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Several studies concerning the turbulent pipe flow of generalized Newtonian (GN)
fluids may be found in the literature, but not for channel flow, although that has
been extensively studied for other types of non-Newtonian fluids, such as those with
viscoelastic effects. Direct numerical simulations corresponding to statistically converged
turbulent channel flow of GN fluids at a low frictional Reynolds number have been
performed. The shear-dependent viscosity is introduced through the Carreau fluid model,
and results corresponding to the Newtonian fluid case are compared to those of moderate
shear-thickening and shear-thinning fluid behaviour. The different statistics studied reveal
that shear-dependent fluid rheology appears mainly to affect the flow within the inner
layer region and with shear-thinning behaviour; suppressing near-wall structures such
as quasi-streamwise vortices and low-speed streaks, inhibiting turbulence generating
events and leading to different drag reduction features. These include: enhancement of
streamwise turbulence intensity and suppression of the other cross-sectional intensities,
decrease of the Reynolds shear stress (leading to a lessening in turbulent production),
decrease in energy redistribution between individual components of the Reynolds stress
tensor through the velocity–pressure gradient term and overall increase in turbulence
anisotropy at both small and large scales. In particular, it is noted that at the channel
centre ‘rod-like’ turbulence states, a known low-Reynolds-number behaviour, are more
clearly seen with shear-thinning fluid rheology.

Key words: turbulence simulation

1. Introduction

Shear-dominated wall-bounded turbulent flows such as in pipes, channels and boundary
layers are of utmost importance. Approximately 25 % of the energy used in industry is
destined to transport fluids through pipes and channels, or to propel vehicles in air or
water, and approximately a quarter of that energy is irreversibly dissipated near walls
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(Jiménez 2013). Furthermore, in many industrial settings, such as bioreactors in
biochemical plants or the drilling machines used in petroleum extraction, the transported
fluid is non-Newtonian. A non-Newtonian fluid has non-uniform viscosity, which may
depend on shear stress history and/or strain rate in a nonlinear manner, and it is typically
classified within three main groups (see e.g. Irgens 2014): (i) time-independent fluids,
in which fluid viscosity is not a function of time, (ii) time-dependent fluids and (iii)
viscoelastic fluids consisting of materials with partial elastic recovery but also with
viscous features.

The interest in non-Newtonian flows has increased since Toms (1948) reported frictional
drag reductions in turbulent pipe flows due to a small amount of polymer additives. The
first explanation of the drag reduction phenomenon may be attributed to Lumley (1969,
1973). He reasoned that the expansion of molecules, mainly within the buffer layer, leads
to an increase in effective viscosity, the dampening of small eddies, the reduction of the
Reynolds shear stress, the thickening of the sublayer and the consequent drag reduction.
Results reported by Achia & Thompson (1977) also supported the idea about stretched
molecules leading to less ‘bursting’ (Kline et al. 1967) and thus less turbulent kinetic
energy production and subsequent drag reduction. The other explanation for frictional
drag reduction, put forward by Tabor & de Gennes (1986), attributes the decrease in drag
to the elasticity of the polymer additives and argues that the increase in effective viscosity
is rather small and therefore negligible.

Many studies (e.g. Den Toonder et al. 1997; De Angelis, Casciola & Piva 2002; Min
et al. 2003b; Ptasinski et al. 2003; Escudier, Nickson & Poole 2009; Shahmardi et al.
2019) have been committed to understand variations of drag in turbulent pipes, ducts and
channels of polymeric solutions where viscoelastic effects are important. However, for
a wide range of materials, the non-Newtonian rheology is mostly strain-rate-dependent
and viscoelastic effects may be neglected (Rudman et al. 2004). Generalized Newtonian
(GN) fluids are a class of time-independent, purely viscous, non-Newtonian fluids
commonly encountered in numerous engineering and commercial applications, e.g. fluids
in bioreactors displaying shear-thinning behaviour, drilling fluids, cosmetics or food
products. In a GN fluid, the stress tensor due to viscous effects, τij,vis, is given by

τij,vis = 2μSij, (1.1)

where μ = μ(γ̇ ) is the apparent dynamic viscosity, which solely depends on the strain rate
γ̇ = (2SijSji)

1/2, and Sij is the strain-rate tensor. Note as well that certain materials flow
like a GN fluid once a certain yield-stress value is exceeded. Such materials are called
time-independent yield-stress or viscoplastic fluids.

Experimental studies about turbulent flows of GN fluids have primarily focused on
friction factor measurements and one-point statistics. Metzner & Reed (1955) and Dodge
& Metzner (1959) proposed correlations for the Fanning friction factor based on an
alternative definition for the Reynolds number. Park et al. (1989) reported an increase
in the mean velocity and axial turbulence intensities and a decrease in the tangential
intensities, in pipe flows, caused by shear-thinning behaviour in GN fluids. Pinho &
Whitelaw (1990) and Pereira & Pinho (1994) additionally reported a suppression of the
radial turbulence intensities and a delay in transition from laminar to turbulent flow due to
shear thinning. Rudman & Blackburn (2003) presented similar findings and also compared
turbulent flows of GN fluids with those of yield-stress fluids. In Rudman & Blackburn
(2003) it is recognized that even a small amount of elasticity may importantly affect the
results.
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Experimental issues such as the difficulty in removing unwanted plastic and viscoelastic
effects from solutions with polymer additives and the necessity of specialized equipment
to study non-Newtonian fluids, which are mostly not optically transparent (Gavrilov &
Rudyak 2016a), have motivated a growing interest in numerical studies. Direct numerical
simulation (DNS) is particularly appealing because it does not require closures for
turbulence modelling and allows us to include/exclude plastic and elastic effects from
the employed rheological model. Nonetheless, despite their industrial relevance and the
advantages of direct simulations, few DNS studies about turbulent flows of GN fluids are
available in the literature.

Rudman & Blackburn (2003), Rudman et al. (2004) and Rudman & Blackburn (2006)
presented the first group of DNS studies for turbulent flows of GN and yield-stress
fluids. In agreement with the experimental investigations for turbulent pipe flows, an
increase in the mean axial velocity, delay in transition to turbulence, suppression of
radial and tangential turbulence intensities and enhancement of the axial intensity with
shear thinning were noted. Also, the decrease in the root-mean-square (r.m.s.) values
of the axial vorticity fluctuations and reduced turbulence production with shear-thinning
behaviour were documented. Gavrilov & Rudyak (2016a) showed similar results but in
addition reported an increase in turbulent kinetic energy with increasing shear thinning
and, motivated by the work of Escudier et al. (2009), studied for the first time large-scale
anisotropy of a purely viscous GN fluid flow through anisotropy-invariant maps (Lumley
& Newman 1977) of the Reynolds stress anisotropy tensor. Here the noted increase
in anisotropy near the wall with shear thinning is attributed to a suppression of the
mechanism of redistribution of fluctuation energy between individual components of the
Reynolds stress tensor, but the corresponding budgets, showing such decrease in energy
redistribution, are not actually presented. Also, small-scale anisotropy (see e.g. Antonia,
Kim & Browne 1991; Yeung & Brasseur 1991), equally important for realizable turbulence,
is not studied.

More recently, Singh, Rudman & Blackburn (2017b) considered the influence of
increasing shear-thinning behaviour of GN fluids, in turbulent pipes flows, on first- and
second-order statistics. In the same publication and likely motivated by the work of
Ptasinski et al. (2003), the mean and turbulent kinetic energy budgets are presented for
the first time. However, the individual budgets of the second moments of the velocity
fluctuations are not shown. The budgets for the Reynolds stresses not only allow us to
understand how the different terms contribute to the corresponding stresses, and to the
overall turbulent kinetic energy, but also are necessary to directly evaluate closure models
for turbulence. Singh et al. (2017b), based on the joint probability distributions of the
axial and wall-normal velocity fluctuations at some wall-normal positions, suggested as
well that shear-thinning rheology suppresses contributions from ‘sweeps’ and ‘ejections’
(Wallace, Eckelmann & Brodkey 1972) to the Reynolds shear stress. Nonetheless, in the
publication, the cause for the variation with rheology in the contributions from those
physical events is not explained.

Singh, Rudman & Blackburn (2017a), on the other hand, studied the effect of yield
stress on a turbulent pipe flow of a GN fluid. Here, it is found that the effect of increasing
the yield stress is similar to an increase in shear-thinning behaviour, with the important
difference that the new stress, arising due to fluctuations in viscosity, increases as the
pipe’s core is approached. Subsequently, Singh, Rudman & Blackburn (2018) considered
Reynolds-number effects on a turbulent pipe flow of a GN fluid. In this investigation,
up to a moderate frictional Reynolds number, it is reported that rheological effects are
still present. In the paper, it is also noted that the mean viscosity profile appears to be
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Reynolds-number-independent. Finally, with respect to recent DNS studies of turbulent
flows of GN fluids, Zheng et al. (2019) compared finite-volume-scheme-based predictions
obtained using OpenFOAM, for low-order statistics in a turbulent pipe flow, with
high-order spectral-element DNS code results. The study reported that turbulence statistics
predicted by OpenFOAM for shear-thinning fluids usually differ by less than 10 %.

In addition, direct simulations of GN fluid flow based on lattice Boltzmann methods
have been performed as well, e.g. Gabbanelli, Drazer & Koplik (2005), Yoshino et al.
(2007), Wang & Ho (2011) and more recently Chen & Shu (2020). However, those studies
are generally limited to the laminar flow regime.

Other non-DNS numerical studies are based either on large-eddy simulations or on
solving the time-averaged governing equations with some closure for the Reynolds stress
tensor and the correlation term appearing with non-Newtonian rheology. Consider, for
instance, Malin (1997), Cruz & Pinho (2003), Sungkorn, Derksen & Khinast (2012), Ohta
& Miyashita (2014), Gnambode et al. (2015) and Gavrilov & Rudyak (2016b).

In this work, results from DNS of statistically converged turbulent channel flow
corresponding to GN fluids, at a low Reynolds number, are presented and qualitatively
compared to those of turbulent channel flow of viscoelastic fluids and another canonical
flow of GN fluids such as turbulent pipe flow. In the results sections, aside from examining
first- and second-order statistics of GN fluid flows, physical motions contributing to the
turbulence production are considered in detail to comprehend how changes with rheology,
in dominating fluctuations and their large intermittent values, cause variations in the
shear stress budget and more specifically in the Reynolds shear stress. Also, all relevant
non-zero Reynolds stress budgets for turbulent channel flow of GN fluids are presented
for the first time, allowing us, for example, to better understand the decrease/increase in
energy redistributed from streamwise fluctuations with shear thinning/shear thickening.
Furthermore, not only large-scale but also small-scale anisotropy of turbulent GN fluid
flow is appraised and, finally, at the end of the paper, the different reported drag-reducing
features with shear-thinning behaviour are discussed in light of variations noted in the
near-wall structures, i.e. quasi-streamwise vortices and velocity streaks.

