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Abstract. The notion of a strongly dense inner product space is introduced and
it is shown that, for such an incomplete space S (in particular, for each incomplete
hyperplane of a Hilbert space), the system F(S) of all orthogonally closed subspaces
of S is not stateless, and the state-space of F(S) is affinely homeomorphic to the face
consisting of the free states on the projection lattice corresponding to the completion
of S. The homeomorphism is determined by the extension of the states. In particular,
when S is complex, the state-space of F(S) is affinely homeomorphic to the state-space
of the Calkin algebra associated with S.
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1. Introduction and preliminaries. Let S be an inner product space (real, complex
or quaternion) with inner product 〈., .〉. For any subspace A ⊂ S, we let A denote its
completion. A subspace A of S is called orthogonally closed if A = A⊥⊥, where A⊥ =
{x ∈ S : 〈x, y〉 = 0 for all y ∈ A}. Let us denote by F(S) the set of all orthogonally
closed subspaces of S. If we order F(S) by the inclusion relation and endow it with the
orthocomplementation ⊥, then F(S) becomes a complete orthocomplemented lattice
(see [12], [6]). In this paper, let us denote by P(S) the set of finite dimensional subspaces
of S. Observe that P(S) ⊆ F(S). For any vector x ∈ S we let [x] = span{x}.

We recall that a poset (L,≤,⊥, 0, 1) is said to be orthocomplemented if, for every
a, b ∈ L, we have (i) a⊥⊥ = a; (ii) a ≤ b implies b⊥ ≤ a⊥; (iii) a ∨ a⊥ = 1; and (iv) 0⊥ =
1. In addition, we say that an orthocomplemented poset (L,≤,⊥, 0, 1) is orthomodular
if, for any a, b ∈ L (i) a ≤ b⊥ implies that a ∨ b exists in L; and (ii) a ≤ b implies that
b = a ∨ (a⊥ ∧ b). Adopting the terminology taken from quantum system axiomatics
(see, for example, [15], [6], [9]), we shall define a state on an orthocomplemented lattice
(L,≤,⊥, 0, 1) to be any mapping s : L → [0, 1] such that (i) s(a ∨ b) = s(a) + s(b)
whenever a, b ∈ L and a ≤ b⊥; and (ii) s(1) = 1. A state s is said to be σ−additive if
condition (i) is satisfied for every countable sequence {ai : i ∈ �} of pairwise orthogonal
elements of L such that their join exists in L. We shall denote by S(F(S)) the set of all
states on F(S). Then S(F(S)) is a convex compact subset of �F(S). (Here we consider
�F(S) with the ‘pointwise’ topology.) Let S0(F(S)) denote the set of all free states on
F(S); i.e. the states that vanish identically on P(S). Then S0(F(S)) is a face in S(F(S)).

The completeness of an inner product space S, can be characterized by
(i) the algebraic conditions on the lattice F(S) (see [2]); and (ii) the measure-theoretic
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properties of F(S) (see [10], [7], [3]). The Amemiya-Araki result asserts that whenever
F(S) is orthomodular, S is complete. When S is complete, F(S) is merely the system of
closed subspaces of S, and for any unit vector x ∈ S, the mapping sx : F(S) → [0, 1],
M → ‖PMx‖2 defines a σ−additive state (vector state) on F(S). We recall that in this
case the state-space S(F(S)) coincides with the closure (in the pointwise topology) of
the convex hull of {sx : x ∈ S and ‖x‖ = 1}.

Let us now relax the assumption that S is complete. J. Hamhalter and P. Pták
proved [10] that a separable inner product space S is complete if and only if S(F(S))
contains at least one σ−additive state. This result was then generalized for non-
separable inner product spaces and signed-measures (see [6]). Furthermore, it can
be shown (see [7]) that S is complete if and only if there exists a unit vector x ∈ S such
that the vector mapping sx : F(S) → [0, 1], M → ‖PMx‖2 defines a state. Hence the
state-space S(F(S)) differs considerably from S(F(S)) when S is incomplete. Indeed,
one could have been somewhat justified to consider the system F(S) – where S is
incomplete – as a possible candidate for a naturally born stateless orthocomplemented
lattice.

