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AN ALTERNATIVE CHARACTERIZATION FOR
MATRIX EXPONENTIAL DISTRIBUTIONS
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Abstract

A necessary condition for a rational Laplace–Stieltjes transform to correspond to a matrix
exponential distribution is that the pole of maximal real part is real and negative. Given a
rational Laplace–Stieltjes transform with such a pole, we present a method to determine
whether or not the numerator polynomial admits a transform that corresponds to a matrix
exponential distribution. The method relies on the minimization of a continuous function
of one variable over the nonnegative real numbers. Using this approach, we give an
alternative characterization for all matrix exponential distributions of order three.
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1. Introduction

Matrix exponential (ME) distributions were first introduced in 1955 by Cox [9], [10] as
distributions with rational Laplace–Stieltjes transform (LST). Lipsky and Ramaswami [18] (see
also [2]) showed that such distributions can also be defined in terms of a generator matrix T , a
row vector α, and a column vector t , rather like the familiar phase-type distributions introduced
by Neuts [20] (see also [21, Chapter 2]) but without the simple probabilistic interpretation in
terms of Markov chains. Asmussen and O’Cinneide [4] provided an excellent introduction to
the topic.

Although ME distributions have been used in many diverse areas such as queueing theory [8,
pp. 321–331], [17], [26], insurance risk [1, pp. 240–244], [5], renewal theory [2], [7], and
telecommunications [16], [19], their usage is significantly less widespread than that of phase-
type distributions. There are two main reasons for this. First, there is no simple probabilistic
interpretation for ME distributions; and second, there is no straightforward method to ascertain
whether or not a given generator T , and vectors α and t correspond to an ME distribution. In
this paper we focus on the second problem; excellent interpretations for ME distributions can
be found in [3] and [7].

There are only a few instances in the literature where the second problem has been addressed,
and then only for particular classes of ME distributions; see, for example, [15], [27], [28],
and [29]. Dehon and Latouche [11] approached the problem of characterizing generalized
hyper-exponential distributions geometrically, as did O’Cinneide [24], who used the concept
of invariant polytopes (see [23]).

Fackrell [12] (see also [6]) developed a geometric characterization for ME distributions.
A necessary condition for a rational LST to correspond to an ME distribution is that its pole
of maximal real part is both real and negative (see [28]). If this is the case then the set
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of all admissible numerator coefficients can be defined in terms of an uncountably infinite
intersection of linear half-spaces. Using this characterization, Fackrell [12] gave a complete
analytic description for the set (called �p, p being the order of the ME representation) for
the order 3 case. In this paper, rather than attempt to derive an analytic description for �p in
general, we focus on determining when a given rational LST corresponds to an ME distribution.
In fact, this approach enables us to develop an alternative description for �3.

The structure of the paper is as follows. In Section 2 we formally define ME distributions.
The development of �p is described in Section 3. In Section 4 we present our algorithm to
determine, given a suitable denominator polynomial, whether or not a rational LST’s numerator
polynomial corresponds to an ME distribution. Section 5 contains some examples to illustrate
the approach. The alternative characterization for �3 is given in Section 6, and the paper
concludes with Section 7.

2. Matrix exponential distributions

A nonnegative random variable is distributed according to an ME distribution if its distribu-
tion function, defined for u ≥ 0, has the form

F(u) =
{

α0, u = 0,

1+ α exp(T u)T −1t, u > 0,
(2.1)

where, for finite p ≥ 1, α is a 1× p row vector, T is a p × p matrix, and t is a p × 1 column
vector, all possibly with complex entries. The parameter α0 ∈ [0, 1] is known as the point
mass at zero and can be derived from the other parameters. We will not consider the case
when α0 = 1 as this gives the trivial distribution function. Distribution (2.1) is said to have a
representation (α, T , t) of order p. The corresponding density function, defined for u > 0, is
given by

f (u) = α exp(T u)t .

We set f (0) = αt for convenience. The LST of (2.1), defined for at least s in the right complex
plane and possibly for s with Re(s) > −δ for some positive number δ, is given by

φ(s) =
∫ ∞

0
e−su dF(u)

= α(sI − T )−1t + α0

= apsp−1 + ap−1s
p−2 + · · · + a1

sp + bpsp−1 + bp−1sp−2 + · · · + b1
+ α0, (2.2)

where a1, a2, . . . , ap, b1, b2, . . . , bp are all real; see [2] or [18]. The zeros of the numerator
polynomial a(s) are referred to as the zeros of the LST, and the zeros of the denominator
polynomial b(s) are referred to as the poles of the LST. If a(s) and b(s) have no factors in
common then the algebraic degree of the ME distribution is defined to be the degree of b(s);
see [22].

In general, representations for ME distributions are not unique, and they do not necessarily
have the same order. A representation that has minimal order will be called a minimal
representation. The order of the ME distribution is defined to be the order of any minimal
representation.
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Given a rational LST of the form (2.2) that corresponds to an ME distribution, we can easily
find an ME representation for it. One such representation is given by

α = (a1, a2, . . . , ap), (2.3)

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0 0
0 0 1 . . . 0 0

0 0 0
. . . 0 0

...
...

. . .
. . .

. . .
...

0 0 0
. . . 0 1

−b1 −b2 −b3 . . . −bp−1 −bp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.4)

t =

⎛
⎜⎜⎜⎜⎜⎝

0
0
...

0
1

⎞
⎟⎟⎟⎟⎟⎠ = ep; (2.5)

see [2, Proposition 2.3]. Note that this representation is not necessarily minimal.

