorname{Sp}(2k+2,r)$  for k>1, we see by induction on k that  $U_i$ ,  $V_i$ ,  $X_i$  and  $Y_i$  for  $1\leqslant i\leqslant k$  and  $W_i$  for  $1\leqslant i\leqslant k$  generate  $\operatorname{Sp}(2k,r)$  in their action on the subspace  $\bar{E}_k:=\langle X_i,Y_i:1\leqslant i\leqslant k\rangle\leqslant \bar{E}$ . Our claim now follows from the case k=m and the known structure of the extraspecial normaliser.

It can be shown that for r=2, the group  $\langle V_i, X_i, Y_i, W_i \rangle$  is the normaliser of an extraspecial 2-group of plus type.

Next we study the normaliser in GL(d, q) of a 2-group E of symplectic type, for d > 2.

Lemma 9.3. The normaliser in GL(d, q) of a group E of symplectic type, where  $|E| = 2^{2m+2}$  and  $q \equiv 1 \mod 4$ , can be constructed in time  $O(d^2 \log d \log q + \log^2 q)$ .

*Proof.* Let  $\psi := \zeta^{(q-1)/4}$ , constructed in time  $O(\log^2 q)$ . In addition to the generators  $X_i$  and  $Y_i$ , defined as in Lemma 9.1, we include the scalar matrix  $Z := \psi I_d$  as a generator of E. Then E is a central product of an extraspecial group with a cyclic group of order 4. The  $O(\log d)$  generators for E are constructed in time  $O(d^2 \log d \log q + \log^2 q)$ .

We define  $V_i$  and  $W_i$  as in Lemma 9.2, but U is now defined to be to be the  $(2 \times 2)$ -diagonal matrix with  $U_{11} = 1$  and  $U_{22} = \psi$ . We find that  $X^U = X$  and  $Y^U = \psi XY$ . Let  $U_i := I_{2^{m-i}} \otimes U \otimes I_{2^{i-1}}$  for  $1 \leq i \leq m$ ; then  $Y_i^{U_i} = X_i Y_i Z$ . Thus, as in the case with r odd, the  $U_i$  and  $V_i$  together induce a direct product of m copies of  $\operatorname{Sp}(2,2)$  on  $\bar{E}$ , and it can be shown as before that the  $X_i, Y_i, Z, U_i, V_i$  and  $W_i$  together generate  $N_{\operatorname{GL}(d,q)}(E)$ . Since we have  $O(\log d)$  matrices, each requiring time  $O(d^2 \log q)$  to create (after the construction of  $\psi$ ), the total time is  $O(d^2 \log d \log q + \log^2 q)$ .

Finally, we turn to the case when E is an extraspecial 2–group of minus type. The construction here works also when d=2.

LEMMA 9.4. Let  $E \leq \operatorname{GL}(d,q)$  be an extraspecial 2-group of minus type, with  $d \geq 2$ . Then  $N_{\operatorname{GL}(d,q)}(E)$  can be constructed in time  $O(d^2 \log d \log q + \log^2 q)$ .

*Proof.* The matrices  $X_i$ ,  $Y_i$ ,  $V_i$  and  $W_i$  are defined exactly as before for i > 1. We define  $X_1$ ,  $Y_1$ ,  $U_1$ ,  $V_1$  and  $W_1$  as follows:

$$\begin{split} X_1 &:= I_{2^{m-1}} \otimes \left( \begin{array}{c} a & b \\ b & -a \end{array} \right), & \text{where } a^2 + b^2 = -1; \\ Y_1 &:= I_{2^{m-1}} \otimes \left( \begin{array}{c} 0 & -1 \\ 1 & 0 \end{array} \right); \\ U_1 &:= I_{2^{m-1}} \otimes \left( \begin{array}{c} 1 & 1 \\ -1 & 1 \end{array} \right); \\ V_1 &:= I_{2^{m-1}} \otimes \left( \begin{array}{c} 1 + a + b & 1 - a + b \\ -1 - a + b & 1 - a - b \end{array} \right); \\ W_1 &:= I_{2^{m-2}} \otimes \left( \begin{array}{c} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \end{array} \right), & \text{if } m > 1. \end{split}$$

The reader can check that the relations

$$X_1^{U_1} = Y_1 X_1, \qquad Y_1^{U_1} = Y_1, \qquad X_1^{V_1} = Y_1^{-1} \qquad \text{and} \qquad Y_1^{V_1} = Y_1 X_1$$

hold. The proof that these matrices generate the normaliser of E is similar to that of Lemma 9.2.

PROPOSITION 9.5. Representatives of all groups in Table 3 can be constructed in time  $O(d^3 \log d \log q + \log^2 q)$ .

*Proof.* We have shown that, in all cases, the matrices  $X_i$ ,  $Y_i$ ,  $U_i$ ,  $V_i$  and  $W_i$ , together with scalar matrices, generate  $G := N_{GL(d,q)}(E)$ . We start by replacing our existing generators by scalar multiples that lie in SL(d,q).