In [4], the authors have exhibited a dense hyperplane S of a separable Hilbert
space H, satisfying S(F(S)) �= ∅. This gave an answer to the ‘state on F(S) problem’
that was originally raised by Pták in [13]; see also [6, Problem 4.3.12]. It was also shown
that, for each inner product space S with a countable linear dimension, F(S) admits
states. The main objective of this paper is to describe the state-space S(F(S)) for an
important large class of incomplete inner product spaces. We prove that when S is a
strongly dense, incomplete space, every state in S(F(S)) can be extended to a (unique)
free state in S(F(S)). In addition, if S is complex, the state-space of F(S) is affinely
homeomorphic to the state-space of the Calkin algebra associated with the completion
S of S.

As a by-product, a new orthomodular space is exhibited, the properties of which
might be of interest and could be further investigated in connection to the foundations
of quantum physics.

2. Results. An inner product space S, is said to be strongly dense in its completion
S, if every infinite dimensional closed subspace A in S has a non-trivial intersection
with S; i.e. A ∩ S �= {0}. Throughout this paper when we write ‘S is strongly dense’ it
should be always understood as ‘S is strongly dense in its completion’. We first justify
ourselves for introducing the notion of ‘strongly dense subspaces’ by showing that in
fact this class is ‘large’.

PROPOSITION 1. Let S be an inner product space such that dim S/S < 2ℵ0 . Then S is
strongly dense in S.

Proof. Suppose that A ∈ F(S), dim A = ∞ and A ∩ S = {0}. If we let U to be a
Hamel (linear) basis of A, then it is clear that {u + S : u ∈ U} is a linearly independent
set in S/S. Since |U| ≥ 2ℵ0 , it follows that dim S/S ≥ 2ℵ0 . �

Observe that every incomplete hyperplane of a Hilbert space is strongly dense.
The converse of Proposition 1 is not true; i.e. there are inner product spaces that are
strongly dense and yet the co-dimension in their completion is 2ℵ0 . To see this fact,
let H be a separable Hilbert space, {ei : i ∈ �} an orthonormal basis of H and F, the
collection of all infinite dimensional closed subspaces of H. Recall that |F| = 2ℵ0 . If
we denote by ω the first ordinal with cardinality 2ℵ0 , we can express F as {Uα : α < ω}.
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Using transfinite induction, we can construct a linearly independent set of unit vectors⋃
α<ω{uα, vα} ∪ {ei : i ∈ �} in H such that uα, vα ∈ Uα, for each α < ω. Using Zorn’s

lemma, we can extend this set to a Hamel basis K of H. Let K ′ = K \ {uα : α < ω},
and define S = span{K ′}. It is clear that S is strongly dense in H and dim H/S = 2ℵ0 . If
follows that the class of all strongly dense inner product spaces is relatively large; yet –
as the following proposition illustrates – not every inner product space is strongly
dense.

PROPOSITION 2. Let S be an inner product space with a countable (infinite) linear
dimension. Then S is not strongly dense.

Proof. It is enough to exhibit one such inner product space since the inner product
spaces with countable (infinite) linear dimension are unitarily equivalent.

Let {ei j : i, j ∈ �} be an orthonormal basis of a separable Hilbert space H, and
let S = span{ei j : i, j ∈ �}, vi = ∑∞

j=1
1
2j ei j and A = span{vi : i ∈ �}. Since vi⊥vk for

i �= k, we have dim A = ∞. It is easily seen that A ∩ S = {0}; i.e. S is not strongly
dense. �

