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ESSENTIALLY DEFINED DERIVATIONS ON SEMISIMPLE
BANACH ALGEBRAS

by A. R. VILLENA
(Received 31st May 1995)

We prove that every partially defined derivation on a semisimple complex Banach algebra whose domain is
a (non necessarily closed) essential ideal is closable. In particular, we show that every derivation defined on
any nonzero ideal of a prime C’-algebra is continuous.
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1. Introduction

Johnson and Sinclair obtained in [1] the continuity of everywhere defined derivations
on semisimple Banach algebras by building suitable sequences which dissolve the
continuity probiem. Since then the spirit of these sequences has been successfully
exploited and now we know it as the sliding hump procedure. However, in the C*-
algebraic formulation of quantum physics, partially defined derivations on C*-algebras
appear generally. On the other hand it is known that partially defined derivations, even
on C’-algebras, may be not closable. In this paper we obtain the automatic closability
of partially defined derivations on semisimple Banach algebras whose domain is an
essential ideal of the algebra, and further we obtain the continuity when the algebra is
actually a prime C*-algebra.

2, Automatic closability

Throughout this section, A denotes a semisimple complex Banach algebra and D
stands for a complex linear map from an essential ideal I of A (i.e. INJ # 0 for every
nonzero ideal J of A) into A satisfying D(ab) = D(a)b + aD(b), for all a,b € I. Such a
mapping is said to be an essentially defined derivation on A. It is worth pointing out
that [ is not assumed to be closed nor to be dense in A.

Let us denote by P the set of those primitive ideals P of A for which I ¢ P. It is
clear that IN(NypP) C Rad(A) =0 and therefore Np,P =0. It is well known that
every primitive ideal P can be obtained as the kernel of a continuous irreducible
representation of A on a complex Banach space X,, actually |lax| < ||laljix|] for all
a€ A, x€ X,.
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We measure the closability of D by considering the subspace S(D) of those ae A
for which there is a sequence {a,} in I with lima, =0 and lim D(a,) = a. It is well
known that D is closable if, and only if, S(D)=0. It is easy to check that
IS(D) + S(D)I ¢ S(D). Write Pc={PeP:S(D)c P} and P.={PeP:S8D)¢ P}.
Note that S(D) C Pc = Npep P. Our method consists of showing that P, = 0.

Lemma 1. Let P € P and J any non necessarily closed ideal of A satisfying J ¢ P.
Then one of the following assertions holds:

(1) The ideal of those elements b€ J with dimbX, < oo acts irreducibly on Xp.
Accordingly, given x,y € X, with x #0 there is be J with dimbX, =1 and
bx=y.

(ii) There exist sequences {b,} in J and {x,} in X, satisfying b,...b,x,#0 and
b, ...b)x, =0 for every n e N.

Proof. First we note that J acts irreducibly on X,. Now we observe that Lemma
B.13 in [3] provides an algebra norm on the centralizer of X, as J-module and
therefore equals C by the Gelfand-Mazur theorem.

Let F(J) denote the ideal of those b € J with dimbX, < oco. If F(J) ¢ P, then F(J)
acts irreducibly on X, and the first assertion follows.

Otherwise, for every b € J with bX, #0 it is satisfited that dimbX, = co. In this
situation we take b, € J and x, € X, with b x, # 0. Suppose that b,,...,b, € J and
Xy, ..., X%, € Xp have been chosen satisfying b;,...b,x; , =0 and b;...b,x; #0 for
j=2,...,n Since (b,...b))Xp #0, dim(b,... b )X, = 0o. Therefore there is x,,, € X,
such that b,...b,x, and b, ...b,x,,, are linearly independent. Consequently there exists
b, € J such that b,,,...b)x,,, #£0 and b,,,...b x, = 0. The sequences {b,} and {x,}
satisfy the requirements in the second assertion. d

Let {P,} be a sequence in P. A sequence {b,} in I is said to be a sliding hump sequence
for {P,} if for every n € N there exists x, € X, such that

b,,...b]xn#() and bn+|...b1x"=0.

Lemma 2. If there exists a sliding hump sequence for a sequence {P,} in P, then there
is a natural number n for which S(D) C P,. In particular, S(D) C P if P, = P for every
neN.

Proof. Let {b,} be a sliding hump sequence for {P,} and, for every ne N, let
x, € Xp for which the sliding hump condition holds. We can certainly assume that
|6, = [|x.]] =1 for every n € N.

We claim that there exist ne€ N and a nonzero x € X, such that the map
a— D(a)x from I into X, is continuous. If the claim fails, then all the maps
a~ D(a)b,...b,x, from I into X, are discontinuous and we can construct inductively
a sequence {a,} in I satisfying
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la.| < 27" min{(1 + [[D(b;...b)|)" :k=1,...,n} and

|D(a,)b, .. . byx,

>n+

n—1
> D(aby ... by)x,
k=1

Now we consider the element a € 4 given by ¢=) .. a,b,...b, and, for every
neN, wewritec,=a,+ 3 ... ab....b,, Note that all the elements ¢ and c, lie in I
since ¢ = ¢, b, and ¢, = a, + ¢,.;b,,,. Then we have

n—1
D(c)x, = Y D(agby ... b)x, + D(ab,...byx, + a,D(b,...b)x, + c,D(b,,, ... b)x,
k=1

and || D(c)|| = | D(e)x,|| = n—3, for every ne N (see the proof of [1, Theorem 2.2}).
This contradiction proves our claim.

