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Abstract

We consider a two-node Jackson network in which the buffer of node 1 is truncated. Our
interest is in the limit of the tail decay rate of the queue-length distribution of node 2
when the buffer size of node 1 goes to infinity, provided that the stability condition of
the unlimited network is satisfied. We show that there can be three different cases for
the limit. This generalizes some recent results obtained for the tandem Jackson network.
Special cases and some numerical examples are also presented.
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1. Introduction

We are interested in computing the tail decay rates of the stationary queue-length distributions
of queueing networks by the finite truncation of some buffers, provided that the stability of the
networks holds. In general, the decay rates are hard to compute for queueing networks unless
they have product-form stationary distributions, and are more easily computed for queues with
single buffers (see, e.g. [3], [9], [10], and references therein). So, it is natural to approximate
the decay rates for queueing networks by truncating the buffers of all queues except for the
ones in which we are interested. This is referred to as a finite truncation. We expect that such
a truncation approximates the original decay rate well as the truncation level becomes large.

Surprisingly, however, Kroese et al. [8] have recently reported that finite truncation may not
work well for a tandem Jackson network of two nodes. Suppose that the first buffer is truncated:
they proved that the tail decay rate for the queue at the second node converges to a value smaller
than the original one as the truncation level goes to infinity, given that the first node has higher
traffic intensity than the second node. If this is not the case, then the original decay rate is well
approximated.

In this paper, we consider this truncation problem for a more general network, i.e. a two-node
Jackson network with arbitrary routing topology. As is well known, the joint queue lengths of
this network have a product-form stationary distribution. Our aim is to see what conditions
guarantee that the tail decay rate of the queue at one node is well approximated by the finite
buffer truncation of the other. We also consider the value to which the decay rate of the truncated
model converges if the approximation fails. This value will indicate when we must be careful
in approximating queueing networks with infinite buffers by those with finite buffers.
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Since the Jackson network may have feedback loops and exogenous arrivals at both nodes,
the situation looks much more complicated than the tandem queue of [8]. Nevertheless, we
can identify the conditions under which the finite truncation yields good approximations of the
original decay rates, and to which values the rates converge if this is not the case. For the tandem
queue, there are two possible values for the decay rates: the original and another, smaller, value.
For the general Jackson network of two nodes, we have three possible values, and some of the
necessary conditions are nonintuitive. To prove our results, we use a formulation in terms of
a quasi-birth–death process, as in [8]. However, we employ an approach different from that in
[8], where orthogonal polynomials are used in the proofs. This technique seems to be highly
dependent on the structure of the transition-rate matrix of the tandem Jackson network. Our
approach, on the other hand, is direct and elementary, but requires results of [12].

In this way, we generalize the aforementioned results of [8]. However, there is another
noteworthy finding in [8], namely that the decay rate can be arbitrarily changed in some range
if we appropriately modify the behaviour of the queue at the first node when the second node
is empty. This implies that the decay rate also strongly depends on the boundary behaviour of
the queueing network and of the quasi-birth–death process, in general. We do not address this
problem here.

The paper comprises four sections. In Section 2, we describe the Jackson network of two
nodes in which the buffer of node 1 is truncated, and present basic results for computing the
decay rate. A complete characterization of the limit of the decay rate is given in Section 3. In
Section 4, we discuss special cases, including the tandem Jackson network studied in [8]. We
also illustrate the convergence of the decay rate with numerical examples.

2. Two-node Jackson network with a truncated buffer

We consider a version of the two-node Jackson network. The nodes of this network are
numbered 1 and 2. Node 1 has a buffer with capacity m ≤ ∞, which includes the customer
being served, so the total number of customers in node 1 is limited by m. Node 2 has an
infinite buffer. Customers arrive at node 1 or node 2 according to a Poisson process of rate λ1
or λ2, respectively. When a customer arriving at node 1 finds the buffer full, he is rejected and
leaves the network. Customers at each node are served in a first-come–first-served manner. The
service times of customers at node 1 and node 2 are independently and exponentially distributed
with meansµ−1

1 andµ−1
2 , respectively. After completing service at node 1 or node 2, customers

enter node 2 or node 1 with probability p or q, or leave the system with probability 1 − p or
1 − q, respectively, where 0 ≤ p, q ≤ 1. To exclude a trivial case, we assume that p > 0. This
queueing network is referred to as a two-node Jackson network with a truncated buffer, and is
a standard (two-node) Jackson network if m is infinite.

Let Li(m)(t) be the number of customers in node i at time t , for i = 1, 2. Clearly,
(L1(m)(t), L2(m)(t)) is a two-dimensional continuous-time Markov chain with state space
M × N , where M := {0, 1, . . . , m} and N := {0, 1, . . . }. The state of this Markov chain is
referred to as a network state. When m = ∞, Li(∞)(t) is denoted by Li(t), for simplicity.

Define ρ1 and ρ2 as

ρ1 = λ1 + qλ2

(1 − pq)µ1
, ρ2 = pλ1 + λ2

(1 − pq)µ2
.

It is easy to show that ρ1 and ρ2 are respectively the traffic intensities of nodes 1 and 2 when
m is infinite. In this case, if

ρ1 < 1 and ρ2 < 1, (2.1)
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then the Markov chain (L1(t), L2(t)) has the stationary distribution π , given by

π(n1, n2) = (1 − ρ1)(1 − ρ2)ρ
n1
1 ρ

n2
2 , n1, n2 ≥ 0, (2.2)

as is well known (see, e.g. [6]). Here, (n1, n2) denotes the network state.
Throughout the paper, we assume that (2.1) holds. Then, the stationary distribution of

the network state always exists for 1 ≤ m ≤ ∞, since the process (L1(m)(t), L2(m)(t)) is
stochastically dominated by the case of m = ∞, as we will see in Lemma 2.1. We denote
this (finite-m) stationary distribution by π(m), and denote random vectors subject to π(m) by
(L1(m), L2(m)). Thus,

π(m)(n1, n2) = P(L1(m) = n1, L2(m) = n2).

Our primary concern is with the tail decay rate of the stationary distribution of node 2, which
is defined as the positive number z(m) such that

lim
n→∞ z

−n
(m) P(L2(m) = n) = c(m),

for some positive constant c(m). The existence of this limit will be verified in Lemma 3.1. This
definition is slightly stronger than

z(m) = lim
n→∞

P(L2(m) = n+ 1)

P(L2(m) = n)
.

Note that the value of z(m) is also determined by

z(m) = inf

{
z ≥ 0 :

∞∑
n=0

z−n P(L2(m) ≥ n) < ∞
}
, (2.3)

since

(1 − z)

∞∑
n=0

z−n P(L2(m) ≥ n) =
∞∑
n=0

z−n P(L2(m) = n)− z.