2. Formulation

2.1. Governing equations and characteristic scales
Consider the equations, in a Cartesian coordinate system and index notation, governing
mass and momentum conservation in the absence of external forces for a GN fluid, i.e.

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ ∂(uiuj)

∂xj
= 1

ρ

∂

∂xj
(−pδij + 2μSij), (2.2)

where streamwise, wall-normal and spanwise directions are denoted by x = (x1, x2, x3) =
(x, y, z), the corresponding instantaneous velocity field by u = (u1, u2, u3) = (u, v, w)

and the pressure by p. Here t denotes time, ρ is the density of the incompressible,
isothermal GN fluid, δij is the Kronecker delta and Sij = (∂ui/∂xj + ∂uj/∂xi)/2 is the
aforementioned strain-rate tensor.

For GN fluids, shear-thinning and shear-thickening behaviours may be reproduced
through different rheological models (constitutive equations to relate apparent viscosity
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and strain rate) such as the power-law (PL) or the Carreau fluid models. In both
models, certain parameters are to be specified based on experimental data obtained
from a rheogram. Regarding particularities of such models, for example, PL is simpler
but leads to non-physical results at large and low shear-rate values whilst the Carreau
fluid model may be considered a truncated power-law introduced to avoid this issue. The
apparent viscosity for the Carreau fluid model (see e.g. Irgens 2014) is given by

μ = μ∞ + (μ0 − μ∞)[1 + (Λγ̇ )2](α−1)/2, (2.3)

where μ∞ and μ0 are the ‘infinite’ and ‘zero’ shear-rate viscosities, respectively, Λ is a
time constant and α is the flow index, which for shear thinning is to be less than unity and
for shear thickening more than unity.

Considering a characteristic velocity Uc, viscosity μc, length Lc, time Lc/Uc and stress
ρU2

c for the flow, (2.1)–(2.3) can be rewritten in non-dimensional form as

∂ui

∂xi
= 0, (2.4)

∂ui

∂t
+ ∂(uiuj)

∂xj
= ∂

∂xj

(
−pδij + 2β

Re
Sij

)
, (2.5)

β = μ∞
μc

+
(

μ0

μc
− μ∞

μc

)
[1 + (Λγ̇ )2](α−1)/2, (2.6)

where Re = ρUcLc/μc is the Reynolds number and β = μ/μc is the viscosity ratio
between the apparent fluid viscosity and the characteristic viscosity. Observe that, for
simplicity, the same notation as in (2.1)–(2.3) has been used in (2.4)–(2.6).

For wall-bounded shear flows, typically Uc = uτ and Lc = h in the outer layer and
Lc = μc/(ρuτ ) in the inner layer; see for instance Pope (2000). Here uτ and h refer to the
wall friction velocity and the outer length scale, respectively. Regarding the characteristic
viscosity, its selection is not clear and is open to debate within the scientific community
(see e.g. Rudman et al. 2004). Here, as in Pinho & Whitelaw (1990), Ptasinski et al. (2003)
and Singh et al. (2017a), the nominal wall viscosity μw is taken as characteristic viscosity,
i.e. μc = μw. The complete set of governing equations for a GN fluid is given by (2.4)
and (2.5) and a constitutive equation for the apparent viscosity such as (2.6). It is worth
mentioning that α = 1, in the aforementioned constitutive equation, allows us to recover
Newtonian fluid behaviour.

2.1.1. Averaged governing equations
Introducing the Reynolds decomposition, i.e. splitting the variables into an ensemble

average ¯( ) and a fluctuating component ( )′, as ui = ūi + u′
i, p = p̄ + p′, β = β̄ + β ′ and

Sij = S̄ij + Sij
′, into (2.4) and (2.5) and taking the average leads to

∂ ūi

∂xi
= 0, (2.7)

Re
[
∂ ūi

∂t
+ ∂(ūiūj)

∂xj

]
= −Re

∂ p̄
∂xi

+ ∂

∂xj

(
2β̄S̄ij + 2β ′S′

ij − u′
iu

′
j

)
, (2.8)

where, in comparison with the Reynolds-averaged Navier–Stokes equations for a
Newtonian fluid, a new non-Newtonian term (2β ′S′

ij) arises. This new viscous stress,
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denoted as ‘turbulent viscous stress’ in Singh et al. (2017b), due to fluctuations in viscosity,
is analogous to the recognized polymer stress in Ptasinski et al. (2001, 2003). Therefore,
the total mean shear stress τ̄ = τ̄12 for a GN fluid is given by

τ̄ = 2β̄S̄12 + 2β ′S′
12 − u′

1u′
2. (2.9)

Since in a GN fluid the viscosity depends on the velocity gradient, through the
strain rate, its fluctuating part is not expected to vanish at the wall (·|w). Thus,
τ̄ |w = 2(β̄S̄12 + β ′S′

12)|w.

2.1.2. Reynolds stress budget equations
The transport equation for the correlation of the velocity fluctuations, u′

iu
′
k,

corresponding to a GN fluid is deduced in a similar manner as it is deduced for a
Newtonian fluid. Thus, the added products (u′

iD(u′
k)/Dt + u′

kD(u′
i)/Dt) are time-averaged.

Here D( )/Dt = ∂( )/∂t + ūj∂( )/∂xj is the material time derivative.
The transport equation for the velocity correlation, see for instance Pinho (2003) or

appendix A, in non-dimensional form is given by

Re
D
Dt

(
u′

iu
′
k

)
= Re

[
−u′

iu
′
j
∂uk

∂xj
− u′

ku
′
j
∂ui

∂xj
− ∂

∂xj

(
u′

iu
′
ju

′
k

)]
+ β̄

∂2

∂xj∂xj

(
u′

iu
′
k

)
− Re

(
u′

i
∂p′

∂xk
+ u′

k
∂p′

∂xi

)
− 2β̄

∂u′
i

∂xj

∂u′
k

∂xj

+
(

∂β̄

∂xj

)[
∂

∂xj

(
u′

iu
′
k

)
+ u′

i

∂u′
j

∂xk
+ u′

k

∂u′
j

∂xi

]

+
(

∂β ′

∂xj

) [
∂

∂xj

(
u′

iu
′
k

) + u′
i

∂u′
j

∂xk
+ u′

k

∂u′
j

∂xi

]
+ β ′ ∂2

∂xj∂xj

(
u′

iu
′
k

)
− 2β ′ ∂u′

i

∂xj

∂u′
k

∂xj
+

(
∂β ′

∂xj

)[
u′

i

(
∂uk

∂xj
+ ∂uj

∂xk

)
+ u′

k

(
∂ui

∂xj
+ ∂uj

∂xi

)]
+ β ′

[
∂2

∂xj∂xj

(
u′

iuk
) + ∂2

∂xj∂xj

(
uiu′

k

)]
− 2β ′

[
∂u′

i

∂xj

∂uk

∂xj
+ ∂ui

∂xj

∂u′
k

∂xj

]
− β ′

[
uk

∂2u′
i

∂xj∂xj
+ ui

∂2u′
k

∂xj∂xj

]
. (2.10)

As can be seen from (2.10), several new terms have arisen due to the non-Newtonian
rheology. To facilitate the later discussion, the new terms are labelled as follows:

(i)

Pik = −Re
[

u′
iu

′
j
∂uk

∂xj
+ u′

ku
′
j
∂ui

∂xj

]
=⇒ total production rate, (2.11)

(ii)

TTik = −Re
∂

∂xj

(
u′

iu
′
ju

′
k

)
=⇒ turbulent transport rate, (2.12)
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(iii)

MDik = β̄
∂2

∂xj∂xj

(
u′

iu
′
k

)
=⇒ mean viscous diffusion rate, (2.13)

(iv)

Πik = −Re
(

u′
i
∂p′

∂xk
+ u′

k
∂p′

∂xi

)
=⇒ velocity–pressure gradient transport rate,

(2.14)
(v)

Mε ik = 2β̄
∂u′

i

∂xj

∂u′
k

∂xj
=⇒ mean viscous dissipation rate, (2.15)

(vi)

Mvik =
(

∂β̄

∂xj

) [
∂

∂xj

(
u′

iu
′
k

)
+ u′

i

∂u′
j

∂xk
+ u′

k

∂u′
j

∂xi

]
=⇒ mean viscosity gradient transport rate, (2.16)

(vii)

Tvik =
(

∂β ′

∂xj

)[
∂

∂xj

(
u′

iu
′
k

) + u′
i

∂u′
j

∂xk
+ u′

k

∂u′
j

∂xi

]
=⇒ turbulent viscosity gradient transport rate, (2.17)

(viii)

TDik = β ′ ∂2

∂xj∂xj

(
u′

iu
′
k

) =⇒ turbulent viscous diffusion rate, (2.18)

(ix)

Tεik = 2β ′ ∂u′
i

∂xj

∂u′
k

∂xj
=⇒ turbulent viscous dissipation rate, (2.19)

(x)

T̃vik =
(

∂β ′

∂xj

) [
u′

i

(
∂uk

∂xj
+ ∂uj

∂xk

)
+ u′

k

(
∂ui

∂xj
+ ∂uj

∂xi

)]
=⇒ turbulent viscosity gradient transport rate related to mean flow,

(2.20)

(xi)

T̃Dik = β ′
[

∂2

∂xj∂xj

(
u′

iuk
) + ∂2

∂xj∂xj

(
uiu′

k

) − uk
∂2u′

i

∂xj∂xj
− ui

∂2u′
k

∂xj∂xj

]
=⇒ turbulent viscous diffusion rate related to mean flow, and (2.21)
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(xii)

T̃ε ik = 2β ′
[
∂u′

i

∂xj

∂uk

∂xj
+ ∂ui

∂xj

∂u′
k

∂xj

]
=⇒ turbulent viscous dissipation rate related to mean flow. (2.22)

The overall equation is recast as

Bik = Pik + Tik − εik, (2.23)

where total dissipation εik and transport Tik rates, contributing to budget Bik = Re D(u′
iu

′
k)/

Dt, are given by
εik = Mε ik + Tε ik + T̃ε ik (2.24)

and
Tik = TTik + MDik + Πik + Mvik + Tvik + TDik + T̃vik + T̃Dik, (2.25)

respectively. The transport equation for the turbulent kinetic energy is found by taking the
summation of the diagonal components of (2.23) and dividing the resulting expression
by 2. Also, the transport equation for the velocity correlation u′

iu
′
k corresponding to a

Newtonian fluid may be recovered from (2.23) by considering constant viscosity.
It is worth pointing out that, in the following sections, the results are presented

in inner (viscous) units unless otherwise specified. Consequently, all variables are
non-dimensionalized with μc = μw, Lc = (μw/ρ)/uτ and Uc = uτ and are identified as
{ }+ quantities.