Let S be an inner product space. We shall define a binary relation on the elements
of F(S) as follows: A ∼ B if there exist finite dimensional subspaces N1, N2 of S such
that A + N1 = B + N2. It is not difficult to check that ∼ is reflexive, symmetric and
transitive; i.e. ∼ defines an equivalence relation on F(S). Let F(S) denote the partition
F(S)/ ∼. For any A ∈ F(S), let 〈A〉 denote the equivalence class containing A. Then
〈{0}〉 and 〈S〉 represent the classes of finite and cofinite dimensional subspaces of
S, respectively. For any 〈A〉, 〈B〉 ∈ F(S), we say that 〈A〉 is less than 〈B〉 and write
〈A〉 ≤ 〈B〉 if, for every C ∈ 〈A〉, there exists D ∈ 〈B〉 such that C ⊂ D. (Observe that
〈A〉 ≤ 〈B〉 if and only if there exists C ∈ 〈A〉 and D ∈ 〈B〉 such that C ⊂ D.) It is easy to
show that ≤ is reflexive and transitive. Moreover, if 〈A〉 ≤ 〈B〉 and 〈B〉 ≤ 〈A〉, then we
can find subspaces C ∈ 〈A〉 and D ∈ 〈B〉, such that A ⊂ D ⊂ C. Since dim C/A < ∞,
it follows that A ∼ D, and therefore D ∈ 〈A〉. This implies that 〈A〉 = 〈B〉; i.e. ≤ defines
a partial order on F(S). Indeed, in Proposition 3, we prove that ≤ induces on F(S) a
lattice structure homomorphic to the lattice structure of F(S). Let us first prove the
following lemma.

LEMMA 1. Let A, B, C be subspaces of S such that A ⊂ B + M and A ⊂ C + N,
where M, N ∈ P(S). Then there exists K ∈ P(S) such that A ⊂ (B ∩ C) + K.

Proof. It is clear that we need to prove the statement only for the case when
dim M = dim N = 1; the rest would follow by a straightforward application of finite
induction. We assume that A ⊂ B + [m] and A ⊂ C + [n], for some m, n ∈ S. Denote
by f and g any two linear functionals on B + [m] and C + [n] respectively, such
that Ker( f ) = B and Ker(g) = C. The kernel Ker( f |A) of the restriction of f on
A is either A, or a hyperplane in A; we shall denote it by F0. Of course, we have
F0 ⊂ B and F0 ⊂ C + [n]. If we let F = Ker(g|F0 ), we have F ⊂ B ∩ C and dim A/F ≤
2. Thus A = F + K , for some finite dimensional subspace K of S. Moreover,
A ⊂ (B ∩ C) + K. �

PROPOSITION 3. The partial ordering ≤ induces a lattice structure on F(S)
homomorphic to that of F(S); i.e. for every 〈A〉, 〈B〉 ∈ F(S) we have

〈A〉 ∨ 〈B〉 = 〈A ∨ B〉 and 〈A〉 ∧ 〈B〉 = 〈A ∧ B〉.
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Proof. It can easily be seen that 〈A〉, 〈B〉 ≤ 〈A ∨ B〉. On the other hand, let 〈D〉 ∈
F(S) such that 〈A〉, 〈B〉 ≤ 〈D〉. Then, there exist D1, D2 ∈ 〈D〉 such that A ⊂ D1 and
B ⊂ D2. Moreover, D1 + M = D2 + N, for some M, N ∈ P(S). Let C ∈ 〈A ∨ B〉; i.e.
C + M′ = (A ∨ B) + N ′, for some M′, N ′ ∈ P(S). Thus,

C ⊂ C + M′ = (A ∨ B) + N ′ ⊂ D1 + M + N ′,

and therefore 〈A ∨ B〉 ≤ 〈D〉; i.e. 〈A〉 ∨ 〈B〉 = 〈A ∨ B〉.
On the other hand, it is clear that 〈A ∧ B〉 ≤ 〈A〉 and 〈A ∧ B〉 ≤ 〈B〉. Let 〈D〉 ∈ F(S)

such that 〈D〉 ≤ 〈A〉, 〈D〉 ≤ 〈B〉 and let C ∈ 〈D〉. Then C ⊂ A1 and C ⊂ B1, for some
A1 ∈ 〈A〉 and B1 ∈ 〈B〉. There exist M1, M2, N1, N2 ∈ P(S) such that

C ⊂ A1 ⊂ A1 + M1 = A + N1 and C ⊂ B1 ⊂ B1 + M2 = B + N2.

By Lemma 1, it follows that C ⊂ (A ∧ B) + K , where K ∈ P(S). This implies that
〈D〉 ≤ 〈A ∧ B〉, and therefore 〈A〉 ∧ 〈B〉 = 〈A ∧ B〉. �

When F(S) is orthomodular (and therefore, in view of [2], S is complete) the system
F(S) can be equipped with a ‘natural’ orthocomplementation ⊥. We prove this in the
following proposition.