The determinants of the  $O(\log d)$  matrices above can be calculated in total time  $O(d^{\Omega} \log d \log q)$ . Computing the required scalar for a given matrix involves finding a dth root in GF(q), which by [9, Theorem 8.12] can be done in time  $O(d^3 \log d \log q)$ . But  $\det(X_i) = \det(Y_i) = 1$  for all i, and the determinants of  $U_i$ ,  $V_i$  and  $W_i$  are all independent of i, so we need only to compute three dth roots. Scalar multiplication is an  $O(d^2 \log q)$  time operation, so this can be done to the  $O(\log d)$  generators of G in time  $O(d^3 \log d \log q)$ .

Now the group  $\operatorname{Sp}(2m,r)$  is perfect, except when m=1 and  $r\leqslant 3$ , or when m=r=2. Whenever it is perfect, we have  $G=(G\cap\operatorname{SL}(d,q))Z(G)$ , where Z(G) consists of all scalar matrices in  $\operatorname{GL}(d,q)$ , and so our modified generators  $X_i,Y_i,U_i,V_i$  and  $W_i$  will all have determinant one. Although  $\operatorname{SO}^-(2m,2)$  is not perfect (it has a perfect subgroup of index 2 in general), it is a subgroup of  $\operatorname{Sp}(2m,2)$ , and so again we obtain  $G=(G\cap\operatorname{SL}(d,q))Z(G)$  for m>2.

This leaves only the cases  $d=r^m=2,3,4.$  If d=3 and  $r\equiv 1 \bmod 9$ , then  $G=(G\cap \operatorname{SL}(d,q))Z(G)$ , whereas when  $r\not\equiv 1 \bmod 9$ , we append  $V_1^{U_1}$  to the generating set. The situation is similar when d=2 or d=4, and we omit the details.

In cases S and U in Table 3, since the group that we have constructed as the normaliser of E in SL(d,q) has the structure specified in Table 3 and there is only one conjugacy class of groups isomorphic to E in GL(d,q) [15, Proposition 4.6.3], it follows that the constructed group must preserve a form of the corresponding type. By [10, Theorem 4.4], E acts absolutely irreducibly, and so it preserves a unique such form up to multiplication by scalars. Thus, in order to determine which form is preserved, we need only consider E.

We find that in case U the matrices  $X_i$  and  $Y_i$  preserve the unitary form  $I_d$ . In the symplectic case (that is, when r=2 and q is prime), the form preserved is

$$Diag \left[ \left( \begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right), \dots, \left( \begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) \right],$$

which can be transformed to the standard symplectic form by a permutation of the basis. So to conjugate the group that we have constructed into our standard version of Sp(d, q), we just need to carry out this permutation of the basis, which can be done in time  $O(d^2 \log q)$  for each of the  $O(\log d)$  generating matrices.

#### 10. Tensor-induced groups

In this section we describe how to write down generators for the tensor-induced subgroups G of  $\Omega$  that arise in Theorem 1.1. A group G is *tensor induced* if it preserves a decomposition  $V = V_1 \otimes V_2 \otimes \cdots \otimes V_t$ , with  $\dim(V_i) = m$  for  $1 \leq i \leq t$ ; the maximal groups in this class permute the *tensor factors*  $V_i$  transitively.

From [15, Table 4.7.A] we find that, for each divisor m of d, there is at most one such G, but they arise only for  $m \ge 3$  in cases L and U, and for m even and q and t both odd in case S.

Let  $H \leq \operatorname{GL}(m,q)$  be a matrix group, and let  $K \leq \operatorname{Sym}(t)$  be transitive. Then

$$H \operatorname{TWr} K := (H \circ \cdots \circ H).K$$

is the tensor wreath product of H and K (the 'TWr' stands for 'tensor wreath'). It is like

a standard wreath product, except that we take a *central* product of t copies of the base group with amalgamated subgroup  $H \cap Z(GL(m,q))$ . The group H TWr K is tensor-induced, with t tensor factors of dimension m.

Denote a basis of  $V_i$  by  $[v_{i1}, v_{i2}, \dots, v_{im}]$  for  $1 \le i \le t$ . A basis of  $V_1 \otimes \dots \otimes V_t$  is then  $[v_{11} \otimes v_{21} \otimes \cdots \otimes v_{t1}, \ v_{11} \otimes v_{21} \otimes \cdots \otimes v_{t2}, \ \ldots, \ v_{11} \otimes \cdots v_{(t-1)2} \otimes v_{t1}, \ \ldots, \ v_{1m} \otimes \cdots \otimes v_{tm}].$ 

If each tensor factor  $V_i$  has a bilinear or sesquilinear form  $F_i$ , then we can define a bilinear or sesquilinear form F on V by defining  $F(v_1 \otimes \cdots \otimes v_t, w_1 \otimes \cdots \otimes w_t) := \prod_{i=1}^t F_i(v_i, w_i)$ and extending by linearity.