2.2. Numerical set-up, computational domain and grid resolution
Direct numerical simulations of a statistically converged plane turbulent channel flow of
GN fluids at a low frictional Reynolds number, Reτ = ρuτ h/μw, have been performed.
A turbulent channel flow is statistically stationary and homogeneous in the spanwise
and streamwise directions. Since the flow is restricted by the channel walls, non-slip
and impermeability boundary conditions are imposed at the walls. In the homogeneous
directions, periodic boundary conditions may be employed if the domain is large enough
to contain the largest structures in the flow.

DNS requires resolution of all spatial and temporal scales within the flow. Typically,
a domain is considered sufficiently large if two-point correlations of the turbulent
fluctuations decay close to zero at a separation of half the period in the homogeneous
directions (see Moin & Mahesh 1998). Regarding the grid resolution for DNS, it should be
fine enough to capture the smallest scales in proximity to the wall. Generally, the resolution
is O(η), η being the Kolmogorov length scale. In Kim, Moin & Moser (1987) and Moser,
Kim & Mansour (1999), the grid resolution is considered adequate if there is an evident
scale separation, i.e. energy density at high wavenumbers is several decades lower than the
one at low wavenumbers and if no energy pile-up is happening at the smallest scales.

The numerical simulations have been carried out using a finite-volume method on
a collocated grid. Central differencing is used for the spatial discretization whilst the
Crank–Nicolson scheme is employed for the discretization in time. The numerical
procedure is based on an implicit, two-time-step advancement technique where the
Poisson equation for the pressure is solved with an efficient multigrid method (see Emvin
1997). For more details regarding the numerical procedure and the FORTRAN 77 code,
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GN fluid case Lx/h Lz/h 
x+ 
y+
min 
y+

max 
z+ μ∞/μ0 μ0/μw Λ(Uc/Lc) α

P180 6π 2.5π 14.81 0.22 4.62 6.17 1 × 10−3 1.782 0.1 0.8
N180 4π 2π 9.88 0.22 4.62 4.94 — 1 — 1.0
D180 4π 2π 9.88 0.22 4.62 4.94 1 × 10−3 0.561 0.1 1.2

TABLE 1. Parameters of the simulation. Here Lx and Lz are the periodic streamwise and spanwise
dimensions of the computational domain, Ly = 2h is the domain in the wall-normal direction,

x+ and 
z+ are the constant grid spacings in inner units corresponding to the streamwise
and spanwise directions whilst 
y+

min and 
y+
max are the minimum and maximum grid spacings

in inner units corresponding to the wall-normal direction. P180 and D180 refer to the shear
thinning or pseudo-plastic and shear thickening or dilatant fluid cases whilst N180 refers to the
base Newtonian case.

2.0

1.5

1.0

0.5
10–2 10–1 100

β

γ +·

FIGURE 1. Viscosity rheogram. The flow index α is equal to 0.8 and to 1.2 for cases P180
and D180, respectively, whilst Λ(Uc/Lc) = 0.1 for both non-Newtonian cases. The profiles
corresponding to P180 and D180 are identified by red and cyan colours, respectively.

called CALC-LES, see, for instance, Davidson & Peng (2003) and Davidson (2018). The
GN fluid rheology has been incorporated into the code through the Carreau fluid model
and the simulation parameters are summarized in table 1. A viscosity rheogram, β versus
γ̇ +, is also shown in figure 1. For all GN fluid cases, a target Reτ = 180 is considered. For
cases N180 and D180, a computational box as in Kim et al. (1987) is used. For case P180,
a larger computational domain is employed since structures of larger size than those in the
Newtonian case are expected. See, for instance, Rudman & Blackburn (2006) and Singh
et al. (2017b).

Synthetic turbulence (Davidson 2007) has been used to initialize case N180, whilst
the simulations for the non-Newtonian cases have been initialized using a flow field
corresponding to the Newtonian case at the same target Reτ and the initial transients
have been discarded. Statistically steady state is considered to have been achieved once
a linear profile for τ̄ is observed (Vinuesa et al. 2016). The initial transient time is over
200 convective time units, and 150 flow fields saved every ≈ 0.2 eddy turnover times have
been considered to compute the statistics.

With respect to the computational domain, for all cases, the two-point correlations
between turbulent fluctuations, i.e. Rij = u′

i(x, t)u′
j(x + r, t)/ u′

i(x, t)u′
j(x, t), where r is

the separation vector between the two points, appear to be decreasing with increasing
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FIGURE 2. Normalized two-point correlations Rij: streamwise separation at (a) y+ ≈ 5.07 and
(b) y+ ≈ 154.96, spanwise separation at (c) y+ ≈ 5.07 and (d) y+ ≈ 154.96. Line styles ‘—–’,
‘- - -’ and ‘· · ·’ are used to identify R11, R22 and R33, respectively. Profiles corresponding to
P180, N180 and D180 are identified by red, black and cyan colours, respectively.

separation in the homogeneous directions and the employed domains are deemed
adequate; see figure 2. Note that, since the two-point correlations are related to the
integral length scales, as expected, more elongated/larger structures are present in case
P180 and finer structures in case D180 when compared with the Newtonian base case.
Such observation is further supported by the instantaneous flow structures shown in
figure 3. As can be seen, longer low-speed streamwise velocity streaks are observed for
the shear-thinning case. Figure 3 also suggests that, for all fluid cases, the turbulent flow
regime is achieved despite the low frictional Reynolds number used for the simulations.

To check the grid resolution, pre-multiplied one-dimensional spectral energy densities
based on the presented two-point correlations are considered; see figure 4. Here, for
all cases, an evident energy drop-off is occurring as the wavenumber increases and
the maximum value in the different spectral energy densities is expected close to the
wavenumbers corresponding to the respective integral length scales. For instance, the
maximum in the pre-multiplied energy spectrum based on the two-point correlation for
u′ is expected at a wavenumber corresponding to the longitudinal integral length scale.
Note as well that the pre-multiplied spectra corresponding to case P180, when compared
to the results from cases N180 and D180 for the same number of modes, are presenting
lower maximum amplitudes due to the increase in the computational domain for that case.
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(b)(a)

(d )(c)

( f )(e)

FIGURE 3. Contours of instantaneous streamwise velocity fluctuations normalized by frictional
velocity at y+ ≈ 5.07 (a,c,e) and y+ ≈ 154.96 (b,d, f ): (a,b) P180, (c,d) N180 and (e, f ) D180.
White and black represent positive and negative fluctuations, respectively.

In addition, whilst considering the computational resolution, a length scale based on
the mean viscosity and the total dissipation rate has been computed; see figure 5. For
the Newtonian case, this is the Kolmogorov length scale. For cases P180 and D180,
since Kolmogorov’s first similarity hypothesis (see e.g. Pope 2000) is stated for constant
viscosity, such length scale η̃ = (μ̄/ρ)3/4/ε

1/4
k , where εk = (ε11 + ε22 + ε33)/2 is the total

mean dissipation rate (see Bradshaw & Perot (1993) and Bradshaw (1995) for a note
about true dissipation), is analogous to η in the regions with minor variation in the mean
viscosity profile, i.e. in the near-wall region and close to the channel’s centre (see § 3.1).
As seen from figure 5, for N180, 
y+

min < η+ in the near-wall region and 
y+
max ≈ O(η+)

at the channel’s centre. Similar trends are noted for the non-Newtonian fluid cases when
comparing the wall-normal grid resolution with η̃+.

Based on the energy drop-off previously noted and on the η+ and η̃+ values, the
computational resolution appears to be adequate for the different cases. Also, a verification
with published data for the Newtonian case is presented in appendix B.

3. Results

3.1. Low-order statistics
The mean (averaged in time and in homogeneous directions) streamwise velocity profile
ū+ and its diagnosis function y+dū+/dy+ are presented in figure 6. In the same figure,
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FIGURE 4. Pre-multiplied one-dimensional spectral energy density: against normalized
streamwise wavenumber kx h at (a) y+ ≈ 5.07 and (b) y+ ≈ 154.96, and against normalized
spanwise wavenumber kzh at (c) y+ ≈ 5.07 and (d) y+ ≈ 154.96. Line styles ‘—–’, ‘- - -’ and
‘· · ·’ are used to identify results corresponding to E11, E22 and E33 spectral energy densities,
respectively. Profiles corresponding to P180, N180 and D180 are identified by red, black and
cyan colours, respectively.

the mean viscosity profile μ̄+ = β̄ and an analogous quantity to the diagnosis but for the
mean viscosity, y+dβ̄/dy+, are presented as well.

To discuss variations against the wall-normal coordinate y+, the classical flow-region
subdivision based on case N180 is considered: there is an inner region, comprising a
viscous sublayer ( y+ � 5); a buffer region (5 � y+ � 55); a quite limited – if it exists
at all – log region (55 � y+ � 62); and a remaining outer region. Within the viscous
sublayer, for all cases, ū+ ≈ y+ and for y+ � 10, minor deviation for the non-Newtonian
cases is noted in ū+ and β̄ when compared to case N180. For y+ � 10, ū+ increases with
decreasing flow index α, and a larger bulk velocity, implying a lower friction factor for
a common driving pressure gradient, is observed. Also, as evidenced by the diagnosis
function, the starting point of the log region and the corresponding y+dū+/dy+ ≈ 1/κ ,
where κ is the von Kármán constant, increase with decreasing flow index.
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FIGURE 5. Kolmogorov’s length scale η+ and analogous length scale η̃+, for the
non-Newtonian cases, against y+. Profiles corresponding to P180, N180 and D180 are identified
by red, black and cyan colours, respectively.
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FIGURE 6. First-order statistics: (a) ū+, (b) y+dū+/dy+, (c) β̄ and (d) y+dβ̄/dy+ versus y+.
Profiles corresponding to P180, N180 and D180 are identified by red, black and cyan colours,
respectively.

Regarding β̄, for y+ � 10, it deviates rapidly from the corresponding constant
Newtonian value, as expected. Since β̄ appears to behave in a log manner within a certain
y+ range, an analogous diagnosis function based on β̄ has been considered. On a first
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FIGURE 7. (a) Velocity defect profile against y/h and (b) low-order statistics corresponding
to the strain rate against y+; ‘—–’ mean strain rate ¯̇γ + and ‘- - -’ r.m.s. values of strain-rate
fluctuations r.m.s.(γ̇ +). Profiles corresponding to P180, N180 and D180 are identified by red,
black and cyan colours, respectively.

impression, such a log region in the mean viscosity ( y+dβ̄/dy+ ≈ Γ ) indeed occurs but
different slopes Γ for cases P180 and D180 are observed; see figure 6(d).