We will consider the limit of z(m) as m goes to infinity. To this end, we first consider the
stationary distribution π(m) for eachm < ∞. ViewingL1(m)(t) as the phase andL2(m)(t) as the
level, the continuous-time Markov chain (L1(m)(t), L2(m)(t)) can be considered a quasi-birth–
death process with m+ 1 phases in each level. After uniformization of this quasi-birth–death
process, its stationary distribution is identical to that of the discrete-time Markov chain with the
transition diagram shown in Figure 1, where the constants λ1, λ2, µ1, and µ2 are normalized
in such a way that

λ1 + λ2 + µ1 + µ2 = 1. (2.4)

Hence, the transition matrix P(m) of this discrete-time Markov chain is block tridiagonal
and given by

P(m) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

B0(m) A1(m)

B−1(m) A0(m) A1(m)

A−1(m) A0(m)
. . .

A−1(m)
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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(1 )− q µ2
qµ2
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L
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1
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Figure 1: The transition diagram of (L1(m)(t), L2(m)(t)).

where B−1(m) = A−1(m), B0(m), A0(m), and A1(m) are (m + 1)-dimensional square matrices
given by

B0(m) =

⎛
⎜⎜⎜⎜⎜⎝

µ1 + µ2 λ1
(1 − p)µ1 µ2 λ1

. . .
. . .

. . .

(1 − p)µ1 µ2 λ1
(1 − p)µ1 λ1 + µ2

⎞
⎟⎟⎟⎟⎟⎠
,

A1(m) =

⎛
⎜⎜⎜⎜⎜⎝

λ2
pµ1 λ2

. . .
. . .

pµ1 λ2
pµ1 λ2

⎞
⎟⎟⎟⎟⎟⎠
,

A0(m) =

⎛
⎜⎜⎜⎜⎜⎝

µ1 λ1
(1 − p)µ1 0 λ1

. . .
. . .

. . .

(1 − p)µ1 0 λ1
(1 − p)µ1 λ1 + qµ2

⎞
⎟⎟⎟⎟⎟⎠
,

A−1(m) =

⎛
⎜⎜⎜⎜⎜⎝

(1 − q)µ2 qµ2
(1 − q)µ2 qµ2

. . .
. . .

(1 − q)µ2 qµ2
(1 − q)µ2

⎞
⎟⎟⎟⎟⎟⎠
.
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It is easy to show that P(m) is irreducible and aperiodic, meaning that the Markov chain can
have at most one stationary distribution. The results of the following lemma are intuitively
obvious, but we state the proof, as it plays an important role in this paper.

Lemma 2.1. For each t ≥ 0, (L1(m)(t), L2(m)(t)) is stochastically increasing in m, i.e.

P(L1(m)(t) ≥ n1, L2(m)(t) ≥ n2)

is increasing inm for eachn1, n2 ≥ 0. Therefore, (L1(m)(t), L2(m)(t)) is stochastically bounded
by (L1(t), L2(t)).

Proof. We alter the service discipline at node 1 from first-come–first-served to last-come–
first-served, and adopt a push-out rejection policy, whereby the longest-staying customer is
forced to leave the node when an arriving customer finds the buffer full. For this network,
we denote the number of customers in node i by L̃i(m)(t) for i = 1, 2. By the memoryless
property of the exponential distribution, process (L1(m)(t), L2(m)(t)) is stochastically identical
to process (L̃1(m)(t), L̃2(m)(t)). Since new customers are always accepted for service at node 1,
the customers there remain when m is increased. Hence, L̃1(m)(t) and L̃1(m+1)(t) decrease at
the same instants, and we have

L̃1(m)(t) ≤ L̃1(m+1)(t), t ≥ 0. (2.5)

As an example, see Figure 2, which depicts how the longest-staying customers are replaced by
those newly arriving, where ‘↑’ and ‘⇓’ represent the arrival and the departure of a customer,
respectively. For each m ≥ 1, let Ñ1(m)(t) be the number of customers who complete service
at node 1 by time t . Then, the above arguments imply that

Ñ1(m)(t) ≤ Ñ1(m+1)(t), t ≥ 0.

Hence, we have

L̃2(m)(t) ≤ L̃2(m+1)(t), t ≥ 0.

Combining this with (2.5) concludes the proof.

By Lemma 2.1, the process (L1(m)(t), L2(m)(t)) is stochastically bounded by (L1(t), L2(t)),
and the condition (2.1) implies the existence of the stationary distribution (2.2) of (L1(t), L2(t)).
Therefore, the process (L1(m)(t), L2(m)(t)) has a unique stationary distribution; that is, it is
ergodic.

We now review basic results for a general block-tridiagonal transition matrix P given by

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

B0 A1 O · · ·
B−1 A0 A1

. . .

O A−1 A0
. . .

O O A−1
. . .

...
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.6)

where A−1, A0, and A1 are square matrices of dimension m + 1, B0 and B−1 are (m + 1)×
(m0+1)matrices, and O stands for a null matrix of the appropriate size. Here, 0 ≤ m0,m ≤ ∞:
note that the blocks Ai and Bi may be of infinite dimension.
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1    2      3    2  1      4    5  6   5     7      5   4         8
1 2 1 4 5 4 5 4

1 4 4

s s2
s6 s7 s5

s3 s4 s8

served customer
1st waiting customer
2nd waiting customerL1( 1)m+ ( )t˜

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓ ⇓ ⇓ ⇓ ⇓ ⇓↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

1    2      3    2          4    5  6   5     7      5             8
1 2 4 5 5

1 2 3 4 5 6 7 8

L1( )m ( )t˜

ss3 s2
s6 s7

s5 s8

1 2 3 4 5 6 7 8

0

0

t

t

m � 2

m+1

Figure 2: Sample paths of L̃1(m)(t) and L̃1(m+1)(t), wherem = 2. The service of customer i is denoted
by si .

Also note that {A�, � = −1, 0, 1} defines a discrete-time Markov additive process

{(Xn, Yn)}n≥0

such that

P(Xn+1 = j, Yn+1 − Yn = � | Xn = i) = A�(i, j),

where A�(i, j) is the (i, j)th entry of A�. In what follows, we will consider the periodicity of
this Markov additive process. In this section, we assume that the transition matrix

A := A−1 + A0 + A1

is irreducible. We next define the periodicity of the Markov additive kernel {A�, � = −1, 0, 1},
extending the corresponding definition of the Markov renewal process in [2, Chapter 10,
Section 2]. For each i ∈ M, let d(i) be the greatest common divisor of

{�1 + �2 + · · · + �k : A�1(i, j1)A�2(j1, j2)× · · · × A�k (jk−1, i) > 0, where

k ≥ 1; �m = −1, 0, 1; m = 1, 2, . . . , k; jn ∈ M; n = 1, 2, . . . , k − 1}.
It is easy to show that, by the irreducibility of A, d(i) does not depend on i. Therefore we
simply denote it by d , and call the Markov additive process d-arithmetic. For the two-node
Jackson network, {A�(m), � = −1, 0, 1} is clearly 1-arithmetic except in trivial cases.