LEMMA 10.1. Let  $H \leq GL(m, q)$  be generated by a set of  $s_1$  matrices, and let  $K \leq Sym(t)$ be transitive and generated by a set of  $s_2$  permutations. Then  $H \operatorname{TWr} K \leq \operatorname{GL}(m^t, q)$  can be constructed in time  $O((s_1 + s_2)m^{2t} \log q)$ .

*Proof.* Let  $(A_1, \ldots, A_{s_1}) := H$ . The base group is generated as a normal subgroup by  $\{A_1 \otimes I_m \otimes \cdots \otimes I_m, \ldots, A_{s_1} \otimes I_m \otimes \cdots \otimes I_m\}$ , since K is transitive. These matrices are written down in time  $O(s_1(m^t)^2 \log q)$ . The top group is generated by  $s_2$  permutation matrices. Calculating the positions of the nonzero entries involves  $O(s_2t)$  integer operations, and then writing down the matrices requires time  $O(s_2m^{2t}\log q)$ .

## *Linear tensor-induced groups*

PROPOSITION 10.2. A set of representatives for the maximal tensor-induced subgroups of SL(d,q) can be constructed in time  $O(d^2 \log^{\varepsilon} d \log q)$ , for any real  $\varepsilon > 0$ .

*Proof.* Let  $d = r^s$ , where r is not a proper power, and let Z := Z(SL(d, q)). We may assume that s > 1. Let G be a maximal tensor-induced subgroup of SL(d, q), and let  $\bar{G} := G/(G \cap Z)$ . Then Z(G) = Z, and by [15, Proposition 4.7.3] there exists a divisor t>1 of s such that  $d=m^t$ , where G preserves a decomposition  $\mathcal{D}: V=V_1\otimes\cdots\otimes V_t$ , and  $\bar{G}$  is isomorphic to one of the following:

(a) 
$$PSL(m, q)^2 \cdot \left[ \frac{(q-1, m)^3}{(q-1, d)} \right], \qquad t = 2, m \equiv 2 \mod 4, \ q \equiv 3 \mod 4;$$
  
(b)  $PSL(m, q)^t \cdot \left[ \frac{(q-1, d/m)(q-1, m)^t}{(q-1, d)} \right] \cdot Sym(t), \qquad \text{otherwise.}$ 

(b) 
$$\operatorname{PSL}(m,q)^t$$
.  $\left[\frac{(q-1,d/m)(q-1,m)^t}{(q-1,d)}\right]$ .  $\operatorname{Sym}(t)$ , otherwise.

Let  $D = \text{Diag}[\zeta, 1, ..., 1] \in \text{GL}(m, q)$ , and let  $C \in \text{GL}(d, q)$  generate Z. Then  $\langle SL(m,q), D \rangle = GL(m,q)$ , and  $D^{(q-1,m)} \in Z(GL(m,q)) SL(m,q)$ .

Suppose that (b) holds. Let  $H := SL(m, q) TWr Sym(t) \leq G$ , constructed in time  $O(d^2 \log q)$ , by Lemma 10.1. Let  $U := D \otimes D^{-1} \otimes I_m \otimes \cdots \otimes I_m \in GL(d,q)$ , constructed in time  $O(d^2 \log q)$ . Since the top group of the tensor wreath product acts transitively on  $\{V_i: 1 \leq i \leq t\}$ , we have

$$\overline{\langle H, C, U \rangle} \cong \mathrm{PSL}(m, q)^t.[(q-1, m)^{t-1}].\,\mathrm{Sym}(t).$$

Let  $H_1 := \langle H, C, U \rangle$ , and let  $E = D^{(q-1,d)/(q-1,d/m)} \otimes I_m \otimes \cdots \otimes I_m \in GL(d,q)$ . Then E preserves  $\mathcal{D}$ , and the reader may check that  $Det(E) = \zeta^{(q-1,d)d/(q-1,d/m)m}$ , so  $E \in Z(GL(d,q))G$ . We use the Euclidean algorithm to find, in time  $O(\log d)$ , a power  $\mu$  of  $\zeta$  such that  $\operatorname{Det}(\mu I_d) = \zeta^{(q-1,d)}$ . We then set  $S := \mu^{-d/(q-1,d/m)m}I_d$ , so that  $SE \in G$ . It follows from the definition of D that  $[\langle H_1, SE \rangle : H_1] = (q-1, d/m)(q-1, m)/(q-1, d),$ so up to conjugacy  $G = \langle H_1, SE \rangle$ . We construct SE in time  $O(d^2 \log q)$ , as  $m^{t-1} < d$ , so constructing S as a scalar requires time  $O(d \log d \log q)$ .