For the outer layer region, the velocity defect profile ū+( y/h = 1) − ū+ shown in
figure 7(a) is apprised. From the velocity defect profile, it is clear that larger mean
centreline velocity values are observed with decreasing flow index. Also, it appears that,
in the outer layer region ( y+ � 62 or y/h � 0.35), all curves collapse. Such behaviour
suggests independence of the velocity defect profile in the outer region and that differences
in the mean velocity profiles between the different cases (P180, N180 and D180) are most
likely due to differences in the flow within the inner region. This observation has also been
made by Singh et al. (2018).

Distribution in the i direction (i = 1, 2, 3) of the r.m.s. values of the velocity

fluctuations and the vorticity fluctuations, i.e. r.m.s.(u+
i ) = (u′

i)
2

1/2
/uτ and r.m.s.(ω+

i ) =
(ω′

i)
2

1/2
[μw/(ρu2

τ )], respectively, is presented in figure 8. The r.m.s. values corresponding

to fluctuations in viscosity r.m.s.(β) = (μ′)2
1/2

/μw are also shown in figure 8. The r.m.s.
values for the velocity fluctuations appear to be affected by the rheology mainly outside
the viscous sublayer. The streamwise turbulence intensity increases with decreasing
flow index whilst the opposite is observed in the spanwise and wall-normal turbulence
intensities for the same trend. The wall-normal position at which a peak in the streamwise
turbulence intensity appears moves slightly from the wall with decreasing flow index.
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FIGURE 8. Second-order statistics: (a) turbulence intensities r.m.s.(u+
i ), (b) r.m.s. values of

vorticity fluctuations r.m.s.(ω+
i ) and (c) r.m.s. value of viscosity fluctuations r.m.s.(β). In (a,b)

line styles ‘—–’, ‘- - -’ and ‘· · ·’ are used to identify r.m.s. values based on x, y and z velocity and
vorticity fluctuation components. Profiles corresponding to P180, N180 and D180 are identified
by red, black and cyan colours, respectively.

With respect to the r.m.s. values of the vorticity fluctuations, in the near-wall region,
there is an increase in the spanwise component whilst a decrease is observed for the
other two components with decreasing flow index. Thus, we anticipate an increase in
the magnitude of the mean viscous dissipation since, for homogeneous turbulence, the
enstrophy is approximately equal to the ratio between mean viscous dissipation rate and
mean kinematic viscosity. At a wall-normal position within the buffer region ( y+ ≈ 10),
the opposite is then observed for the r.m.s. values of the spanwise vorticity fluctuation,
i.e. the r.m.s. value decreases with shear thinning. Moreover, after such a point, the r.m.s.
values of all vorticity fluctuations appear to decrease with decreasing flow index.

It is interesting to note that the presented results suggest an overall increase in the
anisotropy of the velocity and vorticity correlation tensors, u′

iu
′
k and ω′

iω
′
k, with shear

thinning (see § 3.5).
Regarding the r.m.s. values corresponding to fluctuations in viscosity, similar to the

mean viscosity profile, the distribution appears to be approximately constant in the viscous
sublayer and then it starts to increase with y+ up to a certain value within the inner region.
After such a wall-normal position, the r.m.s. values of the viscosity fluctuations start to
decrease more rapidly. Here, the plateau in β̄ and r.m.s.(β) within the viscous sublayer
is likely due to small variations in the mean strain rate and its r.m.s. values, respectively
(see figure 7b). Note that, altogether, r.m.s.(β) is larger for case P180, suggesting larger
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fluctuations from β̄ with shear thinning. It is also noted that the peak in r.m.s.(β) moves
from the wall with shear thinning.

Finally, it is worth pointing out some qualitative similarities with channel flow of
viscoelastic fluids, which is another type of drag-reducing fluid. Compared to the
Newtonian case and as with shear thinning, there is a noticeable increase in the mean
streamwise velocity with viscoelasticity. Also for Reτ < 1000, a minimal – if any –
presence of a log-law region is observed (Thais, Gatski & Mompean 2012). With respect
to the turbulence intensities, compared to the Newtonian case and as with shear thinning,
Ptasinski et al. (2003) and Min, Choi & Yoo (2003a) reported an enhancement of
the streamwise turbulence intensity and a decrease of the wall-normal and spanwise
turbulence intensities with viscoelasticity and in the case of small drag reduction (SDR)
regime (see Warholic, Massah & Hanratty 1999). In contrast, the same publications
reported a decrease in all turbulence intensities with viscoelasticity for the large drag
reduction (LDR) regime. On the other hand, regarding low-order statistics reported for
other canonical flows of GN fluids, it is worth mentioning that Singh et al. (2017b) showed
similar trends with shear thinning for pipe flow. For α < 1, there is an increase in the
mean axial velocity, mean viscosity and axial turbulence intensity whereas both radial and
azimuthal turbulence intensities decrease.

3.2. Mean shear stress budget
For a statistically stationary fully developed flow of an incompressible GN fluid, the total
mean shear stress τ̄+ (see § 2.1.1) is given by

τ̄+ = τ̄+
vis + τ̄+

tur + τ̄+
GN, (3.1)

where τ̄+
vis = β̄dū+/dy+, τ̄+

tur = −u′v′/u2
τ and τ̄+

GN = 2β ′S′
12

+ are the viscous stress, the
turbulent or Reynolds shear stress and the new stress due to fluctuation in viscosity,
respectively. Owing to the constant pressure gradient driving the flow, the total mean shear
stress is linear, i.e. τ̄+ = 1 − y+/Reτ .

The different contributions to the total mean shear rate are shown in figure 9. As can be
seen, the mean viscous stress increases in the shear-thinning case. Since τ̄+

vis depends on β̄

and dū+/dy+, its increase can be discussed considering figure 6(b,c). For y+ � 10, there is
minor variation in the mean viscosity and in the mean streamwise velocity gradient. Thus,
the increase in τ̄+

vis for the shear-thinning case is attributed to a small increase in both
quantities. For y+ > 10, outside the viscous sublayer, the increase in the mean viscous
stress is mostly due to β̄, which quite significantly increases in the shear-thinning case due
to the higher ‘zero’ shear-rate viscosity (see viscosity rheogram, figure 1). In the near-wall
region where the turbulent stress is close to zero, the decrease/increase in the viscous
stress component due to shear thickening/shear thinning is compensated by the new stress
component. Note that the sign of τ̄+

GN depends on the sign of α − 1. Outside the viscous
sublayer, the new stress starts to decrease and the viscous stress is then compensated by
the turbulent stress component. Thus, for example, an increase in the viscous stress due
to shear thinning is compensated by a decrease in the Reynolds shear stress. It is also
interesting to note that τ̄+

tur, for all cases, appear to collapse in the outer region, suggesting
that the cross-correlation u′v′/u2

τ is independent of the rheology in that region.
Finally, it is worth contrasting the mean shear stress budget corresponding to

the shear-thinning fluid with the budget of a drag-reducing polymer solution, i.e. a
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FIGURE 9. Mean shear stress budget. Line styles ‘—–’, ‘- - -’, ‘· · ·’ and ‘- · -’ are used to
identify τ̄+, τ̄+

vis, τ̄+
tur and τ̄+

GN , respectively. Profiles corresponding to P180, N180 and D180 are
identified by red, black and cyan colours, respectively.

viscoelastic fluid. Compared to the Newtonian case and as with shear thinning, there is
a significant overall reduction in the Reynolds shear stress with polymer additives (Min
et al. 2003a; Ptasinski et al. 2003). In addition, Ptasinski et al. (2003) reported that the
polymer stress, arising due to viscoelastic effects, is always positive but relatively small
and mainly important near to the wall for SDR, whereas for LDR, this contribution is
large and important across the whole channel. Note that, in contrast, the analogous τ̄+

GN is
always negative for shear thinning and mainly important close to the wall. On the other
hand, regarding Reynolds stress budgets reported for other canonical flows of GN fluids,
Singh et al. (2017b) presented similar trends with shear thinning for pipe flow. For α < 1,
the mean viscous stress slightly increases near the wall and more noticeably in the buffer
layer region whereas the Reynolds shear stress decreases for all y+ and a new negative
stress arises in the total mean stress balance.

3.3. Quadrant analysis
To improve our understanding of the generation of Reynolds shear stress and the related
production of turbulent kinetic energy, a quadrant analysis (Wallace et al. 1972) is carried
out. Contributions to the cross-correlation −u′v′ are classified according to the sign
of the velocity fluctuations into four categories or quadrants: Q1 (u′ > 0, v′ > 0), Q2
(u′ < 0, v′ > 0), Q3 (u′ < 0, v′ < 0) and Q4 (u′ > 0, v′ < 0), and each of the quadrant
motions is associated with a physical event: positive production of turbulent kinetic energy
arises due to low-speed fluid moving from the wall (Q2 events) and high-speed fluid
moving towards the wall (Q4 events). Such motions have been visualized, see for instance
Kline et al. (1967) and Corino & Brodkey (1969), and denoted as ejection and sweep
events, respectively. Q1 and Q3 motions, which correspond to high-speed fluid reflected
outwards from the wall and low-speed fluid deflected towards the wall, account for
negative production of turbulent kinetic energy, and in the absence of a better terminology
may be called outwards and wallwards interactions (Wallace 2016).

The quadrant-conditioned contributions to the Reynolds shear stress are presented in
figure 10 for the different cases. In the following discussion, changes in quadrant event
contributions with shear thinning are also considered in light of variation with decreasing
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FIGURE 10. Quadrant contributions to −u′v′/u2
τ : (a) non-fractional −u′v′q/u2

τ and (b)
fractional u′v′q/u′v′ contributions. The subscript q refers to quadrant-conditioned averages. Line
styles ‘- - -’, ‘- · -’, ‘· · ·’ and ‘—–’ are used for Q1, Q2, Q3 and Q4 contributions, respectively.
Profiles corresponding to P180, N180 and D180 are identified by red, black and cyan colours,
respectively.

flow index in the skewness and flatness profiles corresponding to the velocity fluctuations.
The profiles are shown in figure 11.

From the non-fractional contributions to −u′v′/u2
τ , a decrease in contributions from

all quadrants’ events with shear thinning is observed. This trend is consistent with the
perceived decrease in Reynolds shear stress with shear thinning seen in § 3.2. Also,
from the non-fractional contributions, it is noted that the wall-normal position at which
contributions from sweep and ejection events coincide has moved slightly from the wall
for the shear-thinning case. A similar behaviour – with shear thinning – is then expected for
the peaks corresponding to maximum production and maximum turbulent kinetic energy
(see § 3.4).