PROPOSITION 4. If F(S) is orthomodular, then the mapping ⊥ : F(S) → F(S),
〈A〉 → 〈A⊥〉, defines an orthocomplementation. In this case, (F(S),≤,⊥, 〈{0}〉, 〈S〉) is
an orthomodular lattice with the smallest and greatest elements being 〈{0}〉 and 〈S〉,
respectively.

Proof. First we show that the mapping ⊥ is well defined, i.e. we show that if
〈A〉 = 〈B〉, then 〈A⊥〉 = 〈B⊥〉. Indeed, let N1, N2 ∈ P(S) such that A + N1 = B + N2.
Let M1 = A⊥ ∧ (A + N1) and M2 = B⊥ ∧ (B + N2). Then M1 and M2 are finite
dimensional and, in view of the orthomodular law, we have

A + N1 = A ∨ M1 = A ⊕ M1 and B + N2 = B ∨ M2 = B ⊕ M2.

Furthermore, we have A⊥ = (A ⊕ M1)⊥ ⊕ M1 and B⊥ = (B ⊕ M2)⊥ ⊕ M2. Thus

M2 + A⊥ = (M2 + (A ⊕ M1)⊥) + M1

= (M2 ⊕ (B ⊕ M2)⊥) + M1

= B⊥ + M1,

and therefore 〈A⊥〉 = 〈B⊥〉.
It is easy to verify that the mapping ⊥ is one-to-one, maps F(S) onto itself, and if

〈A〉 ≤ 〈B〉, then 〈B〉⊥ ≤ 〈A〉⊥. Furthermore, 〈A〉⊥⊥ = 〈A〉, 〈A〉 ∨ 〈A〉⊥ = 〈S〉 and 〈A〉 ∧
〈A〉⊥ = {0}; i.e. ⊥ defines an orthocomplementation on F(S). The orthomodularity of
F(S) follows directly from the orthomodularity of F(S). Indeed, if 〈A〉 ≤ 〈B〉, we have
A ⊂ D, for some D ∈ 〈B〉. Since F(S) is orthomodular, we have D = A ∨ (A⊥ ∧ D),
which implies that 〈B〉 = 〈D〉 = 〈A〉 ∨ (〈A〉⊥ ∧ 〈B〉). This completes the proof. �

Now we prove that, for inner product spaces that are strongly dense in their
completion, the lattices F(S) and F(S) are isomorphic as orthocomplemented lattices.
Roughly speaking, this means that, for such inner product spaces, F(S) differs from
F(S) only with respect to finite dimensional subspaces. Consequently, every measure
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on F(S) that is identically zero on the set of finite dimensional subspaces of S should
induce a measure on F(S).

THEOREM 1. Let S be an inner product space that is strongly dense in its completion.
Then F(S) is an orthomodular lattice. Furthermore, F(S) is isomorphic to F(S) (as
orthomodular lattices).

Proof. That F(S) is a lattice was shown in Proposition 3. It is not difficult to
verify that the mapping ψ : F(S) → F(S), 〈A〉 → 〈A〉 is well defined; i.e. if 〈A〉 = 〈B〉,
then 〈A〉 = 〈B〉. Let us proceed by showing that ψ is one-one and onto. Indeed,
if ψ(〈A〉) = ψ(〈B〉), for some 〈A〉, 〈B〉 ∈ F(S), then A ⊕ M = B ⊕ N, for some
M, N ∈ P(S). Let us verify that dim((A ⊕ M) ∩ S)/A < dim M. Let us assume the
contrary and let {(ai + mi)/A : i ∈ I} be a linearly independent set of vectors in the space
((A ⊕ M) ∩ S)/A, where ∞ > |I| > dim M. Then there exists a set of scalars {αi : i ∈ I}
such that

