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On a Conjecture of Birch and
Swinnerton-Dyer

Wentang Kuo and M. Ram Murty

Abstract. Let E/Q be an elliptic curve defined by the equation y2 = x3 + ax + b. For a prime p,
p ∤ ∆ = −16(4a3 + 27b2) 6= 0, define

Np = p + 1 − ap = |E(Fp)|.

As a precursor to their celebrated conjecture, Birch and Swinnerton-Dyer originally conjectured that

for some constant c,
∏

p≤x,p∤∆

Np

p
∼ c(log x)r , x → ∞.

Let αp and βp be the eigenvalues of the Frobenius at p. Define

c̃n =







αk
p+βk

p

k
n = pk, p is a prime, k is a natural number, p ∤ ∆.

0 otherwise.
.

and C̃(x) =
∑

n≤x c̃n. In this paper, we establish the equivalence between the conjecture and the

condition C̃(x) = o(x). The asymptotic condition is indeed much deeper than what we know so

far or what we can know under the analogue of the Riemann hypothesis. In addition, we provide an

oscillation theorem and an Ω theorem which relate to the constant c in the conjecture.

1 Introduction

Let E/Q be an elliptic curve, defined as

y2
= x3 + ax + b.

For a prime p, p ∤ ∆ = −16(4a3 + 27b2) 6= 0, define

Np = p + 1 − ap = E(Fp).

As a precursor to their celebrated conjecture, Birch and Swinnerton-Dyer formulated
the following:

Conjecture ([2] Birch and Swinnerton-Dyer) For some constant c,

∏

p≤x,p∤∆

Np

p
∼ c(log x)r, x → ∞.
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We use B-SD as the abbreviation of this Birch and Swinnerton-Dyer conjecture.
Now consider the L-function LE(s) attached to E defined as follows:

LE(s) : =

∏

p∤∆

(1 − ap p−s + p−2s)−1 ×
∏

p|∆
lp(E, s)−1

=

∏

p∤∆

(

1 − αp

ps

)−1(

1 − βp

ps

)−1

×
∏

p|∆
lp(E, s)−1,

where lp(E, s) is a certain polynomial in p−s with the property that lp(E, 1) 6= 0. By

the work of Wiles [10], and Breuil, Conrad, Diamond and Taylor [3], LE(s) extends
to an entire function and satisfies a functional equation relating LE(s) to LE(2 − s).

Let
L̃E(s) :=

∏

p∤∆

(1 − ap p−s + p−2s)−1.

In [5], Goldfeld examined the consequences of the B-SD conjecture. He proved that

the constant c is the asymptotic formula is
√

2/L̃E(1). He also he proved that it im-
plies the Riemann hypothesis for LE(s), namely that all the non-trivial zeros of LE(s)
lie on ℜ(s) = 1.

We prove the following results below. Define the sequences cn, c̃n and their sum-

matory functions as follows:

− log L̃E(s+1) =

∑

n∈N

cn

ns
, − log L̃E(s) =

∑

n∈N

c̃n

ns
, C(x) =

∑

n≤x

cn, C̃(x) =

∑

n≤x

c̃n.

Theorem (Theorems 2 and 3) The B-SD conjecture is true if and only if C̃(x) = o(x).

Theorems 2 and 3 establish the equivalence of the B-SD conjecture with the be-
havior of a familiar sum appearing in analytic number theory. The latter sum has
been analyzed in the classical context of the Riemann zeta function by Montgomery
[8] and one would expect similar behavior for LE(s). Assuming this, it becomes trans-

parent that the B-SD conjecture is very likely to be true and very unlikely that it will
ever be proved in the near future.

In addition to this, we apply an oscillation theorem of Landau to “explain” some
observed oscillatory behavior of the products occurring in the B-SD conjecture. More

precisely, assuming the B-SD conjecture, in Lemma 1, we show that

C(x) = −r log log x + A + R(x),

where A is a constant and R(x) = o(1). Then

Theorem (Theorem 4 and Proposition 5) Assume the B-SD conjecture. Then R(x)
oscillates. Furthermore, for any ǫ > 0, R(x) is Ω(1/(log x)1+ǫ).

After this work was done, K. Murty informed us that Keith Conrad [4] has also

proved Theorem 3 in the more general context of L-functions with Euler products
of GL(n)-type. His proof uses the explicit formula method. Our proof invokes a
beautiful, little known theorem of Marcel Riesz [9] and is shorter than the one in [4].
Our approach can also be used to treat the general context.
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2 Notations and Preparation

Let E/Q be an elliptic curve, defined as

y2
= x3 + ax + b.