Observing the fractional quadrant contributions, it is noticed that, for all fluid cases,
sweep events appear to dominate in the very near-wall region whilst ejection events
contribute more to −u′v′/u2

τ after the y+ position where the contributions due to Q2 and
Q4 motions are approximately the same. Within the viscous sublayer where quite large
intermittency is present, a more pronounced increase in the fractional Q1 contribution
is observed for the shear-thinning case. Such an increase, mainly compensated by
fractional contributions due to Q4 events, is expected since the correlation between
u′ > 0 and v′ > 0 appears to vary little with rheology (see non-fractional contribution
profiles) and the overall Reynolds shear stress is decreasing with shear thinning even
within such a very near-wall region. As reflected in the normalized skewness profiles,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

90
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.903


Turbulent channel flow of GN fluids at low Reτ 908 A43-19

1.5(a) (b)

(c) (d )

(e) ( f )

0

–1.5

1.5

0

–1.5

1.5

0

–1.5

0 50 100 150 50 100 150

50 100 150

50 100 150

0 50 100 150

0 50

y+ y+
100 150

6

3

0

24

18

12

6

0

8

4

0

S(
u+

)
S(

v
+ )

S(
w

+ )

F
(u

+ )
F

(v
+ )

F
(w

+ )

FIGURE 11. Skewness S and flatness F profiles of velocity fluctuations: (a)
S(u+) = (u′)3/(u′u′)3/2, (b) F(u+) = (u′)4/(u′u′)2, (c) S(v+) = (v′)3/(v′v′)3/2, (d)
F(v+) = (v′)4/(v′v′)2, (e) S(w+) = (w′)3/(w′w′)3/2 and ( f ) F(w+) = (w′)4/(w′w′)2.
Profiles corresponding to P180, N180 and D180 are identified by red, black and cyan colours,
respectively.

large positive streamwise and wall-normal velocity fluctuations appear to dominate more
with shear thinning and, as shown in the non-fractional contributions, lead to a decrease in
contributions from Q2 and Q4 events, which decreases the overall Reynolds shear stress.

Outside the viscous sublayer but before the wall-normal position where Q2 and Q4
contributions are approximately the same, there is little variation in the non-fractional
contributions due to Q1 and Q3 events with rheology. The decrease in contribution
from sweep and ejection events, together causing the decrease in −u′v′/u2

τ , appears to
be related to the appearance of more dominant large positive streamwise fluctuation and
less dominant negative wall-normal fluctuations with shear thinning, as reflected in the
normalized skewness profiles. After the point with equal contributions from Q2 and Q4
events but before a position y+ ≈ 30–35 where ejection events dominate due to large
intermittent v′ > 0 values for all GN fluids, the decrease in Reynolds shear stress with
shear thinning appears to be linked to a slight increase in dominant u′ > 0 and v′ < 0
signals.
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FIGURE 12. Reynolds stress budgets: (a) B+
11, (b) B+

12, (c) B+
22 and (d) B+

33. The line styles ‘—–’,
‘- - -’ and ‘· · ·’ are used to identify P+

ik , T+
ik and −ε+

ik , respectively. Profiles corresponding to
P180, N180 and D180 are identified by red, black and cyan colours, respectively.

Finally, after the position y+ ≈ 30–35, non-fractional contributions due to Q1, Q2 and
Q3 events almost do not vary with rheology, and the observed decrease in −u′v′/u2

τ for
the shear-thinning case is attributed to a decrease in the contribution from sweep events
with shear thinning. Here, such behaviour is likely to be due to more dominant u′ < 0 and
v′ > 0 signals with decreasing flow index, as reflected in the corresponding normalized
skewness profiles.

3.4. Reynolds stress budgets
The Reynolds stress budgets, corresponding to the equations presented in § 2.1.2, are
considered. The total production, transport and dissipation rates corresponding to budgets
B+

ik of the relevant non-zero stresses in a fully developed turbulent channel flow, for the
different GN fluid cases, are shown in figure 12. The turbulent kinetic energy budget B+

k

and the turbulent kinetic energy profile k+ = u′
iu

′
i/(2u2

τ ) are presented in figure 13.
For all cases, and as expected, the interaction between −u′v′/u2

τ and mean shear causes
a production rate in budget B+

11. Since the mean velocity gradients increase with shear
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FIGURE 13. Plots of (a) B+
k and (b) k+. In panel (a), the line styles ‘—–’, ‘- - -’ and ‘· · ·’ are

used to identify P+
k , T+

k and −ε+
k , respectively. Profiles corresponding to P180, N180 and D180

are identified by red, black and cyan colours, respectively.

thinning (see ū+ profile in § 3.1), the decrease in P+
11, in its near-peak region, is attributed

to the observed decrease in Reynolds shear stress with decreasing flow index (see τ̄+
tur in

§ 3.2). Note as well that, as commented in § 3.3, the peak in production at y+ ≈ 12 for
the Newtonian case has moved slightly from the wall with shear thinning. In budget B+

11,
the energy from the production region is then distributed through T+

11 towards and away
from the wall. At the wall, a good portion of the transported energy from the maximum
production region is then dissipated at a rate ε+

11. Everywhere P+
11 is balanced by T+

11 − ε+
11.

Note that, consistently with the decrease in the production rate with shear thinning, the
amount of energy that is irreversibly dissipated decreases with decreasing flow index.

Since budgets B+
22 and B+

33 do not contain a production term, their source is energy
being redistributed from budget B+

11. Here, an apparent decrease in redistribution of energy
from B+

11 to B+
22 and B+

33, reflected in the decrease of T+
11, T+

22 and T+
33, is occurring

with decreasing flow index. This observation is consistent with the noticed increase
in streamwise turbulence intensity and the decrease in the spanwise and wall-normal
intensities with shear thinning, seen in § 3.1.

For budget B+
12, the interaction between wall-normal turbulence intensities and mean

shear yields production. Owing to the aforementioned decrease in the wall-normal
intensities with decreasing flow index, there is a decrease in the production rate P+

12 with
shear thinning. This observation is consistent with the noted decrease in Reynolds shear
stress with decreasing flow index. As for the B+

11 budget, the source from the production
region is transported towards and away from the wall through T+

12. However, different
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from that budget, little of that source (even less so for the shear-thinning fluid case) is
‘dissipated’ at a rate ε+

12 and mostly is balanced by T+
12.

The balance of the turbulent kinetic energy budget B+
k is based on the terms appearing

in B+
11, B+

22 and B+
33, where budget B+

11 with turbulent production dominates over the others.
Thus, the balance of B+

k and the corresponding observations are similar to those made for
budget B+

11. It is interesting to note that most variations in the terms of B+
k with rheology

appear to be restricted to the inner layer region. Also, with respect to the total dissipation
rate, since from the r.m.s. values of the vorticity fluctuations (see § 3.1) an increase in
the magnitude of the mean viscous dissipation rate is expected with shear thinning, the
overall decrease in the magnitude of ε+

k appears to be due to the non-Newtonian terms
contributing to it.

Regarding k+, as expected, there is an increase with shear thinning and, similar to the
production rate, its peak has moved slightly from the wall with decreasing flow index.
The increase in turbulent kinetic energy may be explained by considering the deficit in
redistribution of energy from budget B+

11 to B+
22 and B+

33 with shear thinning, since it causes
the observed increase in anisotropy between the turbulence intensities. The profile of k+

may also be understood while examining the total production and dissipation rates. Within
the region where production exceeds dissipation and the transport rate T+

k is negative, there
is an increase in how much P+

k exceeds −ε+
k with decreasing flow index. This is reflected

by an increase in the turbulent kinetic energy profile within the same region.
Contributions from the different terms in (2.23) to total transport and dissipation

rates for budgets B+
11, B+

12 and B+
k are shown in figures 14–16. Contributions to budgets

corresponding to the other diagonal components of u′
iu

′
k, i.e. B+

22 and B+
33, are presented in

appendix C.
For the transport rate T+

11, the traditional terms Π+
11, TT+

11 and MD+
11 contribute the most.

The velocity–pressure gradient term Π+
11 notably decreases in magnitude with decreasing

flow index. This behaviour is to be expected since redistribution of energy to budgets
B+

22 and B+
33 decreases with shear thinning. The mean viscous diffusion MD+

11, which
constitutes the largest contribution to T+

11, appears to be mainly affected by rheology within
the viscous sublayer and increases with decreasing flow index. Since the mean viscosity
varies little for y+ � 10, such an increase is attributed to an increase of diffusion of u′u′/u2

τ

with shear thinning. The turbulent transport TT+
11, on the other hand, is mainly affected

outside the viscous sublayer but within the inner layer region by rheology. Here TT+
11

mostly decreases in magnitude with decreasing flow index.
The non-Newtonian transport term mainly affecting T+

11 within the viscous sublayer is
T̃D

+
11. Since, in the very near-wall region, the fluctuations in viscosity are rather small (see

the r.m.s.(β) profile in § 3.1), the diffusion of u′ū/u2
τ is considered the reason for the large

magnitude in T̃D
+
11 within this region. Also, the turbulent viscous diffusion rate related

to mean flow decreases the total transport rate T+
11 with shear thinning. Other transport

terms such as TD+
11, Tv+

11 and Mv+
11 related to fluctuation in viscosity, their gradients and

gradients in the mean viscosity either decrease or increase with rheology at different
wall-normal positions but almost do not affect the total transport rate. The remaining
transport term T̃v

+
11 increases with decreasing flow index and appears to be mainly relevant

in the inner region outside the viscous sublayer. In this region both gradients of fluctuations
in viscosity and advected gradients of the mean streamwise velocity are expected to
contribute to T̃v

+
11.

For the total dissipation rate ε+
11, Mε+

11 and T̃ε
+
11 appear to contribute the most. The

mean viscosity increases with decreasing flow index; however, at the wall and in the
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FIGURE 14. Contributions to T+
11 and −ε+

11 in budget B+
11: (a) line styles ‘—–’ and ‘- - -’ are

used for Π+
11 and TT+

11; (b) line styles ‘—–’, ‘- - -’ and ‘· · ·’ are used for MD+
11, T̃D+

11 and TD+
11;

(c) line styles ‘—–’, ‘- - -’ and ‘· · ·’ are used for −Mε+
11, −T̃ε

+
11 and −Tε+

11; and (d) line styles
‘—–’, ‘- - -’ and ‘· · ·’ are used for T̃v

+
11, Mv+

11 and Tv+
11. Profiles corresponding to P180, N180

and D180 are identified by red, black and cyan colours, respectively.

very near-wall region, the mean viscosity is almost unaffected by rheology. Therefore,
the increase of magnitude in Mε+

11 with shear thinning is mainly attributed to an increase
in the autocorrelation of streamwise velocity fluctuation gradients. This observation is
consistent with the increase in the r.m.s. values of the spanwise vorticity fluctuations at
the wall and very near it with shear thinning (see § 3.1). Outside the viscous sublayer
and mainly for y+ � 10, the mean viscosity starts to increase in a more noticeable manner
with decreasing flow index, and contributes more to the increase in magnitude of the mean
viscous dissipation rate within that region.