The representation (2.3)–(2.5) is important for a number of reasons. First, it shows that a
representation with only real parameters can be found for any ME distribution. Second, because
the characteristic equation of the companion matrix (2.4) is

b(s) = sp + bpsp−1 + bp−1s
p−2 + · · · + b1 = 0,

the set of eigenvalues of T contains the set of poles of the LST (the two sets will be identical if
a(s) and b(s) have no factors in common). Third, and most importantly, every ME distribution
has a unique minimal representation of the form (2.3)–(2.5), whose order is the distribution’s
algebraic degree. If this is the case then the corresponding a(s) and b(s) will have no factors
in common.

Owing to the one-to-one correspondence between the polynomials a(s) and b(s), and the
representation (2.3)–(2.5), for the remainder of the paper, we will freely interchange between the
polynomials, representation, and the vectors a = (a1, a2, . . . , ap) and b = (b1, b2, . . . , bp).

3. Characterization of matrix exponential distributions

In this section we describe the development of �p, the set of all vectors a that admit ME
distributions, as long as b(s) has a zero of maximal real part that is real and negative. For the
remainder of the paper, we assume that b(s) satisfies this condition.

For a and b to correspond to an ME distribution,

1. f (u) = α exp(T u)ep ≥ 0 for u ≥ 0, and

2. 0 < a1/b1 ≤ 1.
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Suppose that condition 2 holds. Then condition 1 imposes constraints on a2, a3, . . . , ap−1.
Let

exp(T u)ep =

⎛
⎜⎜⎜⎝

f1(u)

f2(u)
...

fp(u)

⎞
⎟⎟⎟⎠ ,

a p × 1 vector of functions depending on u. It can be shown that, for i = 1, 2, . . . , p,

fi(u) = f
(i−1)
1 (u) = e�1 T i−1 exp(T u)ep, (3.1)

where f
(i)
1 (u) is the ith derivative of f1(u), ei is the p × 1 vector with a 1 in the ith position

and 0s elsewhere, and ‘�’ denotes the transpose. Furthermore,

f1(0) = f
(1)
1 (0) = f

(2)
1 (0) = · · · = f

(p−2)
1 (0) = 0 and f

(p−1)
1 (0) = 1;

see [12, Theorem 5.11] or [6].
Now, for u ≥ 0, the inequality in condition 1 can be written as

f (u) = a1f1(u)+ a2f2(u)+ · · · + apfp(u) ≥ 0. (3.2)

Since a1 = b1(1−α0) (see [12, Lemma 5.2] or [6]), there will be a different family of constraints
for each α0 ∈ [0, 1). The situation can be simplified by dividing (3.2) by 1 − α0 (which is
positive), and letting, for i = 1, 2, . . . , p − 1,

xi = ai+1

1− α0
,

so that inequality (3.2) is expressed as

b1f1(u)+ x1f2(u)+ · · · + xp−1fp(u) ≥ 0. (3.3)

In order to satisfy condition 1, we need to find constraints on x1, x2, . . . , xp−1 so that (3.3)
holds for all u ≥ 0.

Let
x = (x1, x2, . . . , xp−1).

Each x ∈ R
p−1 corresponds to a function, defined for u ≥ 0, of the form

g(x, u) = b1f1(u)+ x1f2(u)+ · · · + xp−1fp(u). (3.4)

Since we require that g(x, u) ≥ 0 for all u ≥ 0, we need to find all x ∈ R
p−1 such that (3.3)

holds for all u ≥ 0. This defines a region in R
p−1,

�p =
⋂
u≥0

{
x ∈ R

p−1
∣∣∣∣ b1f1(u)+

p−1∑
i=1

xifi+1(u) ≥ 0

}
.

The above argument implies that f (u) = (1 − α0)g(x, u) is the density function of an ME
distribution if and only if x ∈ �p. We note here that �p is nonempty, closed, convex, and
bounded; see [6, Theorem 3.1].
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Given a and b, it is relatively simple to check that the zero of maximal real part of b(s) is
real and negative, and condition 2 holds. Checking condition 1, that is, determining if x ∈ �p,
is much more difficult. The description of �p as the intersection of an uncountable number of
linear half-spaces makes it difficult to determine whether a given point is contained in it or not.
Nevertheless, Fackrell [12, Theorems 6.4 and 6.5] (see also [6, Theorems 4.3 and 4.4]) gave a
complete description of �3, although the process was involved. We now give the description of
�3, first when the zeros of b(s) are all real, and then when two zeros are a complex conjugate
pair.

Theorem 3.1. Let b = (b1, b2, b3). Suppose that the zeros of b(s) = s3 + b3s
2 + b2s + b1,

−λ1,−λ2, and−λ3, are real and such that 0 < λ1 ≤ λ2 ≤ λ3. For u ≥ 0, let f1(u) be defined
by (3.1). Then the boundary of �3, ∂�3, consists of

1. the line segment between (0, 0) and (λ2λ3, 0),

2. the line segment between (λ2λ3, 0) and (λ3(λ1 + λ2), λ3), and

3. the parametric curve �3, defined, for u ≥ 0, by

x1(u) = b1
f

(1)
1 (u)f

(2)
1 (u)− f1(u)f

(3)
1 (u)

f
(1)
1 (u)f

(3)
1 (u)− (f

(2)
1 (u))2

,

x2(u) = b1
f1(u)f

(2)
1 (u)− (f

(1)
1 (u))2

f
(1)
1 (u)f

(3)
1 (u)− (f

(2)
1 (u))2

.