For a prime p, p ∤ ∆ = −16(4a3 + 27b2) 6= 0, define

Np = p + 1 − ap =
∣

∣E(Fp)
∣

∣ ,

where E(Fp) is the set of solutions of the equation y2
= x3 + ax + b in the finite field

Fp together with the point at infinity.
To ease the notation, we use

∏ ′
=

∏

p∤∆

and
∑′

=

∑

p∤∆

.

Let αp and βp be the eigenvalues of the Frobenius at p, and we have

ap = αp + βp, αp · βp = p.

Therefore

Np = p + 1 − ap =
1

p
(p2 + p − p · ap)

=
1

p
(p2 − p(αp + βp) + αp · βp) =

1

p
(p − αp)(p − βp).

Thus, the product in the conjecture becomes

∏

p≤x

′ Np

p
=

∏

p≤x

′(
1 − αp

p

)(

1 − βp

p

)

.

Take − log on both sides:

−
∑

p≤x

′
log

(

1 − αp

p

)(

1 − βp

p

)

=

∑

p≤x

′ ∞
∑

k=1

αk
p + βk

p

kpk
.

Define

C(x) :=
∑

pk≤x

′ αk
p + βk

p

kpk
=

∑

n≤x

cn,

where

cn =











αk
p + βk

p

kpk
n = pk, p is a prime, k is a natural number, (p, ∆) = 1

0 otherwise.
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Similarly, we define

C̃(x) :=
∑

pk≤x

′ αk
p + βk

p

k
=

∑

n≤x

c̃n,

where

c̃n = cn · n =







αk
p + βk

p

k
n = pk, p is a prime, k is a natural number, p ∤ ∆,

0 otherwise.

For instance, c̃p = ap, c̃p2 = (a2
p − 2p)/2, . . . , etc.

Now we consider the partial L-function L̃E(s) attached to E defined as follows:

L̃E(s) :=
∏ ′

(1 − ap p−s + p · p−2s)−1
=

∏′(
1 − αp

ps

)−1(

1 − βp

ps

)−1

.

We take the log of the L-functions:

− log L̃E(s + 1) =

∑

p

′ ∞
∑

k≥1

αk
p + βk

p

kp(s+1)k
. =

∑

n∈N

cn

ns
=

∫ ∞

1

1

xs
dC(x) = s

∫ ∞

1

C(x)

xs+1
dx

and

− log L̃E(s) =

∑

p

′ ∞
∑

k≥1

αk
p + βk

p

kpsk
. =

∑

n∈N

c̃n

ns
=

∫ ∞

1

1

xs
dC̃(x) = s

∫ ∞

1

C̃(x)

xs+1
dx.

Lemma 1 If we assume the B-SD conjecture, then

C(x) = −r log log x + A + o(1),

where A is a constant.

Proof Assuming the B-SD conjecture, we have

−r log log x − log c + log(1 + o(1)) =

∑

p≤x

′ ∞
∑

k=1

αk
p + βk

p

kpk
=

∑

pk≤x

cpk +
∑

p≤x,x<pk

cpk

= C(x) + e(x),

where e(x) =
∑

p≤x,x<pk cpk . All we need to do is to prove e(x) = a + o(1). We know

|αk
p| ≤ p

k
2 , |βk

p| ≤ p
k
2 =⇒ |αk

p + βk
p| ≤ 2p

k
2 .

Therefore, the sum
∑

p≤x,x<pk,3≤k cpk is absolutely convergent as x goes to infinity.

Hence, we can ignore this part. Define

e2(x) :=
∑

p≤x

cp2 .
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Now we concentrate on

ẽ2(x) := e(x) −
∑

p≤x

x<pk

3≤k

cpk =

∑

√
x≤p≤x

cp2 = e2(x) − e2(
√

x).

By definition

cp2 =
1

2
·
α2

p + β2
p

p2
=

1

2
·

a2
p − 2p

p2

since a2
p − 2p = α2

p + β2
p. By the theory of the Rankin-Selberg convolution (see [7]),

we have

∑ a2
p

ps
∼ log

1

s − 2
=⇒ 1

2

∑ a2
p

p2s
∼ 1

2
log

1

2(s − 1)
∼ 1

2
log

1

s − 1
.

This implies

1

2

∑

p2≤x

a2
p

p2
=

1

2
log log x + B1 + o(1),

for some constant B1. Therefore,

e2(x) =
1

2

∑

p≤x

a2
p − 2p

p2
=

1

2
log log x−log log x+c2 +o(1) = −1

2
log log x+B2 +o(1),

where B2 is a constant. Hence,

ẽ2(x) = e2(x) − e2(
√

x) =
1

2
log

1

2
+ o(1).