The non-Newtonian dissipation rate T̃ε
+
11 increases in magnitude with decreasing flow

index and mainly affects ε+
11 in the inner region, specially within the viscous sublayer.

In the vicinity of the wall, the fluctuations in viscosity are fairly small and the large
magnitude observed for T̃ε

+
11 is attributed to the correlation between mean streamwise

velocity gradients and streamwise velocity fluctuation gradients. Note that the decrease in
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FIGURE 15. Contributions to T+
12 and −ε+

12 in budget B+
12: (a) line styles ‘—–’ and ‘- - -’ are

used for Π+
12 and TT+

12; (b) line styles ‘—–’, ‘- - -’ and ‘· · ·’ are used for MD+
12, T̃D+

12 and TD+
12;

(c) line styles ‘—–’, ‘- - -’ and ‘· · ·’ are used for −Mε+
12, −T̃ε

+
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12; and (d) line styles
‘—–’, ‘- - -’ and ‘· · ·’ are used for T̃v

+
12, Mv+

12 and Tv+
12. Profiles corresponding to P180, N180

and D180 are identified by red, black and cyan colours, respectively.

the magnitude of ε+
11 at the wall with shear thinning is mainly attributed to dissipation at

rate T̃ε
+
11, since the magnitude of Mε+

11 is increasing with decreasing flow index. The other
non-Newtonian dissipation rate Tε+

11 also causes the decrease in the magnitude of the total
dissipation rate ε+

11 with shear thinning. Nonetheless, compared to T̃ε
+
11, it is smaller in

magnitude. The dissipation rate Tε+
11 arises due to interactions between fluctuations in

viscosity and squared streamwise velocity fluctuation gradients.
For the transport rate T+

12, the important terms appear to be the velocity–pressure
gradient term and the turbulent transport rate. Most of the production P+

12 is balanced
by Π+

12 and TT+
12. Within the inner region, the mean viscous diffusion rate appears to

contribute in no significant manner to the rate T+
12 and, even less so, other non-zero

transport terms associated to the non-Newtonian rheology.
The total ‘dissipation’ rate ε+

12 is quite low and it is mainly due to the mean viscous
‘dissipation’ rate Mε+

12. The rate Tε+
12 presents the opposite sign to Mε+

12 for the same
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FIGURE 16. Contributions to T+
k and −ε+

k in budget B+
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for Π+
k and TT+
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k ; (c) line
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+
k , Mv+

k and Tv+
k . Profiles corresponding to P180, N180 and D180

are identified by red, black and cyan colours, respectively.

non-Newtonian fluid case, whilst the rate T̃ε
+
12 either increases or decreases the total rate

ε+
12, depending on which part of the inner region is being considered. Nonetheless, none of

the ‘dissipation’ rates appearing with non-Newtonian rheology contribute considerably to
the total rate ε+

12.
Regarding the terms contributing to the total transport and dissipation rates in budget

B+
k , the observed trends with rheology are the same as those noted for T+

11 and ε+
11, since

the terms in budget B+
11 contribute the most to the turbulent kinetic energy budget. The

profile of rate Π+
k is, of course, different from the profile of the velocity–pressure gradient

term in budget B+
11, but the trend of a decrease in magnitude with shear thinning, due to

less energy being redistributed, is the same.
Also, it is worth mentioning some similarities found with the budgets reported for

another type of drag-reducing fluid, namely a viscoelastic fluid. For the channel flow of a
viscoelastic fluid, Dimitropoulos et al. (2001) showed that the most significant changes
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in budget B+
k relative to Newtonian values are observed in the turbulence production,

mean viscous dissipation and turbulence transport rates. Compared to the Newtonian
case and as with shear thinning, there is a decrease in the production term and in the
absolute peak values for the turbulent transport term with viscoelasticity. In addition,
opposite to the behaviour seen for shear thinning, Dimitropoulos et al. (2001) reported
a decrease in the mean viscous dissipation with shear thinning. The paper also shows
that viscoelastic terms, contributing to B+

k , are relatively small when compared to the
production, mean diffusion or mean viscous dissipation rates. Regarding the individual
budgets, Dimitropoulos et al. (2001) revealed that viscoelastic effects are most pronounced
in the velocity–pressure gradient term. Compared to the Newtonian case and as with shear
thinning, in the budget B+

11, the rate Π+
11 is reduced with viscoelasticity, in particular close

to the region of maximum production. The paper also reported a significant reduction
in rate Π+

12 of budget B+
12. Note that figure 15(a) shows a similar behaviour with shear

thinning. On the other hand, regarding budgets reported for other canonical flows of GN
fluids, Singh et al. (2017b) presented the budget B+

k for pipe flow and reported similar
trends with shear thinning. For α < 1, there is a decrease of turbulence production in
the buffer layer region, whereas the magnitude of the turbulence transport and mean
viscous dissipation rates increase in the near-wall region. Also for shear thinning, in
pipe flow, the magnitude of the total dissipation rate is decreased due to contributions
from the non-Newtonian terms. It is worth commenting that an apparent inner region
dependence on the flow index for the budget B+

k is also reported by Singh et al. (2017b) for
pipe flow.

In summary, some of the most relevant findings are as follows.

(i) Rheological variations affecting the Reynolds shear stress and the mean shear lead
to shear-dependent changes in the production rate P+

11 and therefore also in P+
k .

(ii) With shear thinning, the decrease in P+
11 is reflected by a decrease in the amount of

energy redistributed through Π+
11 to budgets B+

22 and B+
33.

(iii) Such decrease in energy redistribution with decreasing flow index results in an
increase of large-scale turbulence anisotropic behaviour (see figure 8a).

(iv) The lessening of production with shear thinning also leads to a decrease in the total
dissipation rate ε+

11 and consequently in ε+
k .

(v) Since the mean dissipation rates Mε+
11 and Mε+

k actually increase with decreasing
flow index, the noted decrease in the corresponding total dissipation is attributed to
the non-Newtonian contributions, in particular to T̃ε

+
11 and T̃ε

+
k , respectively.

(vi) Finally, note that, for all budgets, the terms associated with non-Newtonian rheology
appear to be mainly important within the inner layer region.

3.5. Invariant analysis
All turbulent flows of practical interest are anisotropic, and drag-reducing fluids are known
to have an even higher degree of anisotropy compared to Newtonian fluids (Escudier
et al. 2009). The analysis of invariants corresponding to relevant tensors are typically
performed to determine their degree of anisotropy and to identify realizable states of
turbulence. To study the anisotropic behaviour of turbulence in GN fluids, for both large-
and small-scale motions, an invariant analysis is presented. Any symmetric tensor σik, such
as the strain-rate tensor or the Reynolds stress tensor, may be decomposed into an isotropic
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and a traceless deviatoric part. The non-dimensional anisotropy tensor aik is then given by

aik = σik

σjj
− 1

3
δik (3.2)

and since the anisotropy tensor is traceless (aii = 0), the relevant non-zero invariants are

− IIa = 1
2 aikaki, IIIa = 1

3 aikakjaji, (3.3a,b)

which are denoted as the second and third invariants of aik, respectively.
Lumley & Newman (1977) introduced an anisotropy invariant map (AIM) consisting of

a −II versus III plot to investigate the anisotropy of the Reynolds stress tensor. Such a
map, nowadays called the Lumley triangle, was originally based on the invariants of bik,
the Reynolds stress anisotropy tensor, defined by

bik = u′
iu

′
k

u′
ju

′
j

− 1
3
δik. (3.4)

Analogous AIMs have been used to study small-scale anisotropy by considering
quantities such as the dissipation rate and the vorticity correlation tensor, see for instance
Mansour, Kim & Moin (1988), Antonia et al. (1991) and Barri & Andersson (2010). Here,
the anisotropy tensors corresponding to the vorticity correlation and the total dissipation
rate are given by

cik = ω′
iω

′
k

ω′
jω

′
j

− 1
3
δik (3.5)

and

dik = εik

εjj
− 1

3
δik, (3.6)

respectively. Additionally, an anisotropy tensor eik, for the mean viscous dissipation only,
may be given by

eik = Mε ik

Mε jj
− 1

3
δik. (3.7)

In all the mentioned AIMs, realizable turbulent states are constrained within certain
limiting values; see figure 17. At the origin, −IIa = IIIa = 0, all elements of a
non-dimensional anisotropy tensor aik vanish and three-component isotropic turbulence
(3C-IT) is found. If one diagonal component of aik is void of the corresponding
property (energy or enstrophy, for example), e.g. a11 = −1/3, and the two other diagonal
components are equal, e.g. a22 = a33 = 1/6, then two-component isotropic turbulence
(2C-IT) is encountered. Finally, one-component (1C) turbulence corresponds to a situation
where all of the corresponding property is within a diagonal component, e.g. a11 = 2/3.

In the −IIa versus IIIa plot, the origin is connected to the 1C and 2C-IT points through
the relationship IIIa = ±2(−IIa/3)3/2 marking all cases of axisymmetric turbulence
(i.e. two diagonal components of aik are equal and all off-diagonal components have
vanished). The 2C-IT and 1C points, meanwhile, are connected by the line −IIa =
3IIIa + 1/9 where two-component (2C) states reside. With the aim of adding physical
context to the limiting states in the Lumley triangle, consider, for example, axisymmetric
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FIGURE 17. Limiting states in anisotropy invariant map.

deformation created by passing initially isotropic turbulence through a hypothetical
slip-free axisymmetric nozzle or diffuser (see the same example as in Hanjalić & Launder
(2011)). If the streamwise strain rate is ∂ ū/∂x and the symmetry axis corresponds to the
spanwise z axis, then continuity and axisymmetry considerations lead to −0.5∂ ū/∂x =
0.5∂v̄/∂y = ∂w̄/∂z. In a similar manner, the stress field will remain axisymmetric through
the contraction/expansion, i.e. b22 = b33 = −b11/2 and thus the resulting invariants are
IIb = 3b2

11/4 and IIIb = b3
11/4. Eliminating b11 then yields the previous relationship

IIIb = ±2(−IIb/3)3/2; marking all cases of axisymmetric turbulence. The positive region
(right-hand side in Lumley triangle) corresponds to axisymmetric expansion, which in
the limit results in the 1C state, i.e. v′v′ = w′w′ = 0. On the other hand, the negative
region corresponds to axisymmetric contraction and in the extreme limit results in the 2C
isotropic turbulence state, i.e. u′u′ = 0.