Theorem 3.2. Let b = (b1, b2, b3). Suppose that the zeros of b(s) = s3 + b3s
2 + b2s + b1,

−λ1,−λ2, and −λ3, are such that λ1 = µ, λ2 = α + iβ, and λ3 = α − iβ with 0 < µ ≤ α

and β > 0. For u ≥ 0, let f1(u) be defined by (3.1). Let ũ be the minimal positive solution to

f1(u)f
(2)
1 (u)− (f

(1)
1 (u))2 = 0.

Then ∂�3 consists of

1. the parametric curve �3, defined, for 0 ≤ u ≤ ũ, by

x1(u) = b1
f

(1)
1 (u)f

(2)
1 (u)− f1(u)f

(3)
1 (u)

f
(1)
1 (u)f

(3)
1 (u)− (f

(2)
1 (u))2

,

x2(u) = b1
f1(u)f

(2)
1 (u)− (f

(1)
1 (u))2

f
(1)
1 (u)f

(3)
1 (u)− (f

(2)
1 (u))2

,

and

2. the line segment between (0, 0) and (x1(ũ), 0), where

x1(ũ) = −b1
f1(ũ)

f
(1)
1 (ũ)

.

Figure 1 shows �3 when b(s) = (s + 1)(s + 2)(s + 3). The grey lines are the boundaries
of some of the half-spaces defining �3, and the black lines and curve depict ∂�3.
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Figure 1: Plot of �3 and its boundary ∂�3.

4. The matrix exponential identification algorithm

In this section we will tackle the problem of determining if a given x ∈ R
p−1 belongs to

�p on a ‘case-by-case’ basis. That is, given x ∈ R
p−1, we develop an algorithm to determine

whether or not x ∈ �p without actually deriving a parametric description for the whole of ∂�p.
In fact, for the case when p = 3, this approach actually does lead us to a complete description
of ∂�3, arrived at via an approach different to that in Section 3. The method we develop is
related to a technique Dehon and Latouche [11] used to characterize the class of all generalized
hyperexponential distributions of algebraic degree 3.

Let a and b satisfy condition 2 in Section 3. Condition 1 is satisfied if and only if

x̂ = (x̂1, x̂2, . . . , x̂p−1) = b1

a1
(a2, a3, . . . , ap)

is contained in the set �p.
Recall, from (3.4), that x̂ corresponds to the function, defined for u ≥ 0,

g(x̂, u) = b1f1(u)+ x̂1f
(1)
1 (u)+ x̂2f

(2)
1 (u)+ · · · + x̂p−1f

(p−1)
1 (u). (4.1)

In order to determine if x̂ ∈ �p (that is, corresponds to an ME distribution), we need to ascertain
whether g(x̂, u) ≥ 0 for all u ≥ 0. Since we are discussing �p from a geometrical point of
view, in Figure 2, x̂ is depicted by the point Q which has coordinates x̂.

Let x̄ = (x̄1, x̄2, . . . , x̄p−1) correspond to the mixture of the point mass at zero and the
exponential distribution

F(u) =
{

α0, u = 0,

1− (1− α0)e−λ1u, u > 0,
(4.2)

where 0 ≤ α0 < 1; see Figure 2. The vector x̄ ∈ �p since g(x̄, u) = λ1e−λ1u > 0 for all u ≥ 0.
In Figure 2 we depict x̄ by the point P which has coordinates x̄. Also, for i = 1, 2, . . . , p− 1,
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r(u)
θ2

θ1

P(x)-

ˆQ(x)

g(x(r, θ1, θ2), u) = 0

X(x(u))

Ωp

Figure 2: Diagram of �3 showing the points P(x̄), Q(x̂), and X(x(u)).

x̄i is the coefficient of si in the expansion of λ1(s + λ2)(s + λ3) · · · (s + λp). This is the case
because the LST of (4.2) can be expressed as

φ(s) = (1− α0)λ1

s + λ1
+ α0

= (1− α0)λ1(s + λ2)(s + λ3) · · · (s + λp)

(s + λ1)(s + λ2)(s + λ3) · · · (s + λp)
+ α0 (4.3)

= (1− α0)(x̄p−1s
p−1 + x̄p−2s

p−2 + · · · + x̄1s + b1)

sp + bpsp−1 + bp−1sp−2 + · · · + b1
+ α0. (4.4)

Let
−→
PQ denote the ray emanating from P (with coordinates x̄) and passing through Q

(with coordinates x̂). For i = 1, 2, . . . , p − 1, let θi ∈ [0, π ] be the angle
−→
PQ makes with

the ray emanating from P in the direction parallel to the ith positive coordinate axis. Let
θ = (θ1, θ2, . . . , θp−1). We have

cos θi = x̂i − x̄i

‖x̂ − x̄‖2 , (4.5)

where ‖ · ‖2 denotes the L2-norm. Any point on the line through P and Q, extending in both
directions, has, for i = 1, 2, . . . , p − 1 and r ∈ R, coordinates given by

xi(r, θi) = x̄i + r cos θi . (4.6)

For u ≥ 0, define r(u) to be the L2-distance from P to the hyperplane

g(x, u) = b1f1(u)+ x1f
(1)
1 (u)+ x2f

(2)
1 (u)+ · · · + xp−1f

(p−1)
1 (u) = 0, (4.7)

measured in the direction determined by the ray
−→
PQ (or θ ). Suppose that, for any given u ≥ 0,−→

