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ESSENTIALLY DEFINED DERIVATIONS ON SEMISIMPLE
BANACH ALGEBRAS

by A. R. VILLENA
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We prove that every partially defined derivation on a semisimple complex Banach algebra whose domain is
a (non necessarily closed) essential ideal is closable. In particular, we show that every derivation defined on
any nonzero ideal of a prime C*-algebra is continuous.

1991 Mathematics subject classification: Primary 46H40.

1. Introduction

Johnson and Sinclair obtained in [1] the continuity of everywhere defined derivations
on semisimple Banach algebras by building suitable sequences which dissolve the
continuity problem. Since then the spirit of these sequences has been successfully
exploited and now we know it as the sliding hump procedure. However, in the C-
algebraic formulation of quantum physics, partially defined derivations on C*-algebras
appear generally. On the other hand it is known that partially defined derivations, even
on C*-algebras, may be not closable. In this paper we obtain the automatic closability
of partially defined derivations on semisimple Banach algebras whose domain is an
essential ideal of the algebra, and further we obtain the continuity when the algebra is
actually a prime C*-algebra.

2. Automatic closability

Throughout this section, A denotes a semisimple complex Banach algebra and D
stands for a complex linear map from an essential ideal I of A (i.e. / fl J / 0 for every
nonzero ideal J of A) into A satisfying D{ab) = D{a)b + aD{b), for all a,b e I. Such a
mapping is said to be an essentially defined derivation on A. It is worth pointing out
that / is not assumed to be closed nor to be dense in A.

Let us denote by V the set of those primitive ideals P of A for which / £ P. It is
clear that / n (r\PeVP) c Rad(A) — 0 and therefore nPej,P = 0. It is well known that
every primitive ideal P can be obtained as the kernel of a continuous irreducible
representation of A on a complex Banach space XP, actually ||ax|| < ||a||||x|| for all
a e A, x e XP.
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We measure the closability of D by considering the subspace S{D) of those a e A
for which there is a sequence {an} in / with liman = 0 and limD(an) = a. It is well
known that D is closable if, and only if, S(D) = 0. It is easy to check that
IS(D) + S(D)I c S ( D ) . W r i t e Vc = {PeV: S(D) c P) a n d PE = {PeV: S(D) <£ P).
Note that S(D) C Pc = f W c P . Our method consists of showing that Pc = 0.

Lemma 1. Let P e V and J any non necessarily closed ideal of A satisfying J <£. P.
Then one of the following assertions holds:

(i) The ideal of those elements b e J with dim bXr < oo acts irreducibly on XP.
Accordingly, given x,yeXP with x^O there is beJ with dimbXP — \ and
bx = y.

(ii) There exist sequences {bn) in J and {xn} in XP satisfying bn.. .bxxn ^ 0 and
bn+x ...bixn=0for every n e N .

Proof. First we note that J acts irreducibly on XP. Now we observe that Lemma
B.I3 in [3] provides an algebra norm on the centralizer of XP as ./-module and
therefore equals C by the Gelfand-Mazur theorem.

Let F(J) denote the ideal of those b eJ with dim bXP < oo. If F(J) (£ P, then F(J)
acts irreducibly on XP and the first assertion follows.

Otherwise, for every b e J with bXP ^ 0 it is satisfied that dim bXP = oo. In this
situation we take b, e J and x, e XP with fc,x, ^ 0. Suppose that b ,bn e J and
x ,xneXP have been chosen satisfying bj.. .blxJ_l =0 and fcy...fc,x;^0 for
j = 2 , . . . , n. Since (bn... bt)XP ^ 0, dim(bn... b\)XP — oo. Therefore there is xn+1 e XP

such that bn.. .blxn and bn...btxn+l are linearly independent. Consequently there exists
bn+i € J such that bn+l ... blxn+l ^ 0 and bn+l... b{xn = 0. The sequences {bn} and {xn}
satisfy the requirements in the second assertion. •

Let {Pn} be a sequence in V. A sequence {bn} in / is said to be a sliding hump sequence
for {Pn} if for every n e N there exists xn e XPn such that

bn...bxxn^0 and bn+l .. .b,xn = 0.