Next suppose that (a) holds. Let  $H=Z.(\operatorname{SL}(m,q)\circ\operatorname{SL}(m,q))$ , and let  $U:=D\otimes D^{-1}$ ; then  $\operatorname{Det}(U)=1$  and  $[\langle H,U\rangle:H]=(q-1,m)$ . Let  $E:=D^{(q-1,m^2)/(q-1,m)}\otimes I_m$ . Then  $\operatorname{Det}(E)=\zeta^{(q-1,m^2)m/(q-1,m)}$ , so  $E\in Z(\operatorname{GL}(d,q))G$ . Let  $\mu$  be as in the previous paragraph (with t=2), and let  $S:=\mu^{-m/(q-1,m)}I_d$ . Then  $\operatorname{Det}(SE)=1$ , so  $SE\in G$ . Let  $i\in\mathbb{N}$  be minimal subject to  $(SE)^i\in \langle H,U\rangle$ . Then  $\zeta^{(q-1,m^2)i/(q-1,m)}$  is the determinant of a scalar of  $\operatorname{GL}(m,q)$ , and so (q-1,m) divides  $(q-1,m^2)i/(q-1,m)$ . Thus i is a multiple of  $(q-1,m)^2/(q-1,m^2)$ , and so  $G=\langle H,U,SE\rangle$ . The complexity in this case is the same as before.

The result then follows from Lemma 2.1.

## 10.2. Symplectic tensor-induced groups

PROPOSITION 10.3. A set of representatives of the maximal tensor-induced subgroups of Sp(d, q) may be constructed in time  $O(d^3 \log^{\varepsilon} d \log q)$ , for any real  $\varepsilon > 0$ .

*Proof.* Let G be a maximal tensor-induced subgroup of  $\operatorname{Sp}(d,q)$ , and let  $\bar{G} = G/Z(G)$ . Then, by [15, Proposition 4.7.4], we have  $d = m^t$  for some  $m, t \in \mathbb{N}$  with t > 1 odd, where  $(m,q) \neq (2,3)$  and

$$\bar{G} \cong PSp(m, q)^t . 2^{t-1} . Sym(t)$$

with  $Z(G) = \{\pm I\} = Z(\operatorname{Sp}(d, q))$ . Denote the decomposition of V that G preserves by  $\mathcal{D}: V = V_1 \otimes \cdots \otimes V_t$ .

We construct  $H := \operatorname{Sp}(m,q)\operatorname{TWr}\operatorname{Sym}(t)$  in time  $O(d^2\log q)$ , by Lemma 10.1. Then H preserves  $\mathcal{D}$ , and from the discussion preceding Lemma 10.1, H preserves a symplectic form. Therefore H is  $\operatorname{GL}(d,q)$ -conjugate to a subgroup of G of index  $2^{t-1}$ . Let  $D = \operatorname{Diag}[\zeta,\ldots,\zeta,1,\ldots,1]$  so that  $\langle\operatorname{Sp}(m,q),D\rangle = \operatorname{GSp}(m,q)$ . Let  $U := D\otimes D^{-1}\otimes I_m\otimes \cdots\otimes I_m\in\operatorname{GL}(d,q)$ . We define  $H_1:=\langle H,U\rangle$ ; then  $H_1\cong G$ . By the results in Section 3, we may find a matrix M in time  $O(d^3\log q)$  such that  $H_1^M=G$ .

By Lemma 2.1, there are  $O(\log^{\varepsilon} d)$  groups to be constructed.

#### 10.3. Unitary tensor-induced groups

We use the form F = AntiDiag[1, ..., 1], and we let Z := Z(SU(d, q)).

PROPOSITION 10.4. A set of representatives of the maximal tensor-induced subgroups of SU(d, q) can be constructed in time  $O(d^3 \log^{\varepsilon} d \log q)$ , for any real  $\varepsilon > 0$ .

*Proof.* Let  $d = r^s$ , where r is not a proper power and s > 1. Let G be a maximal tensor-induced subgroup of SU(d,q), and let  $\bar{G} := G/(G \cap Z)$ . Then Z(G) = Z and by [15, Proposition 4.7.3], there exists a divisor t of s such that  $d = m^t$ , G preserves a decomposition  $\mathcal{D}: V = V_1 \otimes \cdots \otimes V_t$ , and  $\bar{G}$  is isomorphic to one of the following:

(a) 
$$PSL(m, q)^2$$
.  $\left[\frac{(q+1, m)^3}{(q+1, d)}\right]$ ,  $t = 2, m \equiv 2 \mod 4, q \equiv 3 \mod 4$ ;

(b) 
$$PSL(m,q)^t$$
.  $\left[\frac{(q+1,d/m)(q+1,m)^t}{(q+1,d)}\right]$ . Sym $(t)$ , otherwise.

The construction of G is almost identical to that of Proposition 10.2, and we leave it to the reader.