PQ meets the hyperplane defined by (4.7) at the point X (which has coordinates x(u) =
(xi(u), x2(u), . . . , xp−1(u)) = x̄ + r(u) cos θ ). Letting r = r(u) in (4.6) and substituting into
(4.7) gives

b1f1(u)+
p−1∑
i=1

(x̄i + r(u) cos θi)f
(i)
1 (u) = 0. (4.8)
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Rearranging (4.8) gives

r(u) = −b1f1(u)− x̄1f
(1)
1 (u)− x̄2f

(2)
1 (u)− · · · − x̄p−1f

(p−1)
1 (u)

cos θ1f
(1)
1 (u)+ cos θ2f

(2)
1 (u)+ · · · + cos θp−1f

(p−1)
1 (u)

= −λ1e−λ1u

cos θ1f
(1)
1 (u)+ cos θ2f

(2)
1 (u)+ · · · + cos θp−1f

(p−1)
1 (u)

. (4.9)

We arrive at (4.9) because x̄ corresponds to the defective exponential distribution (4.2).
For u ≥ 0, we have r(u) 	= 0. If r(u) < 0 then

−→
PQ never meets the hyperplane g(x, u) = 0.

However, the ray emanating from P in the direction determined by (π − θ1, π − θ2, . . . , π −
θp−1), that is, opposite to

−→
PQ, does. If this ray meets the hyperplane g(x, u) = 0 at the point

Y (with coordinates y(u)), say, then ‖−→PY‖2 = ‖y(u)− x̄‖2 = −r(u). If r(u) is infinite then−→
PQ is parallel to the hyperplane g(x, u) = 0.

The vector θ determined by (4.5) is fixed since x̂ is fixed. Using (4.6), define, for r ∈ R and
u ≥ 0,

h(r, θ , u) = g(x(r, θ), u) = b1f1(u)+
p−1∑
i=1

(x̄i + r cos θi)f
(i)
1 (u).

For any given u ≥ 0, since h(r, θ , u) is a linear function of r , we have either

h(r, θ , u) ≥ 0 whenever r ≤ r(u) (4.10)

and h(r, θ , u) < 0 whenever r > r(u), (4.11)

or

h(r, θ , u) ≥ 0 whenever r ≥ r(u) (4.12)

and h(r, θ , u) < 0 whenever r < r(u). (4.13)

Since, for u ≥ 0, h(0, θ , u) = λ1e−λ1u > 0, conditions (4.10) and (4.11) hold when r(u) > 0,
and conditions (4.12) and (4.13) hold when r(u) < 0.

For u ≥ 0, we require that

h(r, θ , u) ≥ 0 and r(u) > 0.

Both inequalities are satisfied when r ≤ min{r(u) | u ≥ 0, r(u) > 0} = r∗. It does not matter
if this minimum is attained at more than one value of u ≥ 0 because it is the quantity r∗ that
we require. If u∗ is the smallest nonnegative value of u where r(u) attains a minimum when
r(u) > 0, then r∗ = r(u∗). Let r̂ = ‖x̂ − x̄‖2. Now, if r̂ ≤ r∗ then the point Q ∈ �p, which
implies that x̂ ∈ �p, and, consequently, the vectors a and b correspond to an ME distribution.
Otherwise, that is, when r̂ > r∗, they do not.

Since r(u) is discontinuous whenever the denominator is equal to zero, instead of finding
the minimum of r(u) when r(u) > 0 over u ≥ 0, we can equivalently find the global minimum
over u ≥ 0 of the continuous function

d(u) = − λ1

r(u)

= eλ1u(cos θ1f
(1)
1 (u)+ cos θ2f

(2)
1 (u)+ · · · + cos θp−1f

(p−1)
1 (u)).

If d∗ = d(u∗) then r∗ = −λ1/d
∗.
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In order to minimize d(u), the inbuilt routine fminbnd in MATLAB�, which finds the local
minimum of a nonlinear convex function over a finite interval, can be applied repeatedly over
intervals where the function is locally convex. In practice, the nature of d(u), determined by
the zeros of the polynomial b(s), could be used as a guide in selecting the number and size of
such intervals.

According to Reemtsen and Görner [25], however, ‘… there does not exist an algorithm
which is able to detect a global maximizer (or minimizer) of an arbitrary continuous function
with certainty.’ The ME characterization problem, in general, from an algorithmic point of
view, remains a difficult problem to solve. Also, it could be argued that minimizing d(u) is
equivalent to minimizing g(x̂, u) and determining if it ever becomes negative. While this is
true, the algorithm presented in this section gives a mechanism by which a function of the form
(4.1) that does not correspond to an ME distribution can be altered so that it does correspond
to an ME distribution. We can achieve this by moving the point Q (which depicts x̂, which
corresponds to g(x̂, u)) along PQ closer to the point P (which depicts x̄, which corresponds
to the defective exponential distribution (4.2)). If x̂ /∈ �p then, for r ≤ r∗,

x = r

r̂
x̂ +

(
1− r

r̂

)
x̄ (4.14)

will be contained in �p and, hence, will correspond to an ME distribution. Also, as we shall see
in Section 6, this approach (that is, minimizing d(u) rather than g(x, u)) enables a parametric
characterization for �3.

In Fackrell [14] a semi-infinite programming (SIP) algorithm for determining whether
x̂ ∈ �p is presented. In this algorithm �p is approximated by a finite number of constraints,
and it may conclude that x̂ ∈ �p when it is in fact not, especially if x̂ is near the boundary ∂�p.
If this is the case, the method presented in this section can be used to refine the answer. The SIP
algorithm gives the u values with which to minimize d(u) over, making the ME identification
algorithm more effective.