Remark 2.1. In the literature, d-arithmeticity means that d is the largest positive number such
that there exists a function δ from M to [0, d), and A�(i, j) > 0 implies that � − δ(i) + δ(j)

is a multiple of d (see, e.g. [1] and [15]). It is clear that this definition is equivalent to the
above definition (see, e.g. [12] for more details). Since we are only concerned with the integer-
valued additive component, 1-arithmeticity may be said to be nonarithmeticity. However,
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this terminology is also applied to a Markov additive process that has a real-valued additive
component (see, e.g. [1]), which includes the present model as a special case. To avoid this
possible confusion, we prefer ‘1-arithmetic’ to ‘nonarithmetic’.

Since P(m) is block-tridiagonal and ergodic and since {A�(m), � = −1, 0, 1} is 1-arithmetic,
the following results will be of use to us.

Proposition 2.1. Suppose that P of (2.6) is ergodic, and recall that m and m0 may be infinite.
Let u := {un, n ≥ 0} be its stationary distribution, where un is the (row) vector whose entries
uni (i ∈ M) are the stationary probabilities corresponding to level n, i.e. the nth block of P .

(i) There then exists a minimal nonnegative solution R of the quadratic matrix equation

X = A1 + XA0 + X2A−1, (2.7)

and we have

un = u0R
n, n = 0, 1, 2, . . . ,

where u0 is obtained as the left-invariant measure of B[R] := B0 + RB−1 such that

u0(I − R)−1e = 1,

where I is the identity matrix and e is the column vector all of whose entries are 1.

(ii) Define the matrix generating function A(s) by A1 + sA0 + s2A−1. If the Markov additive
kernel {A�, � = −1, 0, 1} is 1-arithmetic and if there exist a positive row vector x, a positive
column vector y, and a real number z ∈ (0, 1) satisfying the conditions

xA(z) = zx, (2.8)

A(z)y = zy, (2.9)

xy < ∞, (2.10)

then z−1 is the convergence radius of the matrix R. Moreover, if

u0(zB0 + A1)y < ∞ (2.11)

is satisfied, then z is the decay rate of the stationary probability uni with respect to n for each
fixed i ∈ M. That is,

lim
n→∞ z

−nuni = ci

for some positive constant ci .

Note that ifm andm0 are finite, i.e. if all the block sizes are finite, (i) is the well-known result
due to Neuts [13], which is called the matrix-geometric form of a distribution. It is obvious
how to extend this result to the case of infinite block sizes (see, e.g. [4], [8], and references
therein). For finitem andm0, (ii) is known for a more general class of transition matrices (see,
e.g. [5]), for which (2.10) and (2.11) are automatically satisfied. However, for infinite m and
m0, these two conditions are crucial, as discussed in [12]. A different set of sufficient conditions
for the geometric decay is given in [8]. In both situations, the marginal distribution at level 0 is
important (see Section 1). For the infinite case, (ii) has only recently been proved. Fujimoto et
al. [4] did so first, but they assumed certain extra conditions. These conditions were removed
in [11] and [12], in which, respectively, the M/GI/1-type and GI/G/1-type queues with infinite
phase spaces were studied.
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Remark 2.2. The matrix R in Proposition 2.1 has the following probabilistic interpretation.
Let τ� = inf{n ≥ 1 : Yn ≤ �}, where Yn is the additive component of the Markov additive
process {(Xn, Yn)}n≥0. That is, τ� is the first return time of the additive component to the set
(−∞, �]. Then the matrix R can be defined (in terms of its entries R(i, j)) by

R(i, j) := E

[∑
n≥0

1(Xn = j, Yn = �+ 1, n < τ�)

∣∣∣∣ X0 = i, Y0 = �

]
, i, j ∈ M.

Similarly, if we define the matrix U by

U(i, j) := E

[∑
n≥0

1(Xn = j, Yn = �, n < τ�−1)

∣∣∣∣ X0 = i, Y0 = �

]
, i, j ∈ M,

then it is easy to show that

R = A1U .

It is also easily shown that all the entries of U are positive for the two-node Jackson network
with a truncated buffer.

3. Limit of the decay rate

In this section, we consider the limit of z(m) for the two-node Jackson network with a
truncated buffer of size m at node 1, as m goes to infinity. We first note the following facts,
which are immediate consequences of (2.3), Lemma 2.1, and Proposition 2.1.

Lemma 3.1. The decay rate z(m) exists, increases in m, and is bounded by ρ2.

By this lemma, the limit of z(m) exists. We denote it by z∞:

z∞ = lim
m→∞ z(m).

Note that z∞ may not be the decay rate when m = ∞. This rate is actually ρ2, by (2.2). In
fact, there can be three different cases for the limit z∞. These are presented in the following
theorems.

Theorem 3.1. Consider the two-node Jackson network with a truncated buffer satisfying the
stability condition (2.1). If the condition

pρ1

1 − ρ1
≤ ρ2

1 − ρ2
(3.1)

holds, then z∞ = ρ2.

For the next theorem and its proof, we need some extra notation. Define the function f (r, z)
as

f (r, z) = µ1{p + (1 − p)z}r2 + {λ2 − z+ (1 − q)µ2z
2}r + (λ1 + qµ2z)z.

For each fixed z, f (r, z) = 0 is a quadratic equation in r . LetD(z) be its discriminant, namely

D(z) = {λ2 − z+ (1 − q)µ2z
2}2 − 4µ1z{p + (1 − p)z}(λ1 + qµ2z).

https://doi.org/10.1239/jap/1110381381 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1110381381


Finite buffer truncation 207

Theorem 3.2. For the model considered in Theorem 3.1, the equationD(z) = 0 has solutions
in (0, ρ2]. Let z0 be the largest of them, and let

z1 = pλ1µ1 + λ2(λ1 + qµ2)

{(1 − p)qµ1 + (1 − q)(λ1 + qµ2)}µ2
.

If (3.1) does not hold, i.e. if

pρ1

1 − ρ1
>

ρ2

1 − ρ2
, (3.2)

then either one of the following two cases holds:

(a) z∞ = z0 < ρ2 if

z1 > ρ2 or
(λ1 + qµ2)z1

µ1{p + (1 − p)z1} ≤ λ1 + qµ2z1

λ1 + qµ2
; (3.3)

(b) z∞ = z1 > z0 otherwise.