The Lumley triangles for the different defined anisotropy tensors are presented in
figure 18. In the same figure, the corresponding turbulence triangles (Choi & Lumley
2001) are shown as well. The map ζ 2 = −II/3 versus ξ 3 = III/2 is used to emphasize the
region in the proximity of the isotropic state. As noted by Emory & Iaccarino (2014), the
Lumley triangle appears to provide more insight while studying states near the 1C and
2C limiting states whilst the turbulence triangle stretches the lower left quadrant of the
Lumley triangle and focuses on the regions near the 2C-IT and 3C-IT limits.

For all GN fluids, the considered invariants vary from the 2C state limit in the vicinity of
the wall to nearly isotropic at the channel’s centre. Near the wall, the wall-normal diagonal
component of the considered symmetric tensors are negligible, e.g. v′v′ ≈ ω′

2ω
′
2 ≈ 0, and,

as y+ increases, the data transition from the upper boundary to the right-hand boundary of
the Lumley triangle. With shear thinning, in comparison to the Newtonian case, a larger
maximum value for −II is observed on the anisotropy invariant maps corresponding to bik,
cik and dik. In the AIMs, the movement of the data towards the 1C limit with shear thinning
is attributed to the deficit in energy redistribution from budget B+

11 to budgets B+
22 and

B+
33, mentioned in § 3.4. In the case of the Reynolds stress tensor, for instance, near-wall

behaviour (see figure 19) displays the expected increase in the streamwise component
u′u′/u2

τ and the decrease of the wall-normal and spanwise components with shear thinning.
Such increase of u′u′/u2

τ , with decreasing flow index, is reflected in the Lumley triangle
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FIGURE 18. AIMs: (a) Lumley triangle for bik, (b) turbulence triangle for bik, (c) Lumley
triangle for cik, (d) turbulence triangle for cik, (e) Lumley triangle for dik, ( f ) turbulence triangle
for dik, (g) Lumley triangle for eik and (h) turbulence triangle for eik. Profiles corresponding to
P180, N180 and D180 are identified by red, black and cyan colours, respectively.

with near-wall 2C states closer to the 1C point. In a similar manner, the increase in ω′
3ω

′
3

and in the magnitude of Mε11 with shear thinning yield the observed movement of the data
towards the 1C limit in the respective AIMs.

Opposite to the mean dissipation, the data of the total dissipation in the vicinity of the
wall do not approach states closer to the 1C limit with decreasing flow index. Owing to
the non-Newtonian terms contributing to the total dissipation rate, there is a decrease in
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FIGURE 19. Near-wall behaviour for correlation of velocity fluctuations. Line styles ‘—–’,
‘- - -’, ‘· · ·’ and ‘- · -’ represent (u′u′1/2

/uτ )/y+, 10(v′v′1/2
/uτ )/y+2, (w′w′1/2

/uτ )/y+ and
350(−u′v′/u2

τ )/y+3, respectively. Profiles corresponding to P180, N180 and D180 are identified
by red, black and cyan colours, respectively.

the magnitude of ε+
11 with shear thinning (as seen in § 3.4) causing the observed behaviour

in the corresponding Lumley triangle.
For all GN fluids, after the location of the maximum in the different AIMs, the transition

to anisotropic states occurs closer to the axisymmetric limit where III > 0 takes place
because one diagonal component is larger than the other two. Consider, for example,
the streamwise component of the Reynolds stress in comparison with the other lateral
components (see turbulence intensity profiles in § 3.1). Note that an actual axisymmetric
state only occurs once the off-diagonal components of the corresponding anisotropy tensor
are zero (e.g. b12 = u′v′ = 0 at the channel’s centre).

As seen from the turbulence triangles, the data corresponding to bik, cik, dik and eik

move closer to the axisymmetric limiting states with shear thinning. This observation
is consistent with the decrease in the off-diagonal components corresponding to the
different anisotropy tensors with shear thinning. See, for instance, the variation of the
Reynolds shear stress with shear thinning in § 3.2. It is also observed that there is no
appreciable difference in the turbulence triangles describing the mean viscous dissipation
rate anisotropy and the total dissipation rate anisotropy in proximity to the axisymmetric
limit. This behaviour is consistent with the observed decrease in the non-Newtonian terms
contributing to ε+

11 in the outer layer region.
To complement the anisotropy analysis, the Lumley flatness (Lumley 1979) F =

1 + 27III + 9II and the axisymmetric parameter (Lee & Reynolds 1985) A =
III/[2(−II/3)3/2] are shown in figure 20. The Lumley flatness allows one to easily
distinguish between 2C line states (F = 0) and 3C-IT (F = 1). Meanwhile, the
axisymmetric parameter is a compact way to quantify axisymmetric modes: A = −1
corresponds to axisymmetric states where III < 0 and the correlation tensor (e.g. u′

iu
′
k

or ω′
iω

′
k) has a smaller diagonal component than the other two equal ones; whilst A = 1

corresponds to axisymmetric states where III > 0 and the correlation tensor has one
larger diagonal component than the other two equal ones. Here terminology such as
‘rod-like’ or ‘cigar-shaped’ turbulence and ‘disk-like’ or ‘pancake-shaped’ turbulence is
used while considering A = 1 and A = −1 states of the vorticity correlation anisotropy
tensor, respectively. Alternative terminology is omitted here to avoid misunderstanding;
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FIGURE 20. Lumley’s flatness and axisymmetric parameter: (a) line styles ‘—–’, ‘- - -’, ‘· · ·’
and ‘- · -’ are used for Fb, Fc, Fd and Fe; and (b) line styles ‘—–’, ‘- - -’, ‘· · ·’ and ‘- · -’ are
used for Ab, Ac (right axis), Ad and Ae. Profiles corresponding to P180, N180 and D180 are
identified by red, black and cyan colours, respectively.

see, for instance, Simonsen & Krogstad (2005) where it is clarified that notation used for
the axisymmetric states refers to the shape of the symmetrical second-order tensor with
zero trace σik under study, e.g. the Reynolds stress tensor or the vorticity correlation tensor.

With the exception of the very near-wall behaviour in the total dissipation rate, the
overall increase in anisotropy with decreasing flow index at the channel’s centre and
elsewhere is reflected by larger −II values in the AIMs and consequently lower Lumley
flatness. For all GN fluids, the profiles corresponding to the axisymmetric parameters
show that, close to the end of the viscous sublayer, i.e. before the buffer layer region, the
state A = 1 is approached. This observation is consistent with the noticed transition from
the upper boundary to the right-hand boundary in the AIMs. After the maximum value
of −II is achieved on the respective maps, Ab, Ad and Ae remain relatively close to the
A = 1 state (especially as the flow index decreases) although there is a localized decrease
in the axisymmetric parameters, most noticeable for Ab, in the outer layer. This behaviour
is observed on the respective turbulence triangles as a sudden but short deviation from the
near-right boundary region towards the centre of the map, more clearly seen for increasing
flow index.

With respect to the Ac scalar, an apparent change from a cigar-shaped axisymmetric
state, at the end of the viscous sublayer, to a disk-like state (IIIc < 0, Ac = −1), within
the buffer region, is noticed. The wall-normal position at which the pancake-shaped
axisymmetric mode is observed appears to move slightly away from the wall with
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shear thinning. After such point, it is difficult to point out a trend in Ac since oscillations at
different y+ positions are noted. Nonetheless, states closer to disk-like turbulence appear to
be more frequent, especially with decreasing flow index. Interestingly enough, close to the
channel’s centre, rod-like states are suddenly approached. This observation is consistent
with the presented ζ versus ξ map and the slight dominance of the spanwise vorticity
autocorrelation ω′

3ω
′
3 over ω′

1ω
′
1 and ω′

2ω
′
2 near the channel’s centre as seen in § 3.1.

4. Discussion and final remarks

Direct numerical simulations for statistically converged turbulent channel flow of
GN fluids at a low Reynolds number have been performed. A GN fluid presents
time-independent rheology and is free of plastic effects. In the simulation, GN fluid
rheology has been incorporated through a relatively simple constitutive equation,
the Carreau fluid model. To investigate the difference between Newtonian and
shear-dependent fluid behaviour, the flow index α is varied. Here, when a trend is
associated to shear thinning α < 1, the opposite trend is associated to shear thickening
α > 1. Note that the selected rheological model is likely to be of no consequence since, for
the same rheology characterization at large strain rates, quite similar statistics are expected
even if a different rheological model is implemented (see e.g. Singh, Rudman & Blackburn
2016).

Through different statistics and analyses, it is found that shear-dependent fluid rheology
seems to affect the channel flow mainly within the inner layer region. As we move
further away from the viscous sublayer, the monotonic increase in the apparent fluid
viscosity for α < 1 leads to drag reduction. For a constant driving pressure gradient, a
decrease in the friction factor with decreasing flow index is reflected by an increase in the
mean streamwise velocity for y+ � 10 and in consequence higher mean bulk velocity∫ h+

0 ū+ dy+/h+ and flow rate. The diagnosis function also reveals that the limited log
region starts further away from the wall and with a slightly larger slope with shear-thinning
fluid rheology. This thickening of the buffer layer is consistent with the observed increase
in streamwise turbulence intensity and the shift in its peak value for α < 1.

The previous well-known drag-reducing-related characteristics are attributed to changes
in the near-wall structures within the buffer layer region for shear-thinning fluid rheology.
Quasi-streamwise vortices (rolls) are suppressed; as figure 8(b) shows, shear-thinning
effects reduce the intensity of the streamwise vorticity fluctuations and also move the
location of the local minimum and maximum values towards the channel’s centre.
These two extrema locations correspond to the average locations of the edge and centre,
respectively, of the near-wall rolls (Moser & Moin 1984). Hence, the quasi-streamwise
vortical structures not only decrease in intensity but also grow in size and depart from
the wall.