Lemma 2. If there exists a sliding hump sequence for a sequence {Pn} in V, then there
is a natural number n for which S(D) C Pn. In particular, S(D) c P if Pn = P for every
n e N .

Proof. Let {bn} be a sliding hump sequence for {PJ and, for every n e N , let
xn e XP for which the sliding hump condition holds. We can certainly assume that
|| bn || = I xn || = 1 for every n e N .

We claim that there exist n e N and a nonzero x e XPn such that the map
a i-» D(a)x from / into XPn is continuous. If the claim fails, then all the maps
ai-tD(a)6n. •b]xn from / into XPn are discontinuous and we can construct inductively
a sequence [an] in / satisfying
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. . 6 1 ) | ) ~ ' :k= l,...,n) and

\\D(an)bn... btxn\\ > n
\ * = >

Now we consider the element a e A given by c — Y17=\ a<A • • bt and, for every
M e N, we write cn = an + 5Z^ln+1 akbk... bn+l. Note that all the elements c and cn lie in /
since c = c,b, and cn = an + cn+lbn+l. Then we have

n - l

D(c)x. = J ] D(akbk... fc,)x. + £>(«>„.. . btxn + anD{bn... &,)*„ + cnD(bn+1... bt)xn

and |JD(C)| > ||D(c)xB|| > n - 3, for every n e N (see the proof of [1, Theorem 2.2]).
This contradiction proves our claim.

Let m e N such that the map a >-» D(a)x from / into XPm is continuous for some
nonzero x e XPm and let X be the set of all x e XPm satisfying this property. X is a
nonzero /-submodule of XPm. Therefore we conclude that X = XPm. Let a e S(D) then
a = lim D(an) for a suitable sequence {an} in / with lim an = 0. Then ax = lim £>(an)x = 0
for every x 6 XPm and therefore a e Pm, which is the desired conclusion. •

Lemma 3. Let P € V and J any subspace of A satisfying IJ + JI C J and J <f. P. Then
Jx — Xpfor every nonzero x e XP.

Proof. The set {x e XP : Jx = 0} is an /-submodule of XP different from XP and
therefore equals zero, since / acts irreducibly on XP. Hence, for every nonzero x € XP,
Jx is a nonzero /-submodule of XP and consequently equals XP. •

Lemma 4. Let P e ? and J any non necessarily closed ideal of A contained in I. If
there is an element b e J with b & P and dimbJb < oo. Then S(D) C P.

Proof. Note that the map a i-> D(bab) from J into A is continuous. Let a e S(D),
then a = lim D{an) for a suitable sequence {an} in / with liman = 0. By continuity,
0 = lim D(banb) = bab and therefore bS(D)b = 0.

Since b & P, we have bXP ^ 0. If <S(D) £ P, then from Lemma 3 it may be concluded
that S(D)bXP = XP. Hence 0 = bS(D)bXP — bXP which gives be P and this
contradiction completes the proof. •

We can now formulate our main result.

Theorem 5. D is closable.

Proof. If the theorem fails, then Pc / 0 and VE / 0. Let Jo = I n Pc. We set
P, G TPj and we write J, = Jo n P,. On account of Lemmas 1 and 2, we may choose
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b{ e Jo and x, e XPi satisfying d i m ^ A ^ = 1 and blxl = xt. It should be noted that
dim(b, + P|)(/1/P|)(fei + P,) = 1 and therefore, for every a e A, there exists a complex
number k{a) such that b^b, - l(a)bx e P,.