Remark 3.1. We have the following interpretation for condition (3.1) of Theorem 3.1. Since
ρi/(1 − ρi) is the mean number of customers at node i for i = 1, 2, (3.1) can be written as

p E(L1) ≤ E(L2), (3.4)

where (L1, L2) is subject to the stationary distributionπ (see (2.2)). Suppose that the congestion
at a node is measured by the mean number of customers. Then we can say that, if p times
the congestion of node 1 is not greater than the congestion of node 2, the finite truncation
approximates the unlimited network well. Here, the factor of p is important, since node 2 is
less affected by node 1 if p is small. However, it should be noted that condition (3.4) may not
be necessary in order to have z∞ = ρ2 (see Remark 4.1, below). In Theorem 3.2, we have
another condition, (3.3), but this seems to be hard to interpret.

In what follows, we prove these theorems using a series of lemmas, applying Proposition 2.1
for P = P(m). We first consider the case in which part (ii) of Proposition 2.1 is applicable for
m = ∞. For this, we need a slightly stronger condition than (3.1), given by the strict inequality

pρ1

1 − ρ1
<

ρ2

1 − ρ2
. (3.5)

Lemma 3.2. Ifm = ∞ and (3.5) holds, then the convergence radius of the minimal nonnegative
solution R of (2.7) is ρ−1

2 .

Proof. In view of part (ii) of Proposition 2.1, it is sufficient to find positive vectors x and
y satisfying the conditions (2.8), (2.9), and (2.10) for z = ρ2 when (3.5) holds. We show that
suitable vectors are given by

xn = ρn1 , yn =
(
p + (1 − p)ρ2

ρ2

)n
, n ≥ 0, (3.6)

where xn and yn are the nth entries of x and y, respectively. (This convention for entries of
vectors is used throughout the paper.) We need only verify (2.8), (2.9), and (2.10) for these
vectors but, instead, we will derive them by solving (2.8) and (2.9). This constructive derivation
will be useful in subsequent discussions.
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Assume that (3.5) holds. For m = ∞, (2.8) is written as

{λ2 + µ1z+ (1 − q)µ2z
2}x0 + µ1{p + (1 − p)z}x1 = zx0, (3.7)

(λ1 + qµ2z)zxn−1 + {λ2 + (1 − q)µ2z
2}xn + µ1{p + (1 − p)z}xn+1 = zxn, n ≥ 1.

Consider the quadratic equation f (s, z) = 0 for a fixed z, i.e.

µ1{p + (1 − p)z}s2 + {λ2 − z+ (1 − q)µ2z
2}s + (λ1 + qµ2z)z = 0, (3.8)

and suppose that this equation has two positive roots s1 and s2 such that 0 < s1 < s2. Then, x

is given by

xn = C1s
n
1 + C2s

n
2 , n = 0, 1, . . . ,

for some constants C1 and C2, where x0 = 1.
Similarly, (2.9) is written as

{λ2 + µ1z+ (1 − q)µ2z
2}y0 + (λ1 + qµ2z)zy1 = zy0,

µ1{p + (1 − p)z}yn−1 + {λ2 + (1 − q)µ2z
2}yn + z(λ1 + qµ2z)yn+1 = zyn, n ≥ 1.

Consider the following quadratic equation in variable t :

(λ1 + qµ2z)zt
2 + {λ2 − z+ (1 − q)µ2z

2}t + µ1{p + (1 − p)z} = 0.

Comparing this equation with (3.8), it clear that t1 = 1/s2 and t2 = 1/s1 are its solutions.
Hence, y is given by

yn = D1t
n
1 +D2t

n
2 , n = 0, 1, . . . ,

for some constants D1 and D2, where y0 = 1. Note that, if s1 and s2 are complex or identical,
it is difficult to find vectors x and y satisfying (2.10) because then xnyn may not vanish as n
goes to infinity. For this reason, we have assumed that s1 and s2 are positive and not identical,
where positivity of s1 and s2 comes from the fact that the vectors x and y must be positive.
Since

s1t2 = 1, s2t1 = 1, s1t1 < 1, s2t2 > 1,

and

xnyn = C1D1(s1t1)
n + C1D2(s1t2)

n + C2D1(s2t1)
n + C2D2(s2t2)

n,

we must have

C2D2 = 0 and C1D2 + C2D1 = 0,

meaning that both C2 andD2 must vanish for condition (2.10) to hold. From C2 = 0, we have
s1 = x1, and substituting this into (3.7) yields

{λ2 − z+ µ1z+ (1 − q)µ2z
2} + µ1{p + (1 − p)z}s1 = 0. (3.9)
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Subtracting (3.9) times s1 from f (s1, z) = 0, we have

s1 = λ1 + qµ2z

µ1
(3.10)

and, by substituting this back into (3.9), we find the solution z ∈ (0, 1) to be

z = ρ2.

Then, using this value for z in (3.10), and taking into account the fact that s1 and s2 are the
solutions of the quadratic equation (3.8), we have

s1 = ρ1, s2 = ρ2

p + (1 − p)ρ2
. (3.11)

It is easy to show that (3.5) is equivalent to s1 < s2 if s1 and s2 are given by (3.11). Thus, the
vectors given by (3.6) satisfy conditions (2.8), (2.9), and (2.10) for z = ρ2. Hence, the lemma
is proved.

Lemma 3.3. If (3.5) holds then z∞ = ρ2.

Proof. Let R(m) be the minimum nonnegative solution of (2.7) for Ai = Ai(m), i = 1, 0,−1,
i.e. such that

R(m) = A1(m) + R(m)A0(m) + R2
(m)A−1(m).

Let R := lim infmR(m) entrywise. By Fatou’s lemma, we have

R ≥ A1 + RA0 + R2A−1.

Note that the matrix R can be obtained as the limit of X(n), defined by

X(0) := O,

X(n+1) := A1 + X(n)A0 + (X(n))2A−1, n ≥ 0.

Since R ≥ X(0) = O, we have, by induction

R ≥ X(n), n ≥ 0;
letting n go to infinity, we then have

R ≥ R. (3.12)

Suppose that λ2 
= 0. Then R(m) is irreducible, by Remark 2.2, since U is positive. Hence, by
the Perron–Frobenius theorem, there exist a positive column vector y(m) and a positive number
z(m) such that y(m)0 = 1 and

R(m)y(m) = z(m)y(m).

Let y := lim infm→∞ y(m). Since z(m) monotonically converges, (3.12) and Fatou’s lemma
yield

Ry ≤ z∞y
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(where inequalities between nonscalar quantities are componentwise). Note that y is a positive
vector with finite entries since y

0
= 1 and R is irreducible. By Lemma 3.2, the convergence

radius of R is ρ−1
2 . Hence, Theorem 6.3 of [14] implies that z−1∞ ≤ ρ−1

2 , or

z∞ ≥ ρ2.

