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ON THE CONJUGACY CLASSES IN AN
INTEGRAL GROUP RING

BY
ALAN WILLIAMSON

1. Introduction. Let G be a periodic group and ZG its integral group ring.
The elements +g(ge G) are called the trivial units of ZG. In [1], S. D.
Berman has shown that if G is finite, then every unit of finite order is trivial if
and only if G is abelian or the direct product of a quaternion group of order 8
and an elementary abelin 2-group. By comparison, Losey in [7] has shown that
if ZG contains one non-trivial unit of finite order, then it contains infinitely
many.

If we set about the task of constructing non-trivial units of finite order, one
way is to take conjugates of the elements of G in the group ring ZG. This
raises the question as to when such a procedure will work. It is a consequence
of a result of Sehgal and Zassenhaus [8] that at least one element of G has
infinite conjugacy class in ZG, unless of course G is abelian or the direct
product of a quaternion group of order 8 and an elementary abelian 2-group.
In this paper we prove the following:

THeOREM 1. Let G be a periodic group. An element x in G has finite conjugacy
class in ZG if and only if either

(i) x is central in G, or

(i) x has order 4 and is contained in an abelian subgroup H of index 2 in G
where G=(H, c:c>*=x? and h =h™"! for all he H).

In fact the proof shows that if x is not central, then there are an infinite
number of non-trivial conjugates unless x has order 4 and G has the structure
described in (ii). This may be compared with results of Bovdi: Let N be a
normal periodic divisor subgroup of U(ZG), the group of units of ZG. It is
easy to show that N consists only of trivial units (Theorem 1 of [3]). In
Theorem 11 of [4], Bovdi shows that U(ZG) contains a non-central abelian
normal subgroup if and only if G has the structure described in (ii) above.

2. Some lemmas. In this section we collect together various results on which
our proof of Theorem 1 depends. Note that Lemmas 1, 2, and 3 are well-
known, they are to be found in the work of Berman [1] and Bovdi [3, 4]. For
brevity, for y € G, whenever we write ) yi, it is to be understood that the sum
is taken over all the elements of (y).
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LemMA 1 (cf. p. 260 of [1]). Suppose that x € G and that there is an element
ae€ZG such that a>=0 and ax# xa. Then the set {(1+ka)x{1—ka):keZ}
forms an infinite set of conjugates of x.

Proof. Observe that 1+ ka is a unit in ZG with inverse 1— ka. Furthermore,
since (1+ka)x(1—ka)=x+k[(ax—xa)—kaxa] and ax—xa is non-zero, an
infinite number of these conjugates are distinct.

LEMMA 2. Let g and h be elements of finite order in the group G. Then
X g)h—h®)(X g)=0.
Proof. Observe that (Y g)g thg(¥ g') = g)h (Y g).

LemMA 3 (cf. p. 497 of [3]). Let x € G and suppose that x does not normalize
some cyclic subgroup {c). Then there are an infinite number of conjugates of x in
ZG.

Proof. Define a =(x—x°) Y ¢'. This is a sum of 2 |(c)| distinct elements of G;
for if xc' =x°¢’ (some i, j), then x 'cxe{c), which is not so. Now x 'ax=
(1—=[x, ¢c]) Y ¢'x. This cannot equal a, for then x) ¢'=Y ¢'x and x would
normalize {(c). By Lemma 2, a*=0 and use of Lemma 1 gives the desired
result.

There is another result similar to Lemma 3:

LemMmA 4. Let x, y, and ¢ be elements in the periodic group G. Suppose that c
does not normalize (y) and that x has finite conjugacy class in ZG. Then

[x, cle(y).

Proof. Define a =(c—c”) Y y'. This is a sum of 2 |(y)| distinct terms, because
¢ does not normalize (y). By Lemma 2 a®*=0, and as x normalizes (y) by
Lemma 3, we have that x 'ax=(x"'cx—x"'c’x) Y. y’. This must equal a (by
Lemma 1). Hence x 'cx Y y'=c Y. y' and [x, c]e(y) as required.

CoroLLARY 1. Let x be an element in the periodic group G with finite
conjugacy class in ZG. Then x normalizes every subgroup of G and {x)<1G.

Proof. By Lemma 3 it suffices to show that (x) <{G. Suppose then, that {x) is
not normal in G and let ¢ € G\Ng;((x)). By Lemma 4 it follows that [x, c]€(x),
which is impossible.

CoOROLLARY 2. Let the finite group G contain a non-central element x with
finite conjugacy class in ZG. Then every subgroup of G of prime order is a
normal subgroup of G.