5. Examples

In order to illustrate the ME identification method presented in the previous section, and to
describe what is happening geometrically, we now consider the following three examples of
pairs of vectors a and b, and determine if they correspond to ME distributions.

1. a = (6, 2, 2), b = (6, 11, 6). (5.1)

2. a = (2.21,−1, 1), b = (2.21, 4.41, 3.2). (5.2)

3. a = (24, 60, 60, 28, 12, 1), b = (30, 109, 159, 120, 50, 11). (5.3)

In the first example, since λ1 = 1, λ2 = 2, λ3 = 3, and a1 = b1, b(s) has zeros −1,
−2, and −3, and condition 2 in Section 3 is satisfied. The vectors x̂ and x̄ are depicted by
the points P(5, 1) and Q(2, 2), respectively; see Figure 3. We have r̂ = √10 ≈ 3.16 and
cos θ = (cos θ1, cos θ2) = (−3/

√
10, 1/

√
10). Figure 3 shows �3 with the ray

−→
PQ indicated,

and Figure 4 shows the accompanying graph of r(u) versus u when 0 ≤ u ≤ 5.
We now discuss how r(u) relates to �3. For u ≥ 0, r(u) is the distance from P to the line

g(x1, x2, u) = 0 in the direction determined by
−→
PQ. When u = 0, r(0) ≈ −3.16, which

means that the distance P is from the line g(x1, x2, 0) = x2 = 0 is approximately 3.16 units,
but the ray emanating from P that intersects the line is in the opposite direction to

−→
PQ. The
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λ1 = 1,  λ2 = 2,  λ3 = 3

g(x, 0.59) = 0
g(x, 1.35) = 0

g(x,    ) = 0
Q(2, 2)

X(1.14, 2.29)

g(x, 0.17) = 0

P(5, 1)

Y(8, 0)

∞

Figure 3: Diagram of �3 for example 1.

0 1 2 3 4 5
u

r(u)

u = 1.35

u = 0.17

(0, −3.16)

(0.59, 4.07)

r      −1.58−

−20

−15

−10

−5

0

5

10

15

20

→

Figure 4: Graph of r(u) versus u for example 1.

extension to
−→
PQ is depicted in Figure 3 by the dashed line that intersects the line x2 = 0 at the

point Y (8, 0), and ‖PY‖2 ≈ 3.16. As u increases, r(u) decreases until u ≈ 0.17, where the
corresponding line (plotted on Figure 3) is parallel to

−→
PQ and r(u) is infinite. This corresponds

to the vertical asymptote at u ≈ 0.17 on the graph of r(u) versus u; see Figure 4. As u increases
further, r(u) decreases to a local minimum value of approximately 4.07 when u ≈ 0.59. This
value is the minimum value of r(u) over u ≥ 0 when r(u) > 0, that is, r∗. Thus, u∗ ≈ 0.59
and r∗ ≈ 4.07. The value of r∗ is the maximum distance a point X(x1, x2) can be from P in
the direction of

−→
PQ such that it is in �3 (or such that g(x1, x2, u) ≥ 0 for all u ≥ 0). The point

X that is r∗ units from P occurs at the intersection of
−→
PQ and the line g(x1, x2, u

∗) = 0, and
is indicated in Figure 3. The coordinates of X are approximately (1.14, 2.29). Since r̂ < r∗,
the point Q (that is, x̂) is contained in �3 and the vectors given in (5.1) correspond to an ME
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distribution. As u increases from u∗, r(u) increases to∞ when u ≈ 1.35. This corresponds
to the vertical asymptote at u ≈ 1.35 in Figure 4. The corresponding line, which is parallel to−→
PQ, is plotted in Figure 3. For u � 1.35, r(u) is always negative and limu→∞ r(u) ≈ −1.58.
Thus, as u→∞, P is approximately 1.58 units from the line g(x1, x2, u) = 0 in the direction
opposite to

−→
PQ. In this example, to minimize d(u), we used the fminbnd function in MATLAB

repeatedly over [0, 2] in intervals of length 0.1. The run time was approximately 3 seconds.
In the second example, λ1 = 1, λ2 = 1.1 + i, λ3 = 1.1 − i, and a1 = b1. Thus, the

zero of b(s) of maximal real part is real and negative, and condition 2 in Section 3 is satisfied.
Here, x̄ = (2.21, 1) (the coordinates of P ) and x̂ = (−1, 1) (the coordinates of Q). We
have r̂ ≈ 3.20 and cos θ = (cos θ1, cos θ2) = (−1, 0). For this example, r∗ ≈ 2.65, which
occurs when u∗ ≈ 0.74. The ray

−→
PQ meets the hyperplane g(x1, x2, 0.74) = 0 at the point

X(−0.44, 1). Since r̂ > r∗, the point Q (and, hence, x̂) is not contained in �3 and so the
vectors given in (5.2) do not correspond to an ME distribution. From (4.14), for r � 2.65, any
vector of the form

x = r

3.20
(−1, 1)+

(
1− r

3.20

)
(2.21, 1) =

(
2.21− 3.21

3.2
r, 1

)

corresponds to an ME distribution. For this example, d(u) was minimized over [0, 2] in intervals
of length 0.1. The run time was approximately 3.5 seconds. A detailed description of how �3
relates to the graph of r(u), as we gave for example 1, can be found in [12, Section 7.4].