## 11. Classical subgroups

Finally, we describe how to construct the classical subgroups G of  $\Omega$  arising in Theorem 1.1. These are summarised in Table 4, which comes from [15, Table 4.8.A]. The type is the quasisimple group contained in G. Note that the unitary groups have no maximal classical subgroups.

# 11.1. Linear classical groups

In this subsection, let Z := Z(SL(d, q)), and let C generate Z.

PROPOSITION 11.1. A representative of the maximal classical subgroups of SL(d, q) of symplectic type may be constructed in time  $O(d^2 \log q + \log^2 q)$ .

*Proof.* Let G be a maximal symplectic subgroup of SL(d, q), and let

$$c := \frac{(q-1,2)(q-1,d/2)}{(q-1,d)}.$$

Then, by [15, Proposition 4.8.3],  $G \cong Z$ . PSp(d, q).c.

Let  $A, B \in SL(d, q)$  generate Sp(d, q), constructed in time  $O(d^2 \log q)$  as in Lemma 2.3. If q is even or if (q-1, d/2) = (q-1, d)/2, then, up to conjugacy,  $G = \langle A, B, C \rangle$ . Suppose otherwise, and let

$$D := \operatorname{Diag}[\zeta, \dots, \zeta, 1, \dots, 1] \in N_{\operatorname{GL}(d,q)}(\operatorname{Sp}(d,q)) \setminus \langle C, \operatorname{Sp}(d,q) \rangle.$$

Then  $Det(D) = \zeta^{d/2}$ .

Solve  $di \equiv d/2 \mod (q-1)$  in time  $O(\log(d/(d,q-1))) = O(\log d)$ , as in the proof of Proposition 8.1. Compute  $\zeta^{-i}$  in time  $O(\log^2 q)$ , and construct  $E := \zeta^{-i}D$  in time  $O(d^2 \log q)$ . Then  $E \in N_{\mathrm{SL}(d,q)}(\mathrm{Sp}(d,q))$ . Since no scalar multiple of D lies in  $\mathrm{Sp}(d,q)$ , up to conjugacy  $G = \langle A, B, C, E \rangle$ .

PROPOSITION 11.2. A set of representatives of the maximal orthogonal subgroups of SL(d, q) may be constructed in time  $O(d^3 \log q + \log^3 q)$ .

*Proof.* For  $\varepsilon \in \{+, -, \circ\}$ , let  $G_{\varepsilon}$  be a maximal orthogonal subgroup of SL(d, q) of type  $\varepsilon$ . Then q is odd and  $G_{\varepsilon} \cong Z$ .  $SO^{\varepsilon}(d, q).(d, 2)$  [15, Proposition 2.8.2].

Let  $A_{\varepsilon}$  and  $B_{\varepsilon}$  generate  $SO^{\varepsilon}(d, q)$ , as in Lemma 2.4. If d is odd, then up to SL-conjugacy, G = Z. SO(d, q). Suppose that d is even, and let  $W_{\varepsilon}$  be as defined in Proposition 8.4. Then, up to conjugacy,  $G_{\varepsilon} = \langle A_{\varepsilon}, B_{\varepsilon}, C, W_{\varepsilon} \rangle$ .

PROPOSITION 11.3. A representative of the maximal unitary subgroups of SL(d, q) may be constructed in time  $O(d^2 \log q + \log^2 q)$ .

Table 4: Maximal classical groups.

| Case | Type                        | Conditions                |
|------|-----------------------------|---------------------------|
| L    | Sp(d, q)                    | $d$ even, $d \geqslant 4$ |
| L    | $SU(d, p^{e/2})$            | $e$ even, $d \geqslant 3$ |
| L    | $\Omega^{\varepsilon}(d,q)$ | $q$ odd, $d \geqslant 3$  |
| S    | $SO^{arepsilon}(d,q)$       | $q$ even, $d \geqslant 4$ |

*Proof.* Let G be a maximal unitary subgroup of SL(d, q), and let  $q = p^e$ . Then e is even, and we let  $q_0 := p^{e/2}$  and

$$c := \frac{(q_0 + 1, d)(q - 1)}{[q_0 + 1, (q - 1)/(q - 1, d)](q - 1, d)}.$$

By [15, Proposition 4.8.5], we have Z(G) = Z and  $G/Z \cong PSU(d, q_0).[c]$ .

Let A and B generate  $SU(d, q_0)$ , with a form represented by the identity matrix. If c = 1, then up to conjugacy,  $G = \langle A, B, C \rangle$ .

Suppose otherwise, and let  $D := \operatorname{Diag}[\zeta^{q_0-1}, 1, \ldots, 1] \in \operatorname{GL}(d, q)$ , so that we have  $\langle A, B, D \rangle = \operatorname{GU}(d, q_0)$ , and  $\langle \operatorname{GU}(d, q_0), \zeta I_d \rangle = N_{\operatorname{GL}(d,q)}(\operatorname{SU}(d, q_0))$ . The group of order c consists of all products of D and  $\zeta I_d$  of determinant 1. Similarly to the tensor-product case, we find generators for the normaliser by finding a basis for the nullspace of  $[q_0-1,d,q-1]$ , in time  $O(d\log q)$ . This yields at most two matrices, X and Y. We may set  $G = \langle A, B, C, X, Y \rangle$ .