Proof. Let y have prime order and suppose that (y) is not normal in G. We
have that Ng({(y)) <G and Cgs(x)< G, so [Ng({y))U Cs(x)|<|G| and there is
an element ¢ in G which neither centralizes x nor normalizes (y). By Lemma
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4, 1#[x, c]le(y). Since y has prime order, it follows that y € ([x, c]). However x
normalizes {c) (Corollary 1) and so y e{(c), which contradicts our choice of c.

Given a group G containing at least one non-normal subgroup we can define
R(G) to be the intersection of all the non-normal subgroups. In [2], Blackburn
has classified all finite groups in which R(G) # 1. It turns out that we need his
classification for p-groups, which is as follows:

THeoreM (Theorem 1 of [2]). Let G be a finite p-group. Suppose that G
contains at least one non-normal subgroup and that R(G)# 1. Then p=2 and
one of the following holds*

(1) G is the direct product of a quaternion group of order 8, a cyclic group of
order 4 and an elementary abelian 2-group.

(2) G is the direct product of two quaternion groups of order 8 and an
elementary abelian 2-group.

(3) G contains an abelian subgroup A of index 2 where A is not elementary
abelian. G is generated by A and t where t ' at =a™' (a€ A) and *€ A is of
order 2.

During the proof of Theorem 1, we need to consider a group which is the
direct product of a quaternion group of order 8 and a group of odd prime
order. For convenience we deal with this rather special case here:

LeEmMA 5. Let x be a non-central element in a group G which is the direct
product of a quaternion group of order 8 and a cyclic group of odd prime order p.
Then x has an infinite conjugacy class in ZG.

Proof. Let G={(u,v,y:u’=u"?, u>=v% u*=1, y*=1, {u,yl=1=[no, y]).
The non-central elements in G have order 4 or 4p. Without loss of generality
we may assume that either x =v or x =vy. Let us write w for uy which has
order 4p. Use the notation that if H is a group, then U(ZH) is the group of
units in ZH. By Dirichlet’s Unit Theorem (see 5.3.10 and 7.6.1 of [9]), the
rank of U(Z{w)) is 3¢(4p)—1=p—2 and the rank of U(Z{(w?)) is 3¢(2p)—1=
3(p—3). Let us define a ring-homomorphism 6 from U(Z{w)) into U(Z{w?))
such that wo = w?.

Now rank U(Z{w))/ker 6 +rank ker 8 =rank U(Z(w)). So the rank of ker 6
is at least p—2—3(p—3). As this is at least 3(p—1), there is a unit f in ker 6 of
infinite order such that {f) N U(Z{w?))=1. Since f0=1, the unit f has form
1+(1-w?) Y2 gqwi(a, e 2).

Let us write f=f,+f, where f € Z{(w) is the sum of those terms of f
involving odd powers of w, and f, € Z(w?) is the corresponding sum involving
even powers. We see that f,v = vf, since w? is central in G, but that f;v = —vf,
on using the fact that wo = ow?"*",

Consider fof ' it equals (f; + f>)v(g, + g») where g; is the sum of those terms
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of f! involving odd powers of w, and g, is the corresponding sum involving
even powers. Hence fof '=uv(f,—f)(g +g). But from (f; +£,)(g+g)=1=
(f181+1>82) +(fi82+f281), it follows that f1g,+f,g,=1 and f,8+f,8 =0, as
the first term involves even powers of w only and the second term odd powers.
Hence fof ' = v(f,g>— f1g:1 +2f>g1) is a non-trivial unit unless f,g, —f, g, = w'
(for some i) and f,g, =0=f,g,. But in this case, as f,;g; +f,g, =1 we deduce
that 2f,g, =1+ w' and so w'=1. Therefore f,g,=1 and f,g, =0. But from
above, f1g,=0, so f,(g,+g,) =0 and f, =0 since g, + g, is a unit. Hence f=f,
is a unit in Z{w?) contrary to hypothesis. An identical argument shows that
{f“vof % : ke Z} forms an infinite set of distinct conjugates of v. Furthermore,
{f<vyf*} forms an infinite set of distinct conjugates of vy, as w centralizes y.

3. Proof of Theorem 1. Let x be a non-central element in the periodic
group G with a finite conjugacy class in ZG. The Corollaries 1 and 2 restrict
very much the possible structure of G. As a preliminary to proving the main
theorem, we use these to prove:

ProPOSITION. Let x be a non-central element in the periodic group G with finite
conjugacy class in ZG. Then x has order 4 and for any element ¢ in G not
centralizing x, the group generated by x and c is isomorphic to a quaternion group
of order 8.