In the final example, λ1 = 1, λ2 = 1, λ3 = 2, λ4 = 2 + i, λ5 = 2 − i, λ6 = 3, and
a1 = 4

5b1. Thus, the zero of maximal real part of b(s) is real and negative, and condition 2
in Section 3 is satisfied. The vectors x̄ and x̂ (corresponding to points P and Q, respectively)
are (79, 80, 40, 10, 1) and (75, 75, 35, 15, 1.25), respectively. We have r̂ ≈ 9.5427 and
(cos θ1, cos θ2, cos θ3, cos θ4, cos θ5) ≈ (−0.4192,−0.5240,−0.5240, 0.5240, 0.0262). The
plot of r(u) versus u is shown in Figure 5, where we can see that r∗ ≈ 10.05 when u∗ ≈ 4.31.
Since r̂ < r∗, the vectors given in (5.3) correspond to an ME distribution. The graph of u versus
r(u) gives us the distance the point P is from the hyperplane g(x, u) = 0 and whether or not

r(u)

u

u = 1.30

(4.31, 10.05)

(0.08, −27.60)

u = 3.18u = 0.30

(0.76, 14.25)

u = 5.46

r      0(2.16, −9.29)

−40

−30

−20

−10

0

10

20

30

40

0 2 4 6 8 10

→

Figure 5: Graph of r(u) versus u for example 3.
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the intersection of the line PQ with the hyperplane is in the same direction as
−→
PQ. The graph

suggests that the geometry of the situation is quite complicated. For this example, d(u) was
minimized over [0, 5] in intervals of length 0.1. The run time was approximately 9.5 seconds.

The SIP algorithm mentioned at the end of Section 4 took 0.1 seconds to converge for an
order 3 example, and 0.2 seconds for an order 5 example. But, when the solution was refined
using the method described in the previous section, the run times were comparable. In this
case, the set of u values that d(u) was minimized over was significantly reduced because the
SIP algorithm gave a good indication of where the solution was located.

6. Another parameterization of �3

In this section, using the method developed in Section 4, we give an alternative param-
eterization of ∂�3 to those given in Theorems 3.1 and 3.2. Theorem 6.1, below, gives the
parameterization when the zeros of the polynomial b(s) are real and distinct. There are similar
results when some or all of the zeros are repeated, but we do not state them here. They can be
found in [12, Theorem 7.3]. Theorem 6.2, below, gives the parameterization when two of the
zeros are a complex conjugate pair and is stated without proof. The proof can be found in [12,
Theorem 7.4].

Theorem 6.1. Suppose that the vectors a = (a1, a2, a3) and b = (b1, b2, b3) are such that
0 < a1/b1 ≤ 1, and the zeros of b(s) = s3 + b3s

2 + b2s + b1, −λ3,−λ2, and −λ1, are real
and such that 0 < λ1 < λ2 < λ3. If θ1, θ2, and θ3 are such that

tan θ1 = 1

λ2 + λ3
and π < θ1 <

3π

2
,

tan θ2 = λ1

λ1λ3 + λ1λ2 − λ2λ3
and π < θ2 < 2π,

and tan θ3 = 1

λ2
and 0 < θ3 <

π

2
,

then the parametric representation for ∂�3 is as follows.

1. For θ1 < θ ≤ θ2,
x1(θ) = −λ1 cot θ + λ1(λ2 + λ3), (6.1)

x2(θ) = 0. (6.2)

2. For θ2 < θ ≤ θ3 + 2π ,

x1(θ) = (λ2
1 + λ2λ3) cos θ − λ2

1(λ2 + λ3) sin θ

cos θ − λ1 sin θ
, (6.3)

x2(θ) = λ1 cos θ + (λ2λ3 − λ1λ3 − λ1λ2) sin θ

cos θ − λ1 sin θ
. (6.4)

3. For θ3 < θ ≤ θ1,

x1(θ) = λ1(λ3 − λ1)(λ2 − λ1) cos θ

λ1(cos θ − λ1 sin θ)− λ3(cos θ − λ3 sin θ)γ (θ)(λ1−λ3)/(λ3−λ2)

+ λ1(λ2 + λ3), (6.5)

x2(θ) = λ1(λ3 − λ1)(λ2 − λ1) sin θ

λ1(cos θ − λ1 sin θ)− λ3(cos θ − λ3 sin θ)γ (θ)(λ1−λ3)/(λ3−λ2)
+ λ1, (6.6)
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Ω3

P(λ1 (λ2 + λ3), λ1)

θ2
θ1

O(0, 0) R(λ2 λ3, 0)

θ3

S(λ3 (λ1 + λ2), λ3)

Figure 6: Diagram of �3 showing the points O, P , R, and S.

where

γ (θ) = λ3(cos θ − λ3 sin θ)

λ2(cos θ − λ2 sin θ)
.

Proof. Refer to Figure 6 for a diagram of the situation. Recall from Theorem 3.1 that ∂�3
consists of

1. the line segment between O(0, 0) and R(λ2λ3, 0),

2. the line segment between R and S(λ3(λ2 + λ1), λ3), and

3. the parametric curve �3 which has as its endpoints O and S.

We show that these three sections of ∂�3 are parameterized by (6.1) and (6.2), (6.3) and (6.4),
and (6.5) and (6.6), respectively.

Recall, also, that the mixture of the point mass at zero and the exponential distribution (4.2)
is depicted in Figure 6 by the point P(λ1(λ2 + λ3), λ1); see (4.3) and (4.4). Let θ be the angle
between the ray emanating from P parallel to the positive x1 axis and any ray emanating from P ,
measured in an anticlockwise direction. Let θ1, θ2, and θ3 be such angles that are defined by the
rays
−→
PO,
−→
PR, and

−→
PS, respectively. We have tan θ1 = 1/(λ2 + λ3), and since the coordinates

of P are both positive, then π < θ1 < 3π/2. Also, tan θ2 = λ1/(λ1λ3 + λ1λ2 − λ2λ3), and
since the x2 coordinate of P is positive, then π < θ2 < 2π . Lastly, tan θ3 = 1/λ2, and since
both coordinates of S are greater than their respective coordinates of P , then 0 < θ3 < π/2.