As the inequality z∞ ≤ ρ2 is implied by Lemma 3.1, we conclude that z∞ = ρ2.
It remains to consider the case in which λ2 = 0. In this case, by Remark 2.2, R(m) has the

form

R(m) =
(

0 0
g R(m)(A)

)
,

where 0 is a row vector with all entries 0, g is a positive column vector, and R(m)(A) is an
irreducible matrix whose entries have indices in A := {1, . . . , m}. Since we can apply the
Perron–Frobenius theorem to R(m)(A), there exist a positive right-eigenvector y(m)(A), whose
entries have indices in A, and a positive eigenvalue z(m) such that

R(m)

(
0

y(m)(A)

)
= z(m)

(
0

y(m)(A)

)
.

Let y(A) := lim infm→∞ y(m)(A). As for y, Fatou’s lemma yields

R

(
0

y(A)

)
≤ z∞

(
0

y(A)

)
,

and we have z∞ = ρ2.

Suppose that m is finite. In this case, we denote the matrix generating function A(z)

by A(m)(z). Let χ(z) be the Perron–Frobenius eigenvalue of A(m)(z). Since A(m)(z) is
irreducible and aperiodic, it has a positive left-eigenvector x and a positive right-eigenvector
y corresponding to χ(z), by the Perron–Frobenius theorem. It is known that χ(z) is a convex
function (see, e.g. [7]). From the structure of A(m)(z), it is clear that χ(0) > 0 and χ(1) = 1.
These and the stability condition (2.1) imply that the equation z = χ(z) has one solution in
(0, 1). This solution must be z(m), by Proposition 2.1, sincem is finite and conditions (2.8) and
(2.9) are satisfied.

We next compute x = (x0, x1, . . . , xm) in closed form. Equation (2.8), i.e.

xA(m)(z(m)) = z(m)x,

can be written as

{λ2 + µ1z(m) + (1 − q)µ2z
2
(m)}x0 + µ1{p + (1 − p)z(m)}x1 = z(m)x0, (3.13)

z(m)(λ1 + qµ2z(m))xn−1 + {λ2 + (1 − q)µ2z
2
(m)}xn

+µ1{p + (1 − p)z(m)}xn+1 = z(m)xn,

1 ≤ n ≤ m− 1, (3.14)

z(m)(λ1 + qµ2z(m))xm−1 + {λ2 + (λ1 + qµ2)z(m) + (1 − q)µ2z
2
(m)}xm = z(m)xm. (3.15)

These equations inductively define the series {xn, 0 ≤ n ≤ m}.
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As is well known, the solutions xn can be obtained by using solutions of the quadratic
equation (in r)

f (r, z(m)) = 0. (3.16)

Denote these (latter) solutions by r1(m) and r2(m) (|r1(m)| ≤ |r2(m)|), and let x0 = 1. From
(3.14) and the quadratic equation (3.16), we have

(r2(m) − r1(m))xn = (r2(m) − x1)r
n
1(m) + (x1 − r1(m))r

n
2(m), 0 ≤ n ≤ m− 1. (3.17)

(See Appendix A for this derivation.) Using (3.16) and the boundary conditions (3.13) and
(3.15), lengthy but straightforward computations yield

(
r2(m) − z(m)

p + (1 − p)z(m)

)
{(λ1 + qµ2)r1(m) − (λ1 + qµ2z(m))}

=
(
r1(m) − z(m)

p + (1 − p)z(m)

)
{(λ1 + qµ2)r2(m) − (λ1 + qµ2z(m))}

(
r1(m)

r2(m)

)m+1

. (3.18)

(Appendix A also contains this computation.) Note that if r1(m) = r2(m) then (3.18) is just an
identity. Thus, if r1(m) 
= r2(m), z(m) is expected to be obtained as a solution of (3.18) when
r1(m) and r2(m) satisfy (3.16). Since z(m) monotonically converges to z∞, r1(m) and r2(m) can
be chosen so that they each converge to a limit as m goes to infinity. Denote these limits by
r1∞ and r2∞, respectively. They are obtained as the roots of the quadratic equation (in r)

f (r, z∞) = 0.

Lemma 3.4. The root z0 of the discriminant D(z) (see Theorem 3.2) exists, and we have

z0 ≤ z∞ ≤ ρ2. (3.19)

In particular, z0 = z∞ = ρ2 only if

pρ1

1 − ρ1
= ρ2

1 − ρ2
. (3.20)

Proof. We first prove the existence of z0 ∈ (0, ρ2]. For this, decompose D(z) as

D(z) = g(z)2 − h(z),

where

g(z) = λ2 − z+ (1 − q)µ2z
2,

h(z) = 4µ1z{p + (1 − p)z}(λ1 + qµ2z).

It is easy to show that g(z) = 0 has two nonnegative solutions z1(g) and z2(g) such that

0 ≤ z1(g) = 1 − √
1 − 4(1 − q)λ2µ2

2(1 − q)µ2

< 1 < z2(g) = 1 + √
1 − 4(1 − q)λ2µ2

2(1 − q)µ2
,
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2

−

Figure 3: The relation between g(z), g(z)2, and h(z).

where, since

1 − 4(1 − q)λ2µ2 = (µ2 − λ2)
2 + 2(λ2 + µ2)(λ1 + µ1)+ (λ1 + µ1)

2 + 4qλ2µ2 > 0

(where we have used (2.4)), the argument of the square root is positive. Obviously, h(z) is
increasing in z ≥ 0 and h(0) = 0 ≤ g(0)2. We also note that

D(ρ2) = g(ρ2)
2 − h(ρ2) =

[
µ1(1 − ρ1)(1 − ρ2)

(
ρ2

1 − ρ2
− pρ1

1 − ρ1

)]2

≥ 0. (3.21)

(The verification of (3.21) requires some complicated computations, so we defer them to
Appendix B.) Furthermore, we have

D(1) = g(1)2 − h(1) = (λ1 + qµ2 − µ1)
2 ≥ 0.

Hence, we conclude that D(z) = 0 has two solutions in [0, ρ2] and that the larger solution is
z0 ∈ (z1(g), ρ2]. For convenience, we denote the smaller solution by z−0 (see Figure 3).

We are now ready to prove (3.19). Assume that z∞ < z0. Since node 2 has exogenous
arrivals subject to the Poisson process with rate λ2, z(m) is greater than λ2/µ2 for all m ≥ 1.
Hence, λ2/µ2 < z∞ since p > 0. It is easy to show that

g(0) = λ2 ≥ 0,

g

(
λ2

µ2

)
= λ2

µ2
{µ2 − 1 + (1 − q)λ2}

= λ2

µ2
{−(λ1 + µ1)− qλ2} < 0.

