ON THE INTEGRAL EXTENSIONS OF QUADRATIC
FORMS OVER LOCAL FIELDS

MELVIN BAND

I. Introduction. Let F be a local field with ring of integers & and unique
prime ideal (p). Suppose that V is a finite-dimensional regular quadratic space
over F, W and W’ are two isometric subspaces of V (i.e. 7: W — W' is an
isometry from W to W’). By the well-known Witt's Theorem, 7 can always be
extended to an isometry ¢ € O(V).

The integral analogue of this theorem has been solved over non-dyadic local
fields by James and Rosenzweig [2], over the 2-adic fields by Trojan [4], and
partially over the dyadics by Hsia [1], ll for the special case that W is a line.
In this paper we give necessary and sufficient conditions that two arbitrary
dimensional subspaces W and W’ are integrally equivalent over non-dyadic
local fields. We let 7 be the isometry between W and W’ and we search for an
integral isometry ¢ € O(V) such that ¢|W = 7.

II. Notation and basic concepts. The language and notation used in this
paper is geometric and follows quite closely with the notation used in [3], thus
we can reformulate the problem using O’Meara’s notation as follows: Let ¥ be
a regular quadratic space over a non-dyadic local field F, and let L be a lattice
on V. Let Wand W’ be isometric sublattices on L. Then we search for necessary
and sufficient conditions that an isometry ¢ belonging to O (L) exists such that
o|W = 1.

For any sublattice J in L, we define s(J) to be the ideal generated by J - J,
Jo = {x € Jjx-JC (p*)} and J+ = {x € L|x-J = {0}}. The lattice L admits
a Jordan decomposition into modular sublattices L=L, L DL: D... DL,
suchthats(Ly) DsLe) D ... D s(L,). If L = Y @ L;isan arbitrary Jordan
decomposition such that s(L;) = (%) and if L,is non-empty, then we define the
rth Jordan chain associated with the given splitting of L to be L, = ;<. L;
and the rth inverse chain of L to be L(»nt = > 5, L;. Then L = Ly L Lyt
James and Rosenzwelig, in [2], decomposed vectors into critical components as
described in the following manner. Let v be a primitive vector of L. Then there
exists a Jordan decomposition of L = > L, such that s(L,/) = (p?) if L/ is
non-empty in which

k
v = Z plivy, (7 is a primitive basis vector in Ly, o, # 0)
i=1
satisfies the following properties:
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A) fidfao>fa>...>f=0;

The {\;} are called the critical indices and the {f,} are called the critical
exponents of v at the critical indices {\;}, respectively.

If we define ord(») = ord(v - L) and ordx(») = ord(v - L#9), then James
and Rosenzweig [2] showed that K is critical for the vector v if

ordg_1(¥) = ordg(v) = ordgy1(v) — 1.

Note that if two vectors are integrally equivalent, they have:

(1) the same critical indices,

(2) the same critical exponents at their respective critical indices.

For the given vector v, define

Si=)\i+l+fi+1—fi <i=1,...,k_1).

Let L = Y @ M; be an arbitrary Jordan decomposition of L such that
s(M;) = (p*) andletv = 3 pm,;, m; € M, being primitive or zero. Then the
following is true:

(@) ifl=»N,thenh,=f,G=1,...,k);

Mb)ifl <Ay, thenh, = fi+ M —1;

(c) if A; <1 < Njq1, then
’fj when); £/ =<
Jiv1+ Njp1— 1 when s; £ 15 Ay
(d) if I = \,, then &, = 0.

hy 2

Letovy = 2 i<: p™m,. Then if v is integrally equivalent to w, (which we shall
write v ~ w), then
(3) ord(vesp? —wep?) 2 s;+2f;,G=1,...,k—1).

James and Rosenzweig showed [2] that conditions (1), (2), and (3) are both
necessary and sufficient for two primitive vectors of the same length to be
integrally equivalent.