For p = 3, from (4.9),

r(u) = −λ1e−λ1u

cos θf
(1)
1 (u)+ sin θf

(2)
1 (u)

,

and, therefore,

d(u) = − λ1

r(u)
= eλ1u(cos θf

(1)
1 (u)+ sin θf

(2)
1 (u)). (6.7)

Here, we note that, when the zeros of b(s) are distinct,

f1(u) = e−λ1u

(λ1 − λ2)(λ1 − λ3)
+ e−λ2u

(λ2 − λ1)(λ2 − λ3)
+ e−λ3u

(λ3 − λ1)(λ3 − λ2)
. (6.8)

https://doi.org/10.1239/aap/1261669583 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1261669583


1018 M. FACKRELL

The function d(u) attains a global minimum when one of the following three situations
occurs:

1. u = 0,

2. u→∞, or

3. d ′(u) = 0.

Suppose that the global minimum is achieved when u = u∗ = 0. The minimum value of
d(u) is therefore

d∗ = d(0) = sin θ.

Thus, the corresponding points on the boundary ∂�3, using (4.6), are given by

x1(θ) = −λ1

d∗
cos θ + λ1(λ2 + λ3) = −λ1 cot θ + λ1(λ2 + λ3) (6.9)

and

x2(θ) = −λ1

d∗
sin θ + λ1 = 0.

This situation occurs when the ray emanating from P in the direction defined by θ intersects
the line g(x1, x2, 0) = 0, that is,

←→
OR. Thus, we have θ1 < θ ≤ θ2. Note that (6.9) is defined

for these values of θ because cot θ is defined for π < θ < 2π .
Suppose that the global minimum is achieved as u→∞. The minimum value is therefore

d∗ = lim
u→∞ d(u)

= lim
u→∞ eλ1u(cos θf

(1)
1 (u)+ sin θf

(2)
1 (u))

= −λ1 cos θ + λ2
1 sin θ

(λ3 − λ1)(λ2 − λ1)
.

The last equality is achieved by observing, from (6.8), that the dominant terms in f
(1)
1 (u) and

f
(2)
1 (u) as u→∞ are

−λ1e−λ1u

(λ1 − λ3)(λ1 − λ2)
and

λ2
1e−λ1u

(λ1 − λ2)(λ1 − λ3)
,

respectively. Thus, the points on the boundary ∂�3 are given by

x1(θ) = −λ1

d∗
cos θ + λ1(λ2 + λ3)

= (λ3 − λ1)(λ2 − λ1) cos θ

cos θ − λ1 sin θ
+ λ1(λ2 + λ3)

= (λ2
1 + λ2λ3) cos θ − λ2

1(λ2 + λ3) sin θ

cos θ − λ1 sin θ
(6.10)

and

x2(θ) = −λ1

d∗
sin θ + λ1

= (λ3 − λ1)(λ2 − λ1) sin θ

cos θ − λ1 sin θ
+ λ1

= λ1 cos θ + (λ2λ3 − λ1λ3 − λ1λ2) sin θ

cos θ − λ1 sin θ
. (6.11)
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This occurs when the ray emanating from P in the direction defined by θ intersects the line
g(x1, x2, u) = 0 as u→∞, that is,

←→
RS . Thus, θ2 < θ ≤ 2π + θ3. Note that (6.10) and (6.11)

are defined for such θ since cos θ − λ1 sin θ > 0 (see [12, p. 136]).
Suppose that the global minimum is achieved when d ′(u) = 0. We have, using expres-

sion (6.8) for f1(u),

d ′(u) = eλ1u(λ1 cos θf
(1)
1 (u)+ (cos θ + λ1 sin θ)f

(2)
1 (u)+ sin θf

(3)
1 )

= eλ1u
(cos θ − λ3 sin θ)λ3e−λ3u − (cos θ − λ2 sin θ)λ2e−λ2u

λ3 − λ2
. (6.12)

Solving d ′(u) = 0 and letting the value of u when this occurs be u∗ = u∗(θ) gives

eu∗(θ) =
(

λ3(cos θ − λ3 sin θ)

λ2(cos θ − λ2 sin θ)

)1/(λ3−λ2)

. (6.13)

The function d(u) attains a minimum when u = u∗. This is the case because

d ′′(u∗) = eλ1u
∗

λ3 − λ2
((cos θ − λ3 sin θ)λ1λ3e−λ3u

∗ − (cos θ − λ2 sin θ)λ1λ2e−λ2u
∗

− (cos θ − λ3 sin θ)λ2
3e−λ3u

∗ + (cos θ − λ2 sin θ)λ2
2e−λ2u

∗
)

= eλ1u
∗

λ3 − λ2
(−(cos θ − λ3 sin θ)λ2

3e−λ3u
∗ + (cos θ − λ2 sin θ)λ2

2e−λ2u
∗
)

>
eλ1u

∗

λ3 − λ2
(−(cos θ − λ3 sin θ)λ2

3e−λ3u
∗ + (cos θ − λ2 sin θ)λ2λ3e−λ2u

∗
)

= 0.