Hence, g(z) = 0 has a unique solution z ∈ [0, λ2/µ2), which must be z1(g). Thus, we find
that

z1(g) <
λ2

µ2
< z∞,
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which implies that D(z(m)) < 0 for sufficiently large m ≥ 1, since z∞ < z0. Assuming that m
is such a large integer, (3.16) has complex roots and, so, r1(m) and r2(m) can be expressed as

r1(m) = ξ(m)e
−iθ(m) , r2(m) = ξ(m)e

iθ(m) ,

for real numbers ξ(m) and θ(m), where i = (−1)1/2. Applying these values in (3.18) yields

(
r2(m) − z(m)

p + (1 − p)z(m)

)
{(λ1 + qµ2)r1(m) − (λ1 + qµ2z(m))}

=
(
r1(m) − z(m)

p + (1 − p)z(m)

)
{(λ1 + qµ2)r2(m) − (λ1 + qµ2z(m))}e−2i(m+1)θ(m) . (3.22)

Since z(m) ↑ z∞ < z0, we have

lim
m→∞ r1(m) = r1∞ = ξ∞e−iθ∞ ,

lim
m→∞ r2(m) = r2∞ = ξ∞eiθ∞ ,

where r1∞ and r2∞ are the solutions of f (r, z∞) = 0. SinceD(z∞) < 0, we have ξ∞, θ∞ 
= 0,
which implies that the left-hand side of (3.22) converges while the right-hand side does not,
which is a contradiction. Thus, having z∞ < z0 is impossible, and we obtain (3.19). To
complete the proof, we note that, by (3.21), D(ρ2) = 0 only if (3.20) holds. Since D(ρ2) = 0
is equivalent to z0 = ρ2, the proof is complete.

3.1. Proofs of Theorems 3.1 and 3.2

3.1.1. Proof of Theorem 3.1. By Lemma 3.4, (3.20) implies that z∞ = ρ2. Combining this
with Lemma 3.3 gives Theorem 3.1.

3.1.2. Proof of Theorem 3.2. We first prove case (a), by contradiction. Suppose that z∞ 
= z0,
which is equivalent to the inequalities z0 < z∞ ≤ ρ2, by Lemma 3.4. Then, D(z∞) > 0 and,
so, r1∞ < r2∞. If we let m go to infinity in (3.18), this implies that

(
r2∞ − z∞

p + (1 − p)z∞

)
{(λ1 + qµ2)r1∞ − (λ1 + qµ2z∞)} = 0.

Hence, either

r1∞ = λ1 + qµ2z∞
λ1 + qµ2

(3.23)

or

r2∞ = z∞
p + (1 − p)z∞

. (3.24)

Suppose that (3.23) holds. Then, since r1∞ and r2∞ are the solutions of f (r, z∞) = 0, we have

r1∞ + r2∞ = z∞ − λ2 − (1 − q)µ2z
2∞

µ1{p + (1 − p)z∞} , (3.25)

r1∞r2∞ = (λ1 + qµ2z∞)z∞
µ1{p + (1 − p)z∞} , (3.26)
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and (3.26) and (3.23) imply that

r2∞ = (λ1 + qµ2)z∞
µ1{p + (1 − p)z∞} . (3.27)

Substituting this into (3.25) yields

z∞ = z1.

(See Appendix C for the details of this computation.) Hence, neither statement in (3.3) is true,
since r1∞ < r2∞ and z∞ ≤ ρ2. On the other hand, if (3.24) holds, then we have

z∞ = ρ2 and r1∞ = ρ1.

These contradict (3.2), since r1∞ < r2∞, and, so, both statements in (3.3) are again false.
Hence, we have proved part (a) of Theorem 3.2.

We next prove part (b). Suppose that (3.3) does not hold. If we denote the two solutions of
f (r, z1) = 0 by r1∗ and r2∗, it is easy to show that they are given by

r1∗ = λ1 + qµ2z1

λ1 + qµ2
, r2∗ = (λ1 + qµ2)z1

µ1{p + (1 − p)z1} ,

which must differ from one another, since (3.3) is false. We will first show that

z0 < z1. (3.28)

Note that D(z1) > 0 and z1 ≤ ρ2. From the proof of Lemma 3.4, the equation D(z) = 0 has
two solutions z−0 and z0 in [0, ρ2]. If λ2 = 0 then z−0 = 0 and, so, D(z1) > 0 implies (3.28).
If λ2 > 0 then D(z1) > 0 is equivalent to either 0 < z1 < z−0 or z0 < z1 ≤ ρ2. Suppose that
0 < z1 < z−0 . Then g(z1) > 0 since g(z) > 0 for 0 < z < z−0 (see Figure 3). However, this
implies that

r1∗ + r2∗ = − g(z1)

µ1{p + (1 − p)z1} < 0,

since r1∗ and r2∗ are the solutions of the quadratic equation f (r, z1) = 0. This contradicts the
fact that r1∗ and r2∗ are positive and, so, we conclude that (3.28) holds.

Now suppose that z∞ > z0. We then have either (3.23) or (3.24) again. However, (3.24)
contradicts (3.2). Therefore, we must have (3.23), from which part (b) follows. To prove the
theorem, we must then show that z∞ > z0 indeed holds. To do so, it is sufficient to find a
positive integer m, for any ε > 0, such that r1(m), r2(m), and z(m) satisfy (3.16) and (3.18), and
that |z1 − z(m)| < ε. By the assumption that (3.3) does not hold, we have r1∗ < r2∗. Note that
z0 < z1 holds, by (3.28), and that (3.16) has two positive solutions r1∗ and r2∗ for z(m) = z1.
Suppose that

r2∗ = z1

p + (1 − p)z1
.

Then we have

z1 = ρ2 and r1∗ = ρ1.
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Figure 4: The solution z of (3.29).

These contradict (3.2), since r1∗ < r2∗, implying that

r2∗ 
= z1

p + (1 − p)z1
.

Let z be a positive number such that |z1 − z| < ε, and let r1(z) and r2(z) be the solutions of
f (r, z) = 0 such that r1(z) < r2(z). These solutions will be positive, by the continuity of the
quadratic solution, if ε is sufficiently small. We further take ε to be small enough that, for some
η > 0,

r2(z) 
= z

p + (1 − p)z
,

r1(z)

r2(z)
< 1 − η,

for all z satisfying |z1 − z| < ε. We now consider (3.18) with z(m) = z, i.e.