## 11.2. Symplectic classical groups

PROPOSITION 11.4. A set of representatives of the maximal classical subgroups of  $\operatorname{Sp}(d,q)$  may be constructed in time  $O(d^3 \log q + \log^3 q)$ .

*Proof.* The maximal classical subgroups of  $\operatorname{Sp}(d,q)$  are orthogonal, of types  $\varepsilon \in \{+, -\}$ , and occur only for even q; see [15]. Let  $G_{\varepsilon}$  be a maximal classical subgroup of  $\operatorname{Sp}(d,q)$  of type  $\varepsilon$ . By [15, Proposition 4.8.6],

$$\frac{G_{\varepsilon}}{(G_{\varepsilon}\cap Z(\operatorname{Sp}(d,q)))}\cong\operatorname{O}^{\varepsilon}(d,q).$$

Since  $Z(\operatorname{Sp}(d,q)) = 1$  for q even, and  $\operatorname{O}^{\varepsilon}(d,q) = \operatorname{SO}^{\varepsilon}(d,q)$  for q even, we generate  $H_{\varepsilon} \sim_{GL} G$  in time  $O(d^3 \log + \log^3 q)$ , by Lemma 2.4.

For even q, the matrix of the symmetric bilinear form preserved by  $H_{\varepsilon}$  is also the matrix of a symplectic form. Our choice of form implies that  $H_{+} \leq \operatorname{Sp}(d,q)$ , and so, up to conjugacy, G = H. We use Proposition 3.1 to conjugate  $H_{-}$  to preserve our chosen symplectic form.

#### 12. The symplectic groups in dimension four

In dimension 4, if q is even, then PSp(4, q) = Sp(4, q) has a *graph* automorphism, arising from the Dynkin diagram for  $C_2$ . Groups that contain the graph automorphism have a different subgroup structure from other symplectic groups; they do not have the standard Aschbacher classes of subgroups, but behave as described in this section. Throughout,  $q := 2^e$ , and we assume that e > 1 since  $Sp(4, 2) \cong Sym(6)$ .

The group that consists of  $\operatorname{Sp}(4,q)$  extended by a graph automorphism is denoted  $\operatorname{Sp} 2(4,2^e) := \operatorname{Sp}(4,2^e).2$ . The full automorphism group of  $\operatorname{Sp}(4,2^e)$  is denoted  $\operatorname{\Gamma}\operatorname{Sp} 2(4,2^e) := \operatorname{\Gamma}\operatorname{Sp}(4,2^e)\langle\iota\rangle = \operatorname{Sp}(4,2^e).e.2$ . The maximal subgroups of  $\operatorname{Sp} 2(4,2^e)$  all extend to maximal subgroups of  $\operatorname{\Gamma}\operatorname{Sp} 2(4,2^e)$ , and *vice versa*, so it suffices to discuss the maximal subgroups of this latter group.

We give a statement of Aschbacher's theorem for this family of groups; see [1, Theorem 14.2] for more details.

- THEOREM 12.1. Let K be a maximal subgroup of  $\Gamma \operatorname{Sp} 2(4, 2^e)$ , where e > 2, and let  $G := K \cap \operatorname{Sp}(4, 2^e)$ . Then G lies in one of the following classes.
- $A_1$ : the stabiliser of a point and a totally singular subspace containing it. There is a unique conjugacy class of such groups in Sp(4,  $2^e$ ).
- $A_2$ : the stabiliser of an imprimitive decomposition and a quadratic form of plus type. There are two nonisomorphic classes of such groups in  $Sp(4, 2^e)$ .
- $A_3$ : a semilinear group, of a degree 2 field extension, that preserves a quadratic form of minus type. There is a unique conjugacy class of such groups in  $Sp(4, 2^e)$ .
- $A_4$ : a subfield group over  $GF(2^f)$  where e/f is prime. For each choice of f, there is a unique conjugacy class of such groups in  $Sp(4, 2^e)$ .
- A<sub>5</sub>: the Suzuki group  $Sz(2^e)$ . These occur only when e is odd, in which case there is a unique conjugacy class of such groups in  $Sp(4, 2^e)$ .
  - 8. G is almost simple modulo scalars, written over a minimal field, is absolutely irreducible, and is not semilinear.

In class  $A_2$ , there are two families of groups. This is because the space  $GF(2^e)^4$ , equipped with a quadratic form Q of plus type, has two direct sum decompositions. The first is into two 2-spaces, each of plus type. The second is into two 2-spaces, each of minus type. The stabiliser in  $SO^+(4, 2^e)$  of the first type of decomposition is  $SO^+(2, 2^e) \wr Sym(2)$ , and the stabiliser of the second is  $SO^-(2, 2^e) \wr Sym(2)$ .