Note that if two subspaces W and W’ are integrally equivalent (which we
shall write W ~7 W’), then n € W is integrally equivalent to " € W’, where
7 = 7(n) for all y € W. Conversely, we shall show that if » ~ 7(y) for all
n € W, then W ~ W’. Since W has infinitely many vectors, it would seem that
one cannot make the computations to check for integral equivalence, but by
reading through the proofs, one can see that there are actually only finitely
many computations to perform in order to check for integral equivalence of
quadratic subspaces.

III. Characterization of completely independent vectors having only
one critical index.

Remark. Let W= On+ ...+ On, and let W = O/ + ...+ Oy/,
where 3,/ = 7(n;). Define

T T
’
wW; = Z [ TF LY and w; = Z ai,»n]»'.
=1 =1
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Then W ~7 W’ if and only if
WO = Ophw, + ... + Oporw, ~ WD’
= Op*w) + ...+ Op*w,.
Hence, throughout the article we will not distinguish between W and W®,

Definition. Let n1, . . ., 9, be a set of vectors in L = Y L; and suppose that
each n; = X p%iuy;; (u;; € L, being primitive). Let each vector 5, have a first
critical index at j; with critical exponent a;;,. Then 7y, ..., 7, are called
completely independent if %14y, . . . , #%,,, arelinear independent over the residue

class field 7/ (p).

Since, by necessity, every n € W is integrally equivalent to 7(y) € W’, the
basis vectors of W are completely independent if and only if the basis vectors of
W' are completely independent.

LEMMA 1. There exists a set of basis vectors t, . . ., 7, of W which are completely
independent.

Proof. By induction on the dimension of W. If dim W = 1, the proof is
trivial. Hence assume that the lemma is true if dim W =7 — 1, ie.,

W=0On+ Ors+ ...+ Or, and 74, ..., r, are completely independent.
Chooser1 = ¢ — 3, ¢7; (¢, ..., ¢, € @), s0thatry, ..., r,arecompletely
independent.

Before characterizing completely independent vectors each having only one
critical index, we state the following useful result.

LeEMMA 2. If L contains the A-modular sublattice J, then J splits L if and only
if J-L < A

Proof. See [3, 82:15].

LemMA 3. Let  be a primaitive vector in L having only one critical index at s.
Suppose further that ord(n®) > s. Then there exists a vector t € L such that
n-t = p% 12 =0.

Proof. Since n has only one critical index at s, by [2] there exists some Jordan
decomposition, say L = 3 L, such that y € L. Choose f € L, such that
n - I = p%. Now consider the vector t = ay + BI. By an application of Hensel’s
Lemma, we can choose « and 8 in & so that ¢ satisfies the required properties.

LeEMMA 4. Let 91, ..., 1, be a set of primaitive vectors, each having only one
critical index at s, and are completely independent. Suppose further that
ord(ns - m;) > s. Then there exists a set of vectors {¢;} such that

(1) ti'n‘i = Psy

(2) ti-m; =000 #j),

@) ti-t; =001 =1¢,7=7).
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Proof. By scaling, if necessary, we can assume that s = 0. By Lemma 3, we
canchoosety -1 = 1,4/2 = 0. Then L = Oy, + Ot 1. L,/. Now each vector
7, (j = 2) can be written in the following way:

N =0£ﬂ)1+5;¢1'+77/, 7]]', € L/;
n;-m =am?®+ B; € (p) =8, € (p).

Therefore, 52/, . .., 7,/ are primitive and it is easy to verify that 5o/, ..., 5,
satisfy the hypothesis of the lemma in L,/. Hence, by induction on the dimen-
sion of L, there exists a set of vectors ¢, . . ., t, € L,/ which satisfies the lemma
for the vectors 54, . . ., 5,/. Therefore

ti’ﬂizl (7:———2,...,7’),

ti'nj:O (i#j)(i:2,...,7),
But L = On+ O@ — Y city) L L, provided ¢s,...,c, € €. Choose
€3, ...,¢. € Osothatt; =t,’ — 3 ct;isorthogonal to the vectors {7, ..., n,}.
Thus f, . .., ¢, satisty the required properties.