∑
i∈I αimi = 0 and not all αi’s are zero. This implies that

∑
i∈I

αi(ai + mi)/A

=
(∑

i∈I

αiai

) /
A +

(∑
i∈I

αimi

)/
A

=
(∑

i∈I

αiai

) /
A = 0,

since
∑

i∈I αiai + ∑
i∈I αimi ∈ S and hence

∑
i∈I αiai ∈ A ∩ S = A. Let K ∈ P(S) be

such that (A ⊕ M) ∩ S = A + K . Using an argument as the previous one it is easy to
show that (B ⊕ N) ∩ S = B + L, for some L ∈ P(S). Hence, we have A + K = B + L,
and therefore 〈A〉 = 〈B〉. For any M ∈ F(S), let M1 = (M ∩ S)⊥⊥ and M0 = M ∩ S.
Since S is strongly dense, we have 〈M0〉 = 〈M1〉 = 〈M〉, and therefore we have
ψ(〈(M ∩ S)⊥⊥〉) = 〈M〉; i.e. ψ is onto. This means that we may (and in fact we shall)
identify each element of F(S) with 〈A〉, for some A ∈ F(S).

To show that ψ is a lattice isomorphism it suffices to verify that 〈A ∨ B〉 = 〈A ∨ B〉
holds, for all A, B ∈ F(S). Of course, we have A ∨ B ⊂ A ∨ B and therefore

A ∨ B = (A ∨ B) ⊕ (A⊥S ∧ B
⊥S ∧ (A ∨ B)).

If (A⊥S ∧ B
⊥S ∧ (A ∨ B)) is infinite dimensional, then it has a non-trivial intersection

with S; i.e. there exists a non-zero vector x ∈ (A ∨ B) ∧ A⊥ ∧ B⊥; this is absurd. Hence
〈A ∨ B〉 = 〈A ∨ B〉.

We proceed further and show that the mapping ⊥ : F(S) → F(S), defined by
〈A〉⊥ = ψ−1(ψ(〈A〉)⊥), is an orthocomplementation on F(S). That ⊥ is well-defined
on F(S) follows directly from the definitions of ψ , ψ−1 and the fact that ⊥ is well-
defined on F(S). We prove that for every A ∈ F(S), 〈A〉⊥ = 〈A⊥〉. By definition,
〈A〉⊥ = ψ−1(〈A⊥S 〉). But A⊥ ∈ 〈A⊥S 〉; indeed, if A⊥⊥S ∩ A⊥S is infinite dimensional,
then A⊥⊥ ∩ A⊥ �= {0}, which is false. Hence ⊥ is an orthocomplementation on F(S).
This concludes our proof. �

Observe that an inner product space S, is strongly dense if, and only if, the map
〈A〉 → 〈A〉 is a surjection from F(S) onto F(S).
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LEMMA 2. Let A ⊂ B ∈ F(S) and s ∈ S(F(S)). Then s(B) = s(A) + s(A⊥ ∧ B).

Proof. The assertion follows from the following equalities.

s(A) + s(A⊥ ∧ B) = s(A) + s((A ∨ B⊥)⊥)

= s(A) + 1 − s(A ∨ B⊥)

= s(A) + 1 − s(A) − s(B⊥)

= 1 − s(B⊥) = s(B). �

PROPOSITION 5. Suppose that (F(S),≤) admits an orthocomplementation ⊥ such
that 〈A〉⊥ = 〈A⊥〉, for every A ∈ F(S). There is an affine homeomorphism between the
state-space of F(S) and the face S0(F(S)) in the state-space of F(S) consisting of all those
states that vanish identically on the set of finite dimensional subspaces of S.

Proof. For each state s on F(S) vanishing on P(S) we can define the mapping ŝ :
F(S) → [0, 1], defined by ŝ(〈A〉) = s(A). Observe that the definition of ŝ is independent
of the representation of 〈A〉 because, in view of Lemma 2, if 〈A〉 = 〈B〉, then s(A) = s(B).
We shall now show that ŝ defines a state on F(S). Of course, we have ŝ(〈S〉) = 1. Let
〈A〉, 〈B〉 ∈ F(S) such that 〈A〉⊥〈B〉; i.e. 〈A〉 ≤ 〈B〉⊥. Then there exists N ∈ P(S) such
that A ⊂ B⊥ + N = (B ∧ N⊥)⊥. Since B⊥ + N ∈ 〈B⊥〉, it follows that B ∧ N⊥ ∈ 〈B〉.
Thus

ŝ(〈A〉 ∨ 〈B〉) = ŝ(〈A〉 ∨ 〈B ∧ N⊥〉)
= ŝ(〈A ∨ (B ∧ N⊥)〉)
= s(A ∨ (B ∧ N⊥))