This completes the proof.

Remark We have two remarks on this lemma.

1. In Goldfeld’s paper [5], there is an extra
√

2 factor in his residue formula. In [4],
K. Conrad demystifies this extra factor in the much more general context alluded

to earlier. In our case, though we do not discuss it in our paper, it is clear that this
extra factor comes from the constant 1/2 · log 1/2 in the last equation of the proof
of the previous lemma.

2. By the lemma above, we can get the equivalence between the B-SD conjecture

∏

p≤x

′ Np

p
= c(x)(log x)r, c(x) = c + r(x), r(x) = o(1),

and the asymptotic formula

(⋆) C(x) = −r log log x + A + R(x), R(x) = o(1).

The lemma gives us the direction from the conjecture to the asymptotic formula.

The other direction is also true since by the lemma, the difference between C(x)
and − log(

∏ ′
p≤xNp/p) is convergent as x goes to infinity.

https://doi.org/10.4153/CJM-2005-014-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-014-0


On a Conjecture of Birch and Swinnerton-Dyer 333

3 An o-theorem

The main theorem of this paper is to establish the equivalence between the B-SD
conjecture and a little o-condition. Let us start in one direction.

Theorem 2 Suppose that the B-SD conjecture is true, then
∑

n≤x

c̃n = o(x).

Proof By partial summation,

∑

n≤x

c̃n =

∑

n≤x

cn · n = x ·C(x) −
∫ x

3

C(t) dt + o(1),

where as usual C(x) =
∑

n≤x cn. By Lemma 1 we have

C(x) = −r log log x + A + o(1).

Therefore,

∑

n≤x

c̃n = x ·C(x) −
∫ x

3

C(t) dt + o(1)

= x{−r log log x + A + o(1)} −
∫ x

3

−r log log t + A + o(1) dt + o(1)

= −rx log log x + cx −
(

∫ x

3

−r log log t dt + cx + o(x)
)

= −rx log log x +

∫ x

3

r log log t dt + o(x).

Hence, after an easy integration,
∑

n≤x

c̃n = −rx log log x + r
(

x log log x + o(x) + O

( x

log x

))

= o(x).

Amazingly, the converse of the previous theorem is true. We need the following
theorem of Riesz.

Theorem ([9, Satz I]; [6, Part 2 of the Theorem]) Assume that

λ1 < λ2 < · · · , λn → ∞, B(y) =

∑

λn≤y

bn = O (ey) , g(s) =

∑

n≥1

bne−λns.

Hence g(s) is convergent for ℜ(s) > 1. Suppose that g(s) is regular at s = 1. If one

assumes that

B(y) = o(ey),

then
∑

n≥1

bne−λn

converges.
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In addition, we require a little lemma.

Lemma If
∑

n≤x c̃n = O(x), then LE(s) has no zero ℜ(s) > 1.

Proof We need only consider L̃E(s). We know

− log L̃E(s) =

∑ c̃n

ns
.

For ℜ(s) = σ > 1,

− log L̃E(s) =

∑ c̃n

ns
=

∫ ∞

1

1

xs
dC̃(x)

= s

∫ ∞

1

C̃(x)

xs+1
dx = O

(

∫ ∞

1

x

xσ+1
dx

)

= O

(

∫ ∞

1

1

xσ
dx

)

.

log L̃E(s) is regular for ℜ(s) > 1. Therefore, L̃E(s) has no zero for ℜ(s) > 1.

Now we are ready for our theorem.

Theorem 3 If
∑

n≤x c̃n = o(x), then the B-SD conjecture is true.

Proof By the lemma above, log L̃E(s) is regular for ℜ(s) > 1. Let r be such that

− log L̃E(s) + r log(s − 1) =

∑

c̃n · n−s + r log(s − 1)

is regular at s = 1. Let

r log ζ(s) =

∑

n=1

dn

ns
,

where

dn =

{

r/k if n = pk,

0 otherwise.

Then by the classical estimate of Chebycheff,

∑

n≤x

dn = O

( x

log x

)

= o(x).

Consider

g(s) = − log L̃E(s) − r log ζ(s) =

∞
∑

n=1

bn

ns
.

Since r log ζ(s) + r log(s − 1) is regular at s = 1, g(s) is regular at s = 1. Again by
the previous lemma, g(s) is convergent for ℜ(s) > 1. Now we apply Riesz’s theorem
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above to the sequence λn = log n, y = log x. Then g(s) satisfies all the conditions.
Furthermore,

B(x) :=
∑

n≤x

bn =

∑

n≤x

(c̃n + dn) = o(x).