LemMA 5. Let the basts vectors of W be primitive, have only one critical index
at 0, and be completely independent. Then there exists a set of basts veclors
wy, ..., w, of W which are completely independent, have only one critical index
at 0, and the following holds true:

L=0COw 1 Ow | ... Ow, | Owey+ Oty 1 ... L Ow,+ Ot, 1 L,,
where t;-w; = 1,t;-w, =0 (1 % k), 12 =0 and

fIA

S)Y

i
w; = 21 a Wy, (i
k=

s i—1
Wy = Z oWy, + Z agty +w; (> s).
k=1 k=s+1
Proof. Suppose that W = Oy, + ... + On,, wheren, . . ., n,are completely
independent. We consider three cases.

Case 1. Suppose that one of the vectors, say 71, satisfies the property that
|n?| = 1. Then let w; = ;. Thus L = Ow; L L./. Then

nj=ajw1—|—11/ (j:2,...,7’),

where 9/ € L./. Then {7,/} satisfies the hypothesis of the lemma in L, and so
by induction our proof is complete.

Case 2. Suppose that [n;2] < 1 (1 <7 < r) but two vectors, say |71 - 72| = 1,
then let wy = 51 + 2. Then L = Ow, 1L L,/'. Write

n: = a; w1 + 97, n" €L (i=2,...,7).

Since {n,”} are completely independent, a simple induction on the dimension of
the lattice completes the proof.
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Case 3. We are only left with the case that |p;- 79,/ < 1 (1 £14,7 £ 7). But
this has been proved by Lemma 4.
CoROLLARY. There exists a decomposition of L = 3 L;" such that W € Ly'.

Proof. Note that Ow, 1 Ow, L ... L Ow, + Ot, is a unimodular sub-
lattice of L.

LEMMA 6. Let W = Oni + ...+ Oy, and suppose that each basis vector is

primitive and has only one critical index at 0. Suppose further that ns, . . ., n, are
completely independent. Then there exists a set of vectors {¢;} (1 < 1 = r) such that
(1) ti-mi =1,
(2) ti-m; =00 #7),

3) [t ; 1140,

Proof. By renumbering the vectors, if necessary, we can assume that either
(A) s(W) = s(On) or
B) s(W) = s(O(m+ n2)) if s(W) #=s(Ony)) G=1,...,7).

Consider case (A). If ord(n:%?) > ord(y:), then by Lemma 4 our proof is
complete. Thus we can assume that ord (n:2) = ord (). Hence L = Oy, L L.
Write n; = am + v/, wheren/ € L/ (j = 2,...,r). Then itis easy to verify
that gy, . .., n, satisfy the hypothesis of the lemma in L,. Hence by induction
on the dimension of the lattice, there exists a set of vectors ¢y, ...,¢ € L,/
satisfying (1), (2), and (3) for the vectors 7o/, ..., n,/. Let &/ = n|n:?~! and
definet; = ty/ — X.{—scit;. By choosing ¢y, . . . , ¢, appropriately in &, ty, ..., t,
is the required set.

Case (B). Since s(W) = s(O (g1 + ns)), by Lemma 4 we can assume that

[ (1 + n2)?| = 1. Since wy = n1 + 72, Wo = 72, ..., W, = n, satisfy the condi-
tions of case (A), there exists a set of vectors {4, . . . , ¢, which satisfy the lemma
for the vectors wy, . .., w,. Then 1, &1 + 2o, 3, . . ., t, is the required set.

The following three lemmas are a generalization of Lemmas 4, 5, and 6.
Keeping in mind the value of the lower bound of the exponent of a vector at its
non-critical indices, these lemmas can be easily proved.

LemMA 7. Let ny, ..., n, be a set of primitive vectors, each having only one
critical index at ky, . . . , k,, vespectively, and are completely independent. Suppose
that if ord (n;) = ord(n;), then ord(n; - n;) > ord(n;) (1 £ 4,7 = r). Then there
exists a set of vectors {t;} such thatt, - n, = p¥i, t;-n; =0 @ # j) and t; - t; = 0.