= ŝ(〈A〉) + ŝ(〈B ∧ N⊥〉)
= ŝ(〈A〉) + ŝ(〈B〉);

i.e. ŝ is a state on F(S). It is very easy to check that the mappingˆ : s → ŝ is one to one. We
prove that it is also surjective. Let w be a state on F(S). Let us define w0 : F(S) → [0, 1],
w0(A) = w(〈A〉). If A ⊂ B⊥, then 〈A〉 ≤ 〈B〉⊥, and hence

w0(A ∨ B) = w(〈A ∨ B〉) = w(〈A〉 ∨ 〈B〉) = w0(A) + w0(B).

Observe that the state w0 induced by w vanishes identically on P(S) and ŵ0 = w.
Finally, it is not difficult to check that ˆ : s → ŝ is continuous and that the inverse
mapping is too. Hence ˆ : s → ŝ is an affine homeomorphism between the two state-
spaces. �

We recall that in [3], it was proved that if S is an incomplete inner product
space and F(S) admits a state, then this has to be identically zero on P(S) (i.e.
S(F(S)) = S0(F(S))). As a consequence of this, Theorem 1 and Proposition 5, we
have the following theorem that describes the state-space of F(S) for the case in which
S is an incomplete strongly dense inner product space. (The state-space of F(S) for the
case in which S is a complete inner product space was first described in [1].)

THEOREM 2. Let S be a strongly dense, incomplete inner product space. There is an
affine homeomorphism φ : s → sφ between the state-space of F(S) and the face S0(F(S))
consisting of all the states that vanish identically on P(S). Each state s on F(S) is the
restriction of sφ , i.e. s(M) = sφ(M), for all M ∈ F(S).
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We remark that we do not know of an example of an incomplete inner product
space S, satisfying S(F(S)) = ∅.

If H is an infinite dimensional complex Hilbert space, B(H) the C∗-algebra of
bounded operators on H and C(H) the closed two-sided ideal of compact operators
on H, we can form the quotient B(H)/C(H), which is a C∗-algebra, the Calkin algebra
(see [11]). It is clear that F(H) can be identified with the set of projections in B(H).
As a consequence of the Gleason-Christenson-Yeadon theorem (see [8], [5], [16] and
[17]) and the Spectral Mapping theorem, it follows that the state-space of F(H) is
affinely homeomorphic to the state-space of B(H). Moreover, since every self-adjoint
compact operator is the norm limit of operators with finite rank, S0(F(H)) is affinely
homeomorphic to the state-space of the Calkin algebra B(H)/C(H). Thus, we have the
following corollary. (The correspondence between pure states and maximal left ideals
for C∗-algebras is well known [11, Theorem 10.2.10].)

COROLLARY 1. Let S be a strongly dense incomplete complex inner product space.
There is an affine homeomorphism ψ : s → sψ between the state-space of F(S) and
the state-space of the Calkin algebra B(H)/C(H), where H = S. Each state s on F(S)
is the restriction of sψ ; i.e. s(M) = sψ (PM/C(H)), for all M ∈ F(S). In view of this
homeomorphism, we can also characterize the pure states in S(F(S)) as follows. There is
a one to one correspondence between the pure states on F(S) and the maximal left ideals
of B(H) containing C(H).

We conclude with the following remark.

REMARK 1. For an inner product space S, we can consider the orthomodular
poset of all splitting subspaces of S; i.e. the system of subspaces M ⊂ S satisfying
M ⊕ M⊥ = S. This is denoted by E(S) and is always contained in F(S). It is possible
to factorize E(S) in exactly the same manner as it was done with F(S), and the
resultant quotient, say E(S), will be an orthomodular poset. However, E(S) can be very
‘poor’ – even for strongly dense spaces. Indeed, in [14], a hyperplane S0 of a separable
Hilbert space was constructed such that E(S0) consists merely of the finite/co-finite
dimensional subspaces of S0. Thus, for this hyperplane, F(S0) ∼= F(S0), whereas E(S) =
{〈{0}〉, 〈S0〉}, and therefore, a similar conclusion to Theorem 2 cannot be drawn if F(S)
is interchanged with E(S).
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