Now we claim that there exists P2 e VE such that J, £ P2
 a n d bi ^ P2- Otherwise,

for every a e A, we have fc|flfe, - A(a)fe, e nP€P£j |{ tPP and so fe,flfc, - J.(a)b, e
Jo n (nP67,£ J i C PP)n (nPe% J){!.pP) = 0. Consequently dim i,,4b, = 1 and Lemma 4, applied
to Jo and P,, shows that S(D) c P^ This contradiction proves our claim.

Since 6, & P2, there is x2 e A"2 such that bxx2 / 0. Further, from Lemma 2 it may
be concluded that there is no sliding hump sequences for P2. Lemma 1 applied to J,
now gives that there exists b2 e 7, such that fc2fe,x2 — x2 and dimb2btX2 = 1 which gives
dim(fc2fc, + P2)(A/P2)(b2bt + P2) = 1.

Suppose that P , , . . . , Pn, bt,..., bn, and x , , . . . , xn have been chosen satisfying

(0 P .P,^E,

(ii) J t_, ^ P t , for fc = 2 , . . . , n,

(iii) bk e Jk_t =Jon P , n . . . n P t _ , , for /c = 2 , . . . , « ,

(iv) dim(ti . . .& ,+ Pk)(A/Pk)(bk ...bl+Pk) = \,fork = 2 n,

(v) xt 6 XP j, for k = 1 , . . . , n,

(vi) bk... fc,xt = xk, for fc = 1 , . . . , n.

For abbreviation, we write b instead of bn.. .bu Since dim(b + Pn){A/Pn){b + Pn) = 1,
for every a e A, there exists a complex number l(a) such that bab — X(a)b e Pn. Now we
claim that there exists Pn+, e Pg satisfying Jn <£_ Pn+I and fo ̂ P n + , . Otherwise, for each
a e A, we have feafc - l(a)b e nP<ivE,jn£PP ar>d therefore fcaft - A(a)ft eJ.fl(DP € V E < J n C PP)n
(nP6Tfe,jn<t.pP) = 0. Accordingly dimfc>4/j = 1 and from Lemma 4, applied to •/„_, and Pn,
we deduce that S(D) c Pn. This contradiction proves the preceding claim.

Now we choose xn+, e ^pn+l with fcxn+, ^ 0. From Lemma 2 it follows that
there is no sliding hump sequences for Pn+l. Lemma 1 applied to Jn now gives
that there exists bn+leJn such that bn+lbxn+l = xB+, and dim bn+l bXn+l = 1 which
gives dim(bn+lb + Pn+l)(A/Pn+l)(bn+lb + Pn+l) = 1.

Finally we note that conditions (iii) and (vi) give that the sequence {bn} is a sliding
hump sequence for {PJ which, according to Lemma 2, gives a contradiction. •

3. Automatic continuity

A Banach algebra A is said to be ultraprime if k = inf {||AfOii|: a, b e A,
I a I = 161| = 1} > 0, where Mab is the two-sided multiplication operator on A defined
by Mabx = axb. It was proved in [2, Proposition 2.3] that every prime C*-algebra is an
ultraprime Banach algebra, actually in this case k — 1.

Theorem 6. Let D be a closable derivation defined on a nonzero ideal I of an
ultraprime Banach algebra A. Then D is continuous.
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Proof. Fix b e I with |b|| = 1 and consider the operator x>-^D(xb) from A into
itself. Given a sequence {xn} in A converging to zero with {D(xnb)} converging to y e A,
we have that the elements xnb lie in / and therefore y = 0. By the closed graph theorem,
this operator is continuous and we denote by M its operator norm.

For all a e / and x e i we have D(a)xb = D(axb) - aD(xb) and so fc || D(a) | <
M^^H < 2M||a||. Consequently D is continuous. •

From Theorems 5 and 6 we can now state the following.

Corollary 7. Every essentially defined derivation on an ultraprime semi-simple
complex Banach algebra is continuous. Accordingly, every derivation defined on a nonzero
ideal of a prime C -algebra is continuous.
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