LeMMA 8. Let q1, . . ., n, be a set of primitive vectors, each having only one critical
index and are completely independent and such that W = Ony + ...+ On,.
Then there exists a set of vectors ws, . . ., W, which satisfy the same properties as
n, . . ., Ny and such that

L=0Ow, 1 Ow,1...L Ow,1 Owgs1+ Oty L ... L Ow, + Ot, 1 L,,
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where
ti cWi; = pkiy
ti-t; =0 s+1=17j=r),
tirw; =0 (¢ = 7),

and where

i
w; = Z:l W @ <s),
=

8 i—1
Wi = Z aiﬂbj + Z a,-jtj + w; (/L g S), Where Ay 6 ﬁ.
j=1 j=s+1

Such a set of basis vectors {w,} will be called a canonical set.

LEMMA 9. Let n1, . ..,7, be a set of primitive vectors, each having only one
critical index at ky, . . . , k,, respectively. Then there exists a set of vectors {¢;} such
that

(1) ti-me = Py,

(2) tiom; =0,

3) t2=0 (mod p*9).

The following lemma is the converse of the previous lemma, and thus
characterizes completely independent vectors having only one critical index.

Lemma 10. Let 91, . . ., 1, be a set of primaitive vectors having only one critical
index at ky, . . . , k., respectively. Suppose that there exists a set of vectors {t;} such
that

(1) ti-me = P,

(2) ti-m; =0,

3) t;2=0 (mod p*?).
Then 1, . .., 7, are completely independent.

ProrositioN 1. Let 9y, . .., 0, be a set of vectors of L, such that each n; has a
first critical index, say at k;, for 1 £ 1 = r, and suppose that the vectors are com-
pletely independent. Then there exists a decomposition L = 3 L, such that
ni € Li_yp'™ for every 4,1 < 1 < 7.

Proof. By renumbering the vectors and scaling, if necessary, we can assume
that #1, ..., 7, have first critical indices at 0, 5,41, . . . , 7,4, have first critical
indices at 1, 94,41, . . . , 7, have first critical indices at #. By the Corollary to
to Lemma 5, there exists a decomposition L™ of L such that

L
Ngntly + + o3 N € Lyt~

Now consider the vectors 7y, 141 = Mgn_141| L™, . . o, 740 = npu| Liney ™.
These vectors have only one critical index at # — 1 and are completely inde-
pendent. Applying again the Corollary to Lemma 5, there exists a decomposi-
tion Y i<p1 L1 of 3 i<u—1 L™ such that 7,,_,41,..., 74 € L,_i0"1,
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Continuing in this manner we obtain the lattice
L= Pt L.. o1 ¥ Ly,
=0 >n

which has the required properties.

IV. Selection of basis vectors.

Notation. Throughout the remainder of the article, vectors unprimed will
refer to elements associated with W and vectors which are primed, e.g. %/, will
refer to elements associated with W’. We introduce the following definitions.
Define k1 (n) and k2(n) to be the first and second critical indices of 5, respectively,
if they exist. Let a1(y) and a2(n) be the first and second critical exponents of 7,
respectively, if they exist.

Let s(n) denote the number of critical indices of 7. Let

_Joo if s(n) =1,
g(n) = {kz(n) + ax(n) — ai(n) if s(p) > 1.

Choose basis vectors for T as follows: Pick #; so that ¢(51) is maximum over all
basis vectors n € W. Assuming that 73, . . ., 7,1 have been chosen, let W, be
the set of basis vectors in W which are completely independent from 7, ..., 7,_1.
Choose 7, in W, so that ¢(5,) is maximum over all vectors n € W,. Hence by
induction we obtain a completely independent set of vectors. Such a set of basis
vectors of W will be called a maximalized set of vectors.

Renumber the basis vectors so that ¢(n;) < ¢(n,) implies ¢ < j. Decompose
each basis vector as follows. Let 5, = p®1(d7; 4 5, where p®*97, € L 4
and %; € Lymy*. By multiplying each vector 7, by p*¢ for some x; € Z, we can
assume that a;(n;) = ai1(n;). Now by adding 5;or —n;ton; ( > 1), if necessary,
we can assume that the vectors {r,} are canonical, and 71,...,7, are a
maximalized set, since ¢(n; & 1;) = ¢(n4).