Let m € N such that the map a— D(a)x from I into X, is continuous for some
nonzero x € X, and let X be the set of all x € X, satisfying this property. X is a
nonzero I-submodule of X, . Therefore we conclude that X = X, . Let a € S(D) then
a = lim D(a,) for a suitable sequence {a,} in I with lima, = 0. Then ax = lim D(a,)x =0
for every x € X, and therefore a € P,, which is the desired conclusion. O

Lemma 3. Let P € P and J any subspace of A satisfying IJ+ JI C JandJ ¢ P. Then
Jx = X, for every nonzero x € X,.

Proof. The set {x € X,:Jx =0} is an I-submodule of X, different from X, and
therefore equals zero, since I acts irreducibly on X,. Hence, for every nonzero x € X,
Jx is a nonzero I-submodule of X, and consequently equals X,. O

Lemma 4. Let P € P and J any non necessarily closed ideal of A contained in 1. If
there is an element b € J with b € P and dimbJb < 0o. Then S(D) C P.

Proof. Note that the map ar D(bab) from J into A is continuous. Let a € §(D),
then a =lim D(a,) for a suitable sequence {a,} in I with lima, = 0. By continuity,
0 = lim D(ba,b) = bab and therefore bS(D)b = 0.

Since b ¢ P, we have bX, # 0. If S(D) ¢ P, then from Lemma 3 it may be concluded
that S(D)bX, = X,. Hence 0=0bS(D)bX,=bX, which gives be P and this
contradiction completes the proof. a

We can now formulate our main result.
Theorem 5. D is closable.

Proof. If the theorem fails, then P #0 and Py #@. Let Jo=INP.. We set
P, € P, and we write J, = J;N P,. On account of Lemmas 1 and 2, we may choose
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b, € J, and x,; € X, satisfying dimb, X, =1 and b;x, = x,. It should be noted that
dim(b, + P,)(A/P)) (b, + P;) = 1 and therefore, for every a € A4, there exists a complex
number A(a) such that b,ab, — A(a)b, € P,.

Now we claim that there exists P, € P, such that J, ¢ P, and b, &€ P,. Otherwise,
for every ae A, we have bab, — A(a)b, € Npep, ;,0pP and so byab, — A(a)b, €
Jo N (Npepy sy cpP) N (Npep, 5,¢pP) = 0. Consequently dim b, 4b, = 1 and Lemma 4, applied
to J, and P,, shows that S(D) c P,. This contradiction proves our claim.

Since b, & P,, there is x, € X, such that b,x, # 0. Further, from Lemma 2 it may
be concluded that there is no sliding hump sequences for P,. Lemma 1 applied to J,
now gives that there exists b, € J, such that b,b,x, = x, and dim b,b, X, = 1 which gives
dim(b,b, + P,)(A/P,)(bb, + P,) = 1.

Suppose that P,,...,P,, b,,...,b,, and x,, ..., x, have been chosen satisfying

) P,,...,P,€ Py,

(i) J,_, ¢ P, fork=2,...,n,

i) bye J,_, =JoNPN...NP_,fork=2,...,n,

@iv) dim(b,...b, + PY(A/P)(b,...by +P)=1,fork=2,...,n,
(V) x, € Xp,,fork=1,...,n,

i) b,..bx,=x,fork=1,...,n

For abbreviation, we write b instead of b,...b,. Since dim(b + P,)(A/P)(b+ P,) =1,
for every a € A, there exists a complex number A(a) such that bab — A(a)b € P,. Now we
claim that there exists P,,, € P, satisfying J, ¢ P,., and b ¢ P,,,. Otherwise, for each
a € A, we have bab — A(a)b € Npcp, 5, ,pP and therefore bab — A(a)b € J, N (Npep, s, cpP)N
(Npepg.s,¢pP) = 0. Accordingly dimbAb = 1 and from Lemma 4, applied to J,_, and P,,
we deduce that S(D) C P,. This contradiction proves the preceding claim.

Now we choose x,,, € Xp , with bx,, #0. From Lemma 2 it follows that
there is no sliding hump sequences for P,,,. Lemma 1 applied to J, now gives
that there exists b,,, € J, such that b, bx, ,=x,,, and dimb, ,bX,,, =1 which
gives dim(b,.b + P,,) (4/Pyy) (bnpib + Pyy) = 1.

Finally we note that conditions (iii) and (vi) give that the sequence {b,} is a sliding
hump sequence for {P,} which, according to Lemma 2, gives a contradiction. g

3. Automatic continuity

A Banach algebra A4 is said to be wltraprime if k=inf{|M,,|:a,be€ 4,
lall = ||b|| = 1} >0, where M,, is the two-sided multiplication operator on A defined
by M,,x = axb. It was proved in [2, Proposition 2.3] that every prime C*-algebra is an
ultraprime Banach algebra, actually in this case k = 1.

Theorem 6. Let D be a closable derivation defined on a nonzero ideal I of an
ultraprime Banach algebra A. Then D is continuous.

https://doi.org/10.1017/50013091500023531 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500023531

ESSENTIALLY DEFINED DERIVATIONS 179

Proof. Fix be I with |b| =1 and consider the operator x— D(xb) from 4 into
itself. Given a sequence {x,} in A converging to zero with {D(x,b)} converging to y € 4,
we have that the elements x,b lie in I and therefore y = 0. By the closed graph theorem,
this operator is continuous and we denote by M its operator norm.

For all ael and xe A we have D(a)xb = D(axb) — aD(xb) and so k||D(a)| <
Mp, .|| < 2M||a|. Consequently D is continuous. O

From Theorems 5 and 6 we can now state the following.

Corollary 7. Every essentially defined derivation on an ultraprime semi-simple
complex Banach algebra is continuous. Accordingly, every derivation defined on a honzero
ideal of a prime C*-algebra is continuous.
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