It is the novelty subgroups in classes  $A_1$ ,  $A_2$  and  $A_3$  that we must describe how to construct, as well as the Suzuki group Sz(q). Note that from the perspective of Aschbacher's theorem for PSp(4, q), the Suzuki group is considered to lie in  $\delta$ . However, since it is the centraliser in PSp(4, q) of an outer involution, it constitutes an Aschbacher class in its own right when we are discussing  $\Gamma Sp 2(4, q)$ .

Lemma 12.2. A representative of the groups in class  $A_1$  can be constructed in time O(e).

*Proof.* Let G be the intersection of a point stabiliser and a subspace stabiliser. Without loss of generality, the point is  $V := \langle e_1 \rangle$ , and the subspace (which is maximal isotropic) is  $W := \langle e_1, e_2 \rangle$ .

Let  $A_1 := \text{Diag}[\zeta, 1, 1, \zeta^{-1}]$  and  $A_2 := \text{Diag}[1, \zeta, \zeta^{-1}, 1]$ . Let  $T_1$  be a transvection with 1 in positions (2, 1) and (4, 3), and zeros in all other off-diagonal entries. Let  $T_2$  be a transvection with 1 in positions (3, 1) and (4, 2), and zeros in all other off-diagonal entries. Similarly, let  $T_3$  have a 1 in position (3, 3), and let  $T_4$  have a 1 in position (4, 1).

The reader may check that all six of these matrices lie in Sp(4, q). It is clear that they all stabilise V and W. The reader may also check that any matrix that is in the symplectic group and stabilises V and W can be written as a product of these.

LEMMA 12.3. Representatives of the two conjugacy classes of groups in class  $A_2$  can be constructed in time  $O(e^3)$ .

*Proof.* We construct  $SO^+(2, q)$  in time  $O(e^3)$ , and then construct  $SO^+(2, q) \wr Sym(2)$  in constant time. We use the results of Section 3 to conjugate  $SO^+(2, q) \wr Sym(2)$  so that it preserves our standard symplectic form. We proceed similarly for  $SO^-(2, q) \wr Sym(2)$ .  $\square$ 

Lemma 12.4. A representative of the groups in class  $A_3$  can be constructed in time  $O(e^2)$ .

*Proof.* We let A be the companion matrix for a primitive element of  $GF(q^4)$  over GF(q). Then A has order  $q^4 - 1$ . Let  $B := A^{q^2 - 1}$ , calculated in time  $O(e^2)$ . We let C be the image of

the field automorphism  $x \mapsto x^q$  of  $GF(q^4)$ . Then C normalises B. The group  $H := \langle B, C \rangle$  is isomorphic to a maximal semilinear subgroup of  $SL(2, q^2) \cong SO^-(4, q)$ , and hence is the intersection of  $SO^-(4, q)$  with  $Sp(2, q^2)$ .2. We use the results of Section 3 to conjugate H to a suitable group  $G \leq Sp(4, q)$ .

LEMMA 12.5. We construct a representation of  $Sz(2^e)$  in time  $O(e^2)$ .

*Proof.* An explicit isomorphism between the Chevalley group  $C_2(2^e)$  (equal to  $B_2(2^e)$ ) and  $Sp(4, 2^e)$  is constructed in [6, Theorem 11.3.2], and the graph automorphism g of  $B_2(2^e)$  is defined in [6, Proposition 12.3.3]. The Suzuki group  $Sz(2^e)$  for e odd is defined in [6, Section 13.4] as the subgroup of  $B_2(2^e)$  fixed by the involutory automorphism gf of  $B_2(2^e)$ , for a suitably chosen field automorphism f. This enables us to construct explicit generators of  $Sz(2^e)$  as a subgroup of  $Sp(4, 2^e)$ . Let  $f = 2^{(e+1)/2}$ . Then, for  $f = 2^e$ , they can be chosen

$$\begin{pmatrix} \zeta & 0 & 0 & 0 \\ 0 & \zeta^{t-1} & 0 & 0 \\ 0 & 0 & \zeta^{1-t} & 0 \\ 0 & 0 & 0 & \zeta^{-1} \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 1 & 0 & \zeta & \zeta^t \\ 0 & 1 & 0 & \zeta \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

which can be constructed in time  $O(e^2) = O(\log^2 q)$ .