Throughout the remainder of the article, we assume that the basis vectors of
W (and, of course, of W’ by necessity) are chosen in the above manner.
We now state the following important Cancellation Theorem.

TueoreM 1. Let L be a lattice on the regular quadratic space V, and let L' and L’
be two isometric sublattices of L which split L. Then L'+ = L''L.

Proof. See [3, 92:3].

V. The existence of an extension of the given isometry.
PROPOSITION 2. Suppose that q(n;)) = oo for all basis vectors of W. Then
W~ W' if g~ 1(y) =n for every n € W.

Proof. There is no loss of generality in assuming that 7, is primitive and
ki1(m1) = 0. We consider two cases.

A) [m? =1,

(B) [l < L.
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Case (A). Since |m? = 1, we can write L as follows: L = O L L, and
L= Oy' L L. Writen; = a + i;9; € Leandn,/ = a/n +4/,7/ € L/.
Since n; - 11 = n; - 71, we obtain a; = /. By Theorem 1, we obtain L, =< L.
Since by an easy application of Lemma 9, > ¢;7; ~ X c;i/ forallc; € O, by
induction on the dimension of the lattice, we obtain an isometry ¢; € O(L,, L.")
such that ey = %; — #,. Define

{7]1 — 7 on @771,

oY . -, )

7, —4; on L, via oy.

Then o is the required isometry.

Case (B). By Lemma 9, there exist vectorstand ¢’ such thatt -9, =1 =1¢- 9/,
ey =0=10-9/ (G#1),2=1¢>=0. Write L = On + Ot 1 L, and

Oy + Ot 1. L/. In this decomposition it is easy to verify that for
= 2,n;, =Bt + 9,19 € L, 7]/ = »8;‘”5/ + ﬁj,y ﬁjl € L/. Also

By =B/ =mn;m=n n'

¢
L
j

Once again L, =< L,/ by Theorem 1, and >_ ¢,;47; ~ 3_ ¢;i;/. Hence, by induction
on the dimension of L, there exists an isometry oy € O(L,, L.,) such that
o1:f;—7; (= 2,...,r). Define

m—ni on On + Of,
ait— 1,
equal to oy on L,.

Then o is the required isometry.

ProposITION 3. Suppose that one of the basis vectors, say ni, satisfies the
following properties:

(1) g(n1) is minimum over all q(n;) (1 <7 = 7);

(2) s(m) > 1.
Then W ~ W' if n ~1(n) = o for every n € W.

Proof. Using Proposition 1, we can choose a decomposition of L so that
n; € Ly -1 for every basis vector n;. Renumber the basis vectors, if neces-
sary, so that i, . . ., 7, satisfy the property that k1(n;) < q(m) forl £ 7 < m.
Then by having chosen the decomposition as mentioned above, we have
Nmtls -« - Mr € Lggenyt. Now write n; = p0dr; 4 57, where p“Cd7; € Ly
and ; € Lgm»®, for 1 = j < m. By our choice of the basis vectors, 71, . . . , 7y
satisfy Lemma 8. In order to facilitate the notation in the remainder of the
proof, we will assume that ord(r;%) > ord(r;) and if ord(r;) = ord(rs), then
ord(r; - 7;) > ord(r;). (The case in which several 7, satisfy the property that
ord(r,2) = ord(r;) gives rise to an almost identical proof, and hence is
omitted.)