By the theorem, we know

∑

n≤x

c̃n + dn

n
= A ′ + o(1).

This implies

C(x) =

∑

n≤x

c̃n

n
=

∑

n≤x

cn = −
∑

n≤x

dn

n
+ A ′ + o(1) = −r log log x + A + o(1).

As noted in the remark at the end of Section 2, the asymptotic formula of C(x) is
equivalent to the B-SD conjecture. The proof is now complete.

Remark The condition
∑

n≤x

c̃n = C̃(x) = o(x).

is much deeper than what we know at present. If we assume the Riemann hypothesis,

we only can get C̃(x) = O(x log x). Even if we assume the pair-correlation conjecture,
we only have C̃(x) = O(x(log x)1/2). On the other hand, one can show C̃(x) =

Ω(x log log log x/ log x). However, in [8], Montgomery gave a heuristic argument
treating the error term occurring in classical prime number theory. When applied

to our context, this suggests that C̃(x) = O(x(log log log x)2/ log x). Thus, it is likely
that the B-SD conjecture is true, from this perspective.

4 An Oscillation Theorem

Now we would like to know how the coefficient c(x) in the conjecture behaves. In
Birch’s original paper, based on empirical data, it was noticed that c(x) oscillates and

it is hard to prove this directly. We cannot prove that c(x) oscillates. However, we can
prove R(x), the remainder term of C(x) (see Section 2, (⋆) ) indeed oscillates.

We need the following oscillation theorem.

Theorem (Landau’s Oscillation Theorem [1, Theorem 2]) If
∑∞

1 ann−s is a Dirichlet

series (respectively,
∫ ∞

1−
x−sdF(x) a Mellin transform) that converges for ℜ(s) > α and

if the associated analytic function is regular at the point s = α, then either the series

(transform) converges to the left of the point s = α or else the sequence an is not ulti-

mately of one sign (F is not ultimately monotonic). Equivalently, if an or dF is of one

sign from some point onward, then the abscissa of convergence exceeds α or F̂ must have

a singularity at the point s = α.
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Now we can state our oscillation theorem.

Theorem 4 Assume the B-SD conjecture. Then R(x) oscillates, i.e., R(x) is not ulti-

mately monotone.

Proof We know

− log L̃E(s + 1) =

∑ cn

ns
=

∫ ∞

1

1

xs
dC(x).

Let

G(s) =

∫ ∞

1

1

xs
d(r log log x − A).

It is easy to see that
G(s) = −r log s + H(s),

where H(s) is regular for ℜs ≥ 1 and H(s) = O(1). Let

F(x) = r log log x − A + C(x) = R(x).

We have

− log L̃E(s + 1) + G(s) =

∫ ∞

1

1

xs
dF(x).

Set α = 0 and apply Landau’s theorem above on F(x). We know that

− log L̃E(s + 1) + G(s)

is regular at s = 0. Since log L̃E(s + 1) has many singularities on the line ℜ(s) = 0,
the function

∫ ∞
1

x−s dF(x) cannot converge to the left of ℜ(s) = 0. We conclude that
F(x) = R(x) is not ultimately monotonic.

In addition, we can say a little bit more about R(x).

Proposition 5 For any ǫ > 0, the function R(x) is Ω(1/(log x)1+ǫ).

Proof If the assertion is wrong, there exists ǫ > 0 such that

R(x) = O

( 1

(log x)1+ǫ

)

.

Then

− log L̃E(s + 1) =

∫ ∞

1

1

xs
d
(

−r log log x + A + r(x)
)

= r log s + H(s) +

∫ ∞

1

1

xs
dR(x).

Let

J(s) =

∫ ∞

1

1

xs
dR(x).
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On the line ℜ(s) = 0,

| J(s)| =

∣

∣

∣

∫ ∞

1

1

xs
dR(x)

∣

∣

∣
=

∣

∣

∣
s

∫ ∞

1

|R(x)|
x

dx
∣

∣

∣
= O

(

∫ ∞

3

1

x(log x)1+ǫ
dx

)

= O

(

(log x)−ǫ|∞3
)

= O(1).

Hence, J(s) is regular on the line ℜ(s) = 0. This is impossible since log L̃E(s + 1) has
many singularities on it. This is a contradiction and we have finished the proof.

We believe that the finer analysis of the zeros on the critical line can lead to a better
Ω theorem of R(x). We relegate this work for future research.
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