# References

- 1. M. ASCHBACHER, 'On the maximal subgroups of the finite classical groups', *Invent. Math.* 76 (1984) 469–514. 46, 76
- 2. R. Beals, C. R. Leedham-Green, A. C. Niemeyer, C. E. Praeger and Á. Seress, 'A black-box group algorithm for recognizing finite symmetric and alternating groups. I', *Trans. Amer. Math. Soc.* 355 (2003) 2097–2113. 47
- **3.** W. Bosma and J. J. Cannon, eds, *Handbook of Magma functions*, edn 2.9 (School of Mathematics and Statistics, University of Sydney, 1995). 47
- **4.** P. BÜRGISSER, M. CLAUSEN and M. A. SHOKROLLAHI, *Algebraic complexity theory* (Springer, Berlin, 1990). 48, 51
- **5.** J. J. Cannon and D. F. Holt, 'Computing maximal subgroups of finite groups', *J. Symbolic Comput.*, to appear. 46
- **6.** R. W. Carter, *Simple groups of Lie type* (Wiley, London/New York/Sydney/Toronto, 1972). 78
- 7. J. D. DIXON and B. MORTIMER, 'The primitive permutation groups of degree less than 1000', *Math. Proc. Cambridge Philos. Soc.* 103 (1988) 213–238. 47
- 8. B. EICK and A. HULPKE, 'Computing the maximal subgroups of a permutation group I', *Groups and computation III*, Ohio, 1999 (ed. W. M. Kantor and Á. Seress, Walter de Gruyter, Berlin/New York, 2001) 155–168. 46
- **9.** K. O. GEDDES, S. R. CZAPOR and G. LABAHN, *Algorithms for computer algebra* (Kluwer Academic Publishers, Boston/Dordrecht/London, 1992). 49, 72
- 10. D. Gorenstein, Finite groups (Harper and Row, New York/London, 1968). 69, 72
- **11.** G. H. HARDY and E. M. WRIGHT, *An introduction to the theory of numbers*, 5th edn (Oxford University Press, New York, 1979). 49, 66
- **12.** G. Hiss and G. Malle, 'Low dimensional representations of quasi-simple groups', *LMS J. Comput. Math.* 4 (2001) 22–63;

http://www.lms.ac.uk/jcm/4/lms2000-014.46

- D. F. HOLT and S. REES, 'Testing modules for irreducibility', J. Austral. Math. Soc. Ser. A 57 (1994) 1–16. 51
- **14.** W. M. Kantor and Á. Seress, 'Black box classical groups', *Mem. Amer. Math. Soc.* 149 (2001) no. 708, viii+168 pp. 47
- **15.** P. KLEIDMAN and M. W. LIEBECK, *The subgroup structure of the finite classical groups* (Cambridge Univ. Press, Cambridge, 1990). 46, 47, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 74, 75, 76
- **16.** R. LIDL and H. NIEDERREITER, *Finite fields*, Encyclopedia Math. Appl. 20 (Addison-Wesley, Reading, MA, 1983). 61
- 17. M. W. LIEBECK and G. M. SEITZ, 'A survey of maximal subgroups of exceptional groups of Lie type', *Groups, combinatorics & geometry* (Durham, 2001) (ed. A. A. Ivanov, M. W. Liebeck and J. Saxl, World Scientific, River Edge, NJ, 2003) 139–146, 48
- **18.** M. W. LIEBECK, C. E. PRAEGER and J. SAXL, 'A classification of the maximal subgroups of the finite alternating and symmetric groups', *J. Algebra* 111 (1987) 365–383. 47
- **19.** M. W. LIEBECK, C. E. PRAEGER and J. SAXL, 'The maximal factorizations of the finite simple groups and their automorphism groups', *Mem. Amer. Math. Soc.* 86 (1990) no. 432, iv+151 pp. 47
- **20.** F. LÜBECK, 'Small degree representations of finite Chevalley groups in defining characteristic', *LMS J. Comput. Math.* 4 (2001) 135–169; http://www.lms.ac.uk/jcm/4/lms2000-015.46
- **21.** C. M. Roney-Dougal, 'Conjugacy of subgroups of the general linear group', *Exp. Math.* 13 (2004) 151–163. 49
- **22.** V. STRASSEN, 'Gaussian elimination is not optimal', *Numer. Math.* 13 (1969) 354–356. 49
- **23.** D. E. TAYLOR, 'Pairs of generators for matrix groups, I', *The Cayley Bulletin* 3 (1987) 76–85. 56, 57, 62
- 24. R. A. WILSON, P. WALSH, J. TRIPP, I. SULEIMAN, S. ROGERS, R. PARKER, S. NORTON, S. NICKERSON, S. LINTON and J. BRAY, ATLAS of finite group representations, http://web.mat.bham.ac.uk/atlas/v2.0/.48

Derek F. Holt dfh@maths.warwick.ac.uk http://www.maths.warwick.ac.uk/~dfh/

Mathematics Institute The University of Warwick Coventry, CV4 7AL United Kingdom

Colva M. Roney-Dougal colva@dcs.st-and.ac.uk
http://www.dcs.st-and.ac.uk/~colva/

School of Computer Science The University of St. Andrews Fife KY16 9SS United Kingdom