Proof. Suppose that the result is false and that the group G is a counterex-
ample. So G contains a non-central element x with finite conjugacy class in ZG
and an element ¢ € G\ Cs(x) such that (x, ¢)# Qg, a quaternion group of order
8. We may suppose that G =(x, c) and that G is a minimal counterexample.
Note that x normalizes (¢) and ¢ normalizes (x) (Corollary 1).

Consider first the possibility that every subgroup of G is normal. It is
well-known that a finite group with this property belongs to one of the
following types: Qg, QgX A, QgX B or Qg X A X B where A is an elementary
abelian 2-group and B is an abelian group of odd order (see Theorem 10.2.5 of
[5]. In our case, G is a 2-generated finite group and so G must be of type
Qg X B. By Lemma 5, B has composite order. Let p be a prime dividing |B|; at
least one of the elements x and ¢ has order divisible by p-suppose x. By the
minimality of G, the group (xP, ¢) must be such that x” is centralized by c,
which is not the case. We arrive at a similar contradiction if we assume that ¢
has order divisible by p.

Therefore there is a non-normal cyclic subgroup (y) in G. By Corollary 1, (y)
is normalized by x and so (y) is not normalized by c¢. Again by Corollary 1,
[x, c]€(y), and so [x, c]e N{y) where the intersection runs through all the
non-normal cyclic subgroups of G. As [x, c]#1, it follows that R(G)# 1. We
could use Blackburn’s classification at this point, but it is easier if we first show
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that G is a p-group. To do this, we show in turn that both x and ¢ have
prime-power order. Because (x) N{c)# 1, this is sufficient.

Assume first that x does not have prime power order. Let {p;} be the set of
distinct primes dividing the order of x. We may choose p, such that (x?, c) is
non-abelian (such is possible, for if ¢ centralizes each x™, then ¢ would
centralize x). As G is a minimal counterexample, (x?, c¢)= Qg. Certainly p, # 2,
but if p; is an odd prime it follows that G = Qg X B where B here is the cyclic
group of order p; generated by x* and Qg is generated by x” and c. This
contradicts Lemma 5. An identical argument works in the case where ¢ does
not have prime-power order.

We are now in a position to use Blackburn’s Theorem applied to p-groups,
quoted in the Introduction. The group G must be a 2-group, and the only
2-generated 2-groups with R(G)#1 are of type (3): G=(A,t) where A is
abelian, t*at=a""! for all ac A and t*c A has order 2.

Now if x lies in A, then ¢ 'xtx '=x"'x"'=x"2 But x normalizes every
subgroup of G (Corollary 1) and so xtx ' =t¢"" (x does not centralize ¢, since
then x would be central in G). Hence x?=¢*> and x has order 4. On the other
hand, any element in G\A has order 4, for (at)*=1t(t 'at)at=1t>. So x has
order 4.

Let ¢ have order 2"**. Clearly (x) N{c) =(x?)=(c*) and so x> = ¢?. From the
fact that ¢ 'xc =x7! it follows that x *cx = ¢'**. Hence c? is central in G, and
as r>1, ¢¥ is also central. But now consider that (xc*)>=x2%¢? =x*=1 and
by Corollary 2 we deduce that xc*" is central in G. This is impossible, for
c M (xc*c=x""c*"". This completes the proof of the Proposition.

We now complete the proof of Theorem 1. Let x be a non-central element in
the periodic group G with finite conjugacy class in ZG. By the Proposition, x
has order 4 and for any element ge G\Cg(x) we have that (x, g)= Q. Put
H = Cg5(x) and choose ¢ € G\ Cs(x). For arbitrary h € H, hc € G\Cs(x) and so
hchc = x* = ¢*. Therefore ¢ 'hc =h"" and it follows (cf. ex. 1 of Chapter 2 of
[5] that H is abelian, as required.

Conversely, if x is central in G, then clearly it has finite conjugacy class in
ZG. Whereas if x has order 4 and is contained in an abelian subgroup H of
index 2 in G, where G is generated by H and an element ¢ such that ¢*=x?
and h° = h~ for arbitrary h € H, then Bovdi has shown (Theorem 11, [4]) that
x is conjugate only to x and x .

In conclusion it should be noted that conjugates of the elements +g (g€ G)
are not, in general, the only units of finite order in ZG. For example the
element —3a+3a*+b—3ab+3ba is a unit of order 3 in ZS; (where S;=
(a,b:a*=1=>? a®=a?), but is not conjugate to a trivial unit. (For a full
description of the group of units of ZS;, see [6].) It would be interesting to
know which groups have the property that any unit of finite order is conjugate
to a trivial unit.
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