By an application of Lemma 7, there is a family of {£,} (1 <4
L(q(,“)) SUCh that LieTs = pord(“)’ 7K T; = 0 (’L #]), t;* tj =0 (1 é 1., j

. A
NS

) of
m).
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By necessity, since 9, ~ 5/, we have
=t (mod pen),
and since 71 + n; ~ 9’ + 0/, m — n; ~ 0’ — 1/, we have
iy, =17/ (modp¥m) for2 <j=m
and
17, =0=1"-9/ forj> m.
Decompose L,y as follows:
Lgmy = Onn+ Ot 1l O+ Ot, L ... L OF,+ Ot, 1 L,

Where T; = aﬂtl + ajgtz + .« e + a; j—ltj—l + ’)-'j, and 7_']' iS primitive.
By orthogonalization of each hyperbolic plane we can write L) as
follows:

Ligmy = OMi~+ Ouy L Ozg+ Ops L ... L ONy + Ouy L L,

Whel‘e )\j2 = _ﬂjz = pord(-rj), )\j cM; = 0 and @7-'] + ﬁt] = ﬁ)\] + ﬁﬂj. In
this decomposition,

T;=BaM+ viapr + ..o+ BN+ vk G=1,...,m).

By our choice of the basis vectors, it is easy to verify, using Lemma 9, that there
exists a vector ¢ € Ly * such that

(]_) Legy = sz(n1)+az(n1),

2) t-n;=0forj=m+4 1,

(3) 12 = 0 (mod p2nv+1),
Now we write L1l = L in the following form:

L =0M+at)+ Om+ O+ ast) + Ous+ ...
+ OO+ ant) + Oup L LM,

where ay, . . ., a, lie in @ to be determined. In this new decomposition, we

writen; = X p*1 Db (N; + at) + 2 pUdy N + 4,1, where 7,1 EL(q(ql))[I]_L.
Multiplying 7; by (\; + a4t) for 1 = 4, 7 £ m we can solve for b;; and obtain
the following.
For j = 7+ = 1, we obtain

— 611)\12 -+ alpq(ﬂl) + pq(ﬂ1)+16n
N ()\l + 0[115)2 !

and for 7 = 2, we obtain

aipa(m) + alipq(m)+l
()\i + Olit)2 ’

bli =
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where 8;; is some quadratic polynomial in e, . . . , &, with integral coefficients.
For j > 1, we obtain

2 (n1) (m)+1
_ 6]‘1')\1' + ai‘Pjipq " + 6jipq "

bﬁ ()\i + Olit)z forj g g
and
b“ _ OlzqﬂjiPQ(M) + 6ji€q(m)+l for]' < i’
O\i + Olit)

where ¢;; lie in the ring and are independent of ay, . . ., a, and §;; are again
quadratic polynomials in ey, . . . , @, with integral coethcients.

It is easy to see that, by choosing a1, . . ., a, appropriately, we will obtain
n; = pUtds Ml L 5.0 (5= 1,...,m), such that

e =77/ (mod p?@+1) forl =j=m

and

g, =0=1/-9/ forj>m.

Thus by compactness of the group of integral isometries, there exists a decom-
position L* = L such that

2 I
T1® =T 27

17 m; =11y 2=j=m,
;=1 n;,=0, Jj>m.

Write L* = Om,° + Ot1® 1 L, where 4,° - 7,° = pord®im)  ® . 7.© = (),
' =0,and L = Or/ + Ot/ L L/, with t;/ chosen similarly to £,*.

Define
{71°° — 7!,
o1
! tlm g tl’.
Write"]]' = a]’tm ‘I‘ 'F]joo, 'F]]'m € Lcm (j > 1) and‘n/ = a_.,-'tl + ﬁj,, 'F)]'/ € LCI. Then
since Y ¢;7i;° ~ 2 ¢;i/ and L, = L/, by induction, there exists an isometry
oy € O(L,”, L) such that a: 7, — 7. Let

o {al on Or + Ot

ge on L.

Then ¢ is the required isometry.
Combining Propositions 2 and 3, we obtain the following result.

MAIN THEOREM. Let W and W’ be two isometric subspaces. Then W ~ W' if
and only if n ~ ' for alln € W.

By the proofs of Propositions 2 and 3 one can see that in order to check for
integral equivalence of the subspaces W and W’ it is necessary and sufficient to
check for complete independence of W and W’ restricted to a finite number of
sublattices of L and only finitely many vectors of Wand W’ for critical indices,
critical exponents, and congruence relations.
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