The suppression of the near-wall streamwise rolls is accompanied by variations in the
high- and low-speed fluid alternating regions (streaks) in the spanwise direction. It is
recognized that there is an interaction between the rolls and the mean spanwise vorticity
which induces low-speed streamwise streaks (see e.g. § 4.2.6 in Davidson 2015). These
streaks eventually begin to oscillate and lift away from the wall during the so-called burst
process. Each burst contains one or more ejections of low-speed fluid resulting from the
same streak instability (Luchik & Tiederman 1987). Since burst or ejection events occur
in a quasi-periodic manner, particular attention is paid to statistical quantities such as
the average time between bursts and average spanwise spacing of the near-wall streaks.
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As seen in figure 2(c), for α < 1, the location of the minimum in the two-point correlation
of the streamwise fluctuating velocity occurs at a larger spanwise separation, and a similar
trend (not shown here) was found at other wall-normal positions within the buffer layer
region. Note that the location of this minimum is the mean distance between a high-speed
and a low-speed streak; thus the average streak spacing is twice such distance (Moser
& Moin 1984). Since, for shear-thinning fluid rheology, a larger average streak spacing
is found, a larger average time between bursts is expected and, in consequence, there
is an inhibition of the related turbulence generating event. As revealed by the quadrant
analysis, the decrease in Reynolds shear stress – leading to a reduction in the production
of turbulent kinetic energy – arises due to a decrease from all positive production events
but, within the buffer layer, especially due to a diminishing in contributions from ejection
events.

Another common characteristic of drag-reducing flow, such as the decrease in the
spanwise and wall-normal turbulence intensities, is explained from the Reynolds stress
budgets. In connection to the decrease in turbulence production with shear thinning, there
is a decrease in the velocity–pressure gradient terms, which are commonly split into
a pressure–transport term and an energy redistributive pressure–strain rate term. Thus,
since the velocity–pressure gradient terms play a dominant role in the redistribution of
energy from streamwise to wall-normal and spanwise directions, their decrease leads to the
observed trends for the turbulent intensities and consequently to an increase in anisotropy
at the largest scales with α < 1. The budgets also show that, although the magnitude of the
mean viscous dissipation Mε+

k increases with shear thinning, the overall dissipation rate
ε+

k decreases in magnitude since there is less energy available for irreversible dissipation
at the wall; hence the importance of the non-Newtonian terms, in particular the turbulent
viscous dissipation rate related to the mean flow, whilst studying the total dissipation in
GN fluids.

Turbulence anisotropy variations at both large and small scales due to the
non-Newtonian rheology are studied through anisotropy invariant maps. The presented
analysis reveals an overall increase in anisotropy for the Reynolds stress, vorticity
correlation and mean viscous dissipation with shear thinning. In contrast to the mean
viscous dissipation, in the near-wall region, the anisotropy of the total dissipation rate
decreases with shear thinning due to non-Newtonian effects. On the other hand, regarding
the data closer to the axisymmetric limits, as one moves from the wall towards the
channel’s centre, states closer to the axisymmetric limit where III > 0 are seen for the
Reynolds stress budgets and the dissipation rates. In the case of vorticity correlation,
states between rod-like and disk-like turbulence are seen in the direction of the channel’s
centre. Here, states closer to disk-like or pancake-shaped turbulence appear to be preferred,
especially with decreasing flow index. Finally, at the channel’s centre, rod-like turbulence
is approached. This observation is consistent with the slight dominance of the spanwise
vorticity correlation over the other two components for all GN fluid cases. Anisotropy at
the smallest scales is a recognized behaviour at low Reynolds numbers (Andersson, Zhao
& Variano 2015) and appears to be even more noticeable with shear thinning.
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Appendix A. Transport equation corresponding to u′
iu

′
k for channel flow of a GN fluid

This appendix contains the derivation of the transport equation for the correlation of
the velocity fluctuations, u′

iu
′
k, corresponding to a GN fluid, and it is deduced in a similar

manner as it is deduced for a Newtonian fluid. Start out from the averaged momentum
conservation equation for a GN fluid, which reads

Dui

Dt
= − 1

ρ

∂ p̄
∂xi

+ 1
ρ

∂

∂xj

(
2μ̄Sij + 2μ′S′

ij

)
+ ∂

∂xj

(
−u′

iu
′
j

)
. (A 1)

Subtracting (A 1) from the transport equation for the instantaneous velocity component
ui, i.e.

∂

∂t

(
ui + u′

i

) + (
uj + u′

j

) ∂

∂xj

(
ui + u′

i

)
= − 1

ρ

∂

∂xi

(
p̄ + p′) + 1

ρ

∂

∂xj

[
2

(
μ̄ + μ′) (

Sij + S′
ij

)]
(A 2)

yields a transport equation for the fluctuating velocity component u′
i. Thus

∂u′
i

∂t
+ uj

∂u′
i

∂xj
+ u′

j
∂ui

∂xj
+ u′

j
∂u′

i

∂xj

= − 1
ρ

∂p′

∂xi
+ 1

ρ

∂

∂xj

(
2μ̄S′

ij + 2μ′Sij + 2μ′S′
ij − 2μ′S′

ij

)
+ ∂

∂xj

(
u′

iu
′
j

)
. (A 3)

In a similar manner, an equation for the other fluctuating velocity component u′
k is

obtained

∂u′
k

∂t
+ uj

∂u′
k

∂xj
+ u′

j
∂uk

∂xj
+ u′

j
∂u′

k

∂xj

= − 1
ρ

∂p′

∂xk
+ 1

ρ

∂

∂xj

(
2μ̄S′

kj + 2μ′Skj + 2μ′S′
kj − 2μ′S′

kj

)
+ ∂

∂xj

(
u′

ku
′
j

)
. (A 4)

Multiplying (A 3) by u′
k, (A 4) by u′

i and adding the products yields a transport equation
for u′

iu
′
k once the resulting equation has been averaged. In consequence, the transport

equation for u′
iu

′
k reads

D
Dt

(
u′

iu
′
k

)
= −u′

iu
′
j
∂uk

∂xj
− u′

ku
′
j
∂ui

∂xj
− ∂

∂xj

(
u′

iu
′
ju

′
k

)
+ μ̄

ρ

∂2

∂xj∂xj

(
u′

iu
′
k

)
− 1

ρ

(
u′

i
∂p′

∂xk
+ u′

k
∂p′

∂xi

)
− 1

ρ
(2μ̄)

∂u′
i

∂xj

∂u′
k

∂xj
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(A 5)

In (A 5), the last two terms may be rewritten as
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(A 6)

and, finally, (A 5) may be reformulated as
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. (A 7)

Note that (2.10) is the non-dimensionalized form of (A 7).
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FIGURE 21. Verification for case N180: (a) mean (averaged in time and in homogeneous
directions) streamwise velocity profile ū+, (b) turbulence intensities r.m.s.(u+

i ), (c) shear stress
profiles τ̄+ (lines ‘—–’ total stress, ‘· · ·’ viscous stress and ‘- - -’ turbulent stress) and (d) r.m.s.
values of vorticity fluctuations r.m.s.(ω+

i ). In (b,d), the x , y and z components are denoted by
‘—–’, ‘- - -’ and ‘· · ·’, respectively. Results from Kim et al. (1987) and Moser et al. (1999) are
identified by ‘◦’ and ‘×’ markers, respectively.

Appendix B. Verification

The results corresponding to case N180 shown in figure 21 agree with those reported by
Kim et al. (1987) and Moser et al. (1999). Contributions to the turbulent kinetic energy
budget in figures 13(a) and 16(a–c) and the η+ profile presented in figure 5 also appear to
agree qualitatively with the profiles reported by Mansour et al. (1988) and Antonia et al.
(1991), respectively.

Observed trends for non-Newtonian results presented in § 3 agree with those reported
in previous studies, e.g. Rudman & Blackburn (2006), Gavrilov & Rudyak (2016a) and
Singh et al. (2017b), for turbulent pipe flows.

Appendix C. Contributions to budgets B+
22 and B+

33

Contributions from the different terms in (2.23) to total transport and dissipation rates
for budgets B+

22 and B+
33 are shown in figures 22 and 23. For transport rate T+

22, the
velocity–pressure gradient, the turbulent transport and the mean viscous diffusion rates
contribute the most. The rate Π+

22, which is the source of energy for budget B+
22, decreases

with decreasing flow index as expected. Similar to the production rate P+
11 in budget B+

11, the
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FIGURE 22. Contributions to T+
22 and −ε+

22 in budget B+
22: (a) line styles ‘—–’ and ‘- - -’ are

used for Π+
22 and TT+

22; (b) line styles ‘—–’ and ‘· · ·’ are used for MD+
22 and TD+

22; (c) line styles
‘—–’ and ‘· · ·’ are used for −Mε+

22 and −Tε+
22; and (d) line styles ‘- - -’ and ‘· · ·’ are used for

Mv+
22 and Tv+

22. Profiles corresponding to P180, N180 and D180 are identified by red, black and
cyan colours, respectively.

energy in Π+
22 is transported towards and away from the wall, mainly through the turbulent

transport rate. Since there is less energy to be distributed with shear thinning, within the
inner region, the magnitudes of TT+

22 and MD+
22 decrease with shear thinning as well. With

respect to the non-Newtonian terms, the transport rate TD+
22 decreases with decreasing

flow index whilst Mv+
22 and Tv+

22 increase. However, these terms are rather small and do
not contribute significantly to the total transport rate.

The total dissipation rate ε+
22 balancing T+

22 is mainly due to the mean viscous dissipation
rate Mε+

22, which presents the same trends of Π+
22 with rheology, i.e. it decreases in

magnitude with decreasing flow index. The other non-zero contribution to rate ε+
22,

although fairly low in magnitude, is Tε+
22. This non-Newtonian dissipation rate increases

in magnitude with shear thinning.
For transport rate T+

33, mainly the pressure–velocity gradient term and the mean viscous
diffusion (especially very close to the wall) are important. As for budget B+

22, less energy
is redistributed from budget B+

11 with decreasing flow index. The magnitudes of Π+
33 and

consequently of TT+
33 and MD+

33 decrease with shear thinning. Other non-zero transport
terms, associated with the non-Newtonian rheology, do not contribute much to rate T+

33.
As for Tε+

22, the mean viscous dissipation rate contributes the most to the total rate Tε+
33

and decreases in magnitude with shear thinning since there is less energy that may be
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FIGURE 23. Contributions to T+
33 and −ε+

33 in budget B+
33: (a) line styles ‘—–’ and ‘- - -’ are

used for Π+
33 and TT+

33; (b) line styles ‘—–’ and ‘· · ·’ are used for MD+
33 and TD+

33; (c) line styles
‘—–’ and ‘· · ·’ are used for −Mε+

33 and −Tε+
33; and (d) line styles ‘- - -’ and ‘· · ·’ are used for

Mv+
33 and Tv+

33. Profiles corresponding to P180, N180 and D180 are identified by red, black and
cyan colours, respectively.

dissipated. The other non-zero dissipation rate Tε+
33 is small in comparison to Mε+

33 and
shows the opposite behaviour with decreasing flow index.
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