(λ1 + qµ2)r1(z) = (λ1 + qµ2z)

+ r1(z)− z/(p + (1 − p)z)

r2(z)− z/(p + (1 − p)z)
{(λ1 + qµ2)r2(z)− (λ1 + qµ2z)}

(
r1(z)

r2(z)

)m+1

. (3.29)

The final term on the right-hand side of this equation becomes arbitrarily small whenm becomes
large. For m large enough, we can then find a solution z of (3.29) that satisfies |z1 − z| < ε

(see, e.g. Figure 4). This gives z(m), and we obtain part (b).

4. Special cases and numerical examples

In this section, we consider special cases of Theorems 3.1 and 3.2 and present some numerical
examples. The condition (3.3) of Theorem 3.2 is complicated and not intuitive. Hence, we
first consider some cases in which this condition is not needed, i.e. part (a) holds automatically
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(and, therefore, part (b) is not required). To ensure this, we assume that q = 0, i.e. that there
is no feedback route. In this case, we have

C(z1 − ρ2) = (1 − pq){pλ1µ1 + (λ1 + qµ2)λ2}
− (pλ1 + λ2){(1 − p)qµ1 + (1 − q)(λ1 + qµ2)}

= {(1 − pq)pλ1 − (1 − p)q(pλ1 + λ2)}µ1

+ (λ1 + qµ2){(1 − pq)λ2 − (1 − q)(pλ1 + λ2)}
= {p(1 − q)λ1 − (1 − p)qλ2}µ1 + (λ1 + qµ2){(1 − p)qλ2 − (1 − q)pλ1}
= {(1 − q)pλ1 − (1 − p)qλ2}{µ1 − (λ1 + qµ2)}, (4.1)

where C = (1 − pq)µ2{(1 − p)qµ1 + (1 − q)(λ1 + qµ2)} > 0. In particular, if q = 0 then

C(z1 − ρ2) = pλ1(µ1 − λ1) > 0,

by the stability condition for node 1. The following results are immediate consequences of
these computations and Theorem 3.2.

Corollary 4.1. If q = 0, condition (3.2) of Theorem 3.2 implies that z∞ = z0.

In the tandem Jackson network of [8], p = 1 and q = λ2 = 0. Furthermore, (3.1) is
equivalent to ρ1 ≤ ρ2 for p = 1. So, Corollary 4.1 shows that the decay rate results of [8] are
special cases of Theorems 3.1 and 3.2.

Now, if 0 < q < 1, then case (b) of Theorem 3.2 may be relevant. For example, let us
consider the case in which p = 1. If we let α = λ1 + qµ2 then

z1 = λ1µ1 + αλ2

(1 − q)αµ2

= ρ2 + λ1(µ1 − α)

(1 − q)αµ2
.

Using this, r1∗, and r2∗ in the proof of Theorem 3.2, we compute that

r2∗ − r1∗ = α

µ1
z1 − λ1 + qµ2z1

α

= α

µ1
z1 − 1 + qµ2

α
(1 − z1)

= qµ2

α
(1 − ρ2)+ λ1µ1 + αλ2

(1 − q)µ1µ2
− 1 − qλ1(µ1 − α)

(1 − q)α2

= qµ2

α
(1 − ρ2)+ αλ2 + µ1(α − µ2)

(1 − q)µ1µ2
+ qλ1(α − µ1)

(1 − q)α2 .

Note that α − µ2 = λ1 − (1 − q)µ2 < 0, by the stability of node 2. Also note that having
α ≥ µ1 is equivalent to having z1 ≤ ρ2. However, it is not possible to have α = µ1 in case (b)
of Theorem 3.2 since, if this relation were to hold, the right-hand side of the above equation
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would become

qµ2(µ2 − (µ1 + λ2))

(1 − q)µ1µ2
+ αλ2 + µ1(α − µ2)

(1 − q)µ1µ2

= qµ2(µ2 − (µ1 + λ2))

(1 − q)µ1µ2
− µ1(µ2 − (µ1 + λ2))

(1 − q)µ1µ2

= λ1(µ1 + λ2 − µ2)

(1 − q)µ1µ2

= λ1(λ1 + λ2 − (1 − q)µ2)

(1 − q)µ1µ2

< 0 (4.2)

(where we have set α = µ1 = λ1 + qµ2). Thus, we have the following result.

Corollary 4.2. Suppose that p = 1 and 1 > ρ1 > ρ2. Then case (b) of Theorem 3.2 holds if
and only if α > α0 > µ1, where α0 is the solution of the equation

q

(1 − q)x
{(1 − q)µ2(1 − ρ2)+ λ1} = qλ1µ1

(1 − q)x2 + µ1µ2 − x(µ1 + λ2)

(1 − q)µ1µ2
, x > µ1.

(4.3)

Proof. Denote the left- and right-hand sides of (4.3) by φ(x) and ψ(x), respectively. Both
of these functions are convex and decreasing, and φ(µ1) < ψ(µ1) by (4.2). Since φ(x) is
nonnegative butψ(x) → −∞ as x → ∞, we can find a unique solution of (4.3). Furthermore,
φ(x) > ψ(x) for x ≥ µ1 if and only if x > α0. Hence, α > α0 implies that r1∗ < r2∗. This,
together with the fact that α > µ1, implies that all the conditions on case (b) hold.

Remark 4.1. For 0 < p < 1, it may also be possible to have z1 = ρ2. For this, we assume
that α = µ1, which implies that z1 = ρ2, by (4.1). Hence, we have z∞ = ρ2 if r1∗ < r2∗. The
latter condition holds if and only if

r1∗ = λ1 + qµ2z1

α

<
z1

p + (1 − p)z1
= r2∗,

which is equivalent to

1

α{p + (1 − p)z1} [αz1 − {p(1 − z1)+ z1}{α − qµ2(1 − z1)}]

= 1 − z1

α(p + (1 − p)z1)
{qµ2(1 − p)z1 − pλ1} > 0. (4.4)

Thus, if

p(1 − q)λ1 < (1 − p)qλ2

then we have z∞ = ρ2 in case (b) of Theorem 3.2. Note that p < 1, q > 0, and λ2 > 0 are
necessary conditions for this to hold.
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Figure 5: Example 1 (of Theorem 3.1).
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Figure 6: Example 2 (case (a) of Theorem 3.2).

In the rest of this section, we use numerical examples to illustrate how the decay rates
converge in the three cases in Theorems 3.1 and 3.2. We consider the following examples:

1. p = 0.85, q = 0.5, µ1 : µ2 : λ1 : λ2 = 3 : 2 : 0.5 : 0.4;

2. p = 0.9, q = 0.1, µ1 : µ2 : λ1 : λ2 = 2 : 4 : 1 : 0.2;

3. p = 0.85, q = 0.7, µ1 : µ2 : λ1 : λ2 = 2 : 3 : 0.5 : 0.4.