The second and third equalities are due to the fact that d ′(u∗) = 0 (see (6.12)), and the inequality
is because 0 < λ2 < λ3, and, for θ3 < θ ≤ θ1, cos θ − λ2 sin θ < 0 (see [12, pp. 137–138]).

Define, for θ3 < θ ≤ θ1,

γ (θ) = λ3(cos θ − λ3 sin θ)

λ2(cos θ − λ2 sin θ)
.

For θ3 < θ ≤ θ1, (6.13) is defined since γ (θ) > 0 (see [12, pp. 137–138]).
Equating the expression for d ′(u∗) in (6.12) to zero we have

λ2e−λ2u
∗(θ)(cos θ − λ2 sin θ) = λ3e−λ3u

∗(θ)(cos θ − λ3 sin θ).

Substituting this expression into (6.7), after some rearrangement, gives

d(u∗(θ)) = −λ1(cos θ − λ1 sin θ)− λ3(cos θ − λ3 sin θ)e(λ1−λ3)u
∗(θ)

(λ3 − λ1)(λ2 − λ1)

= −λ1(cos θ − λ1 sin θ)− λ3(cos θ − λ3 sin θ)γ (θ)(λ1−λ3)/(λ3−λ2)

(λ3 − λ1)(λ2 − λ1)
,

by (6.13). Thus, the points on ∂�3 are given by

x1(θ) = −λ1

d∗
cos θ + λ1(λ2 + λ3)

= λ1(λ3 − λ1)(λ2 − λ1) cos θ

λ1(cos θ − λ1 sin θ)− λ3(cos θ − λ3 sin θ)γ (θ)(λ1−λ3)/(λ3−λ2)
+ λ1(λ2 + λ3)
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and

x2(θ) = −λ1

d∗
sin θ + λ1

= λ1(λ3 − λ1)(λ2 − λ1) sin θ

λ1(cos θ − λ1 sin θ)− λ3(cos θ − λ3 sin θ)γ (θ)(λ1−λ3)/(λ3−λ2)
+ λ1.

This occurs when the ray emanating from P in the direction defined by θ intersects the line
g(x1, x2, u) = 0, where u > 0. Thus, θ3 < θ ≤ θ1.

We now give an alternative parameterization of ∂�3 when two of the zeros of b(s) are a
complex conjugate pair.

Theorem 6.2. Suppose that the vectors a = (a1, a2, a3) and b = (b1, b2, b3) are such that
0 < a1/b1 ≤ 1, and the zeros of b(s) = s3 + b3s

2 + b2s + b1, −λ1, −λ2, and −λ3, are such
that λ1 = µ, λ2 = α + iβ, and λ3 = α + iβ with 0 < µ ≤ α and β > 0. Let f1(u) be defined
by (3.1). If θ1 and θ2 are such that

tan θ1 = 1

2α
and π < θ1 <

3π

2
,

and tan θ2 = µ

2µα − x1(ũ)
,

where ũ is the minimal positive solution to

f1(u)f
(2)
1 (u)− (f

(1)
1 (u))2 = 0,

and

x1(ũ) = −b1
f1(ũ)

f
(1)
1 (u∗)

,

and π < θ2 < 2π , then the parametric representation for ∂�3 is as follows.

1. For θ1 ≤ θ < θ2,
x1(θ) = −µ cot θ + 2µα, x2(θ) = 0.

2. For θ2 ≤ θ < 2π + θ1,

x1(θ) = µ((µ− α)2 + β2) cos θ

µ(cos θ − µ sin θ)− w(θ)zw(θ)
z̄
+ 2µα,

x2(θ) = µ((µ− α)2 + β2) sin θ

µ(cos θ − µ sin θ)− w(θ)zw(θ)
z̄
+ µ,

where
w(θ) = α cos θ − (α2 − β2) sin θ + i(β cos θ − 2αβ sin θ)

and

z = 1

2
+ i

α − µ

2β
.

The expressions w(θ) and z̄ denote the complex conjugates of w(θ) and z, respectively.
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7. Conclusion

In this paper we have reduced the problem of determining whether or not the vectors a

and b correspond to an ME distribution to one of finding the global minimum of a continuous
single-variable function d(u) over the nonnegative real numbers. While, as mentioned in the
penultimate paragraph of Section 4, this is not necessarily a straightforward exercise. If the size
of a and b is relatively low, the optimization can be performed accurately within a reasonable
time. A problem would arise, however, even for the low-order case, if many applications of the
algorithm are required because of the time such a task would take. This problem would arise
when fitting ME distributions to data because the algorithm would need to be used each time
the parameter values are updated.

When p = 3, though, the function d(u) has a unique minimum (when it exists) on [0,∞)

and as a result an alternative parametric description of �3 is found. The method used in this
paper to give a complete description of �3 ought to be able to be applied, at least to some
extent, in developing a description of �p when p > 3. The main problem with describing �p

is that the hyperplanes (4.7) are parameterized by a single real variable u, and so the envelope
(intersection of all the hyperplanes) forms a one-dimensional curve in R

p−1, which, unless
p = 3, cannot enclose a (p− 1)-dimensional region. However, the author believes that he has
a description of �4 for most configurations of the zeros of b(s). This is the focus of ongoing
work.

The SIP algorithm in [14], mentioned at the end of Section 4, is quite efficient, and, if
necessary, the corresponding d(u) need only be minimized over a small interval to obtain an
accurate solution to the problem of determining if a and b correspond to an ME distribution. In
fact, the SIP approach was used in an algorithm to fit ME distributions to data using maximum
likelihood in [13]. Here, the final solution was refined using the method described in Section 4.
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