Example 1 is the case of Theorem 3.1; example 2 is case (a) of Theorem 3.2, where the
two conditions in (3.3) hold; and example 3 is case (b) of Theorem 3.2. In each case, we first
compute the matrix R(m) as the minimal nonnegative solution of (2.7), and then obtain the
Perron–Frobenius eigenvalues. These are the decay rates, and are plotted in Figures 5, 6, and 7
for examples 1, 2, and 3, respectively.
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Figure 7: Example 3 (case (b) of Theorem 3.2).

Appendix A. The proofs of (3.17) and (3.18)

For convenience, define a, b, and c as

a = µ1{p + (1 − p)z(m)},
b = λ2 − z(m) + (1 − q)µ2z

2
(m),

c = z(m)(λ1 + qµ2z(m)).

Note that r1(m) and r2(m) (|r1(m)| ≤ |r2(m)|) are the two solutions of the quadratic equation
(3.16), i.e.

ar2 + br + c = 0. (A.1)

Since x0 = 1, from (3.14) we have

xn+1 − r1(m)xn = rn2(m)(x1 − r1(m)),

xn+1 − r2(m)xn = rn1(m)(x1 − r2(m)),

by iteration. Subtracting both sides yields (3.17).
Equation (3.15) is equivalent to

cxm−1 + {b + (λ1 + qµ2)z(m)}xm = 0 (A.2)

and, by setting n = m− 1 in (3.14), we have

axm + bxm−1 + cxm−2 = 0. (A.3)

The elimination of xm from (A.2) and (A.3) yields

c

a
xm−1 +

(
b

a
+ (λ1 + qµ2)z(m)

a

)(
−b
a
xm−1 − c

a
xm−2

)
= 0. (A.4)
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Since the constants a, b, and c are the coefficients of the quadratic equation (A.1), by multiplying
both sides of (A.4) by (r2(m) − r1(m)) and by using (3.17), we have

r1(m)r2(m){(r2(m) − x1)r
m−1
1(m) + (x1 − r1(m))r

m−1
2(m) } +

{
−(r1(m) + r2(m))+ (λ1 + qµ2)z(m)

a

}

× [(r1(m) + r2(m)){(r2(m) − x1)r
m−1
1(m) + (x1 − r1(m))r

m−1
2(m) }

− r1(m)r2(m){(r2(m) − x1)r
m−2
1(m) + (x1 − r1(m))r

m−2
2(m) }] = 0. (A.5)

By (3.13), we also have

x1 = −b − µ1z(m)

a
;

substituting this into (A.5) yields

r2(m)

(
r2(m) + b + µ1z(m)

a

)
rm1(m) + r1(m)

(−b − µ1z(m)

a
− r1(m)

)
rm2(m)

+
{
−(r1(m) + r2(m))+ (λ1 + qµ2)z(m)

a

}(
r2(m) + b + µ1z(m)

a

)
rm1(m)

+
{
−(r1(m) + r2(m))+ (λ1 + qµ2)z(m)

a

}(−b − µ1z(m)

a
− r1(m)

)
rm2(m) = 0.

Rearranging the above terms, we have
(

−r1(m) + (λ1 + qµ2)z(m)

a

)(
−r1(m) + µ1z(m)

a

)
rm1(m)

+
(

−r2(m) + (λ1 + qµ2)z(m)

a

)(
r2(m) − µ1z(m)

a

)
rm2(m) = 0. (A.6)

Multiplying both sides by both r1(m)r2(m) and a = µ1{p + (1 − p)z(m)}, we then have
(

−r1(m) + z(m)

p + (1 − p)z(m)

)
{−λ1 − qµ2z(m) + (λ1 + qµ2)r2(m)}rm+1

1(m)

+
(
r2(m) − z(m)

p + (1 − p)z(m)

)
{−λ1 − qµ2z(m) + (λ1 + qµ2)r1(m)}rm+1

2(m) = 0, (A.7)

which is equivalent to (3.18).

Appendix B. The proof of (3.21)

From the definitions of g and ρ2, we have

g(ρ2)
2 = {λ2 − ρ2 + (1 − q)µ2ρ

2
2 }2

=
(

−λ2 + ρ2 − (1 − q)ρ2
pλ1 + λ2

1 − pq

)2

=
(
(λ1 + λ2 + µ1 + µ2)ρ2 − λ2 − (1 − q)ρ2

pλ1 + λ2

1 − pq

)2

= 1

(1 − pq)2
{(1 − pq)(λ1 + λ2 + µ1 + µ2)ρ2

− (1 − pq)λ2 − (1 − q)ρ2(pλ1 + λ2)}2,
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where the third equality follows from the fact that λ1 + λ2 + µ1 + µ2 = 1. Since

(1 − pq)ρ2(λ1 + λ2 + µ2)− (1 − q)ρ2(λ2 + pλ1)− (1 − pq)λ2

= ρ2{(1 − pq)µ2 + (1 − p)(λ1 + qλ2)} − (1 − pq)λ2

= (λ1 + qλ2){p + ρ2(1 − p)},
we obtain

g(ρ2)
2 = 1

(1 − pq)2
{(1 − pq)µ1ρ2 + (p + ρ2(1 − p))(λ1 + qλ2)}2.

On the other hand, using the fact that

λ1 + qµ2ρ2 = λ1 + qλ2

1 − pq
,

we have

h(ρ2) = 4

1 − pq
µ1ρ2{p + ρ2(1 − p)}(λ1 + qλ2).

Hence, we arrive at

g(ρ2)
2 − h(ρ2) = 1

(1 − pq)2
{(1 − pq)µ1ρ2 − (p + ρ2(1 − p))(λ1 + qλ2)}2

= {µ1ρ2 − (p + ρ2(1 − p))µ1ρ1}2

=
(
µ1(1 − ρ1)(1 − ρ2)

(
ρ2

1 − ρ2
− pρ1

1 − ρ1

))2

.

Appendix C. The proof that z∞ = z1

Substituting (3.23) and (3.27) into (3.25), we have

{(1 − p)qµ1µ2 + (1 − q)µ2(λ1 + qµ2)}z2∞
+ [µ1{(1 − p)λ1 + pqµ2} + (λ1 + qµ2)

2 − (λ1 + qµ2)]z∞
+ pλ1µ1 + λ2(λ1 + qµ2) = 0.

It is clear that z∞ = 1 satisfies this equation. Since the equation is quadratic in z∞, we have

z∞ = pλ1µ1 + λ2(λ1 + qµ2)

{(1 − p)qµ1 + (1 − q)(λ1 + qµ2)}µ2

for the other solution. Hence, z∞ = z1.
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