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Abstract. We develop the notion of the Rokhlin dimension for partial actions of finite
groups, extending the well-established theory for global systems. The partial setting
exhibits phenomena that cannot be expected for global actions, usually stemming from
the fact that virtually all averaging arguments for finite group actions completely break
down for partial systems. For example, fixed point algebras and crossed products are not
in general Morita equivalent, and there is in general no local approximation of the crossed
product A x G by matrices over A. Using decomposition arguments for partial actions of
finite groups, we show that a number of structural properties are preserved by formation
of crossed products, including finite stable rank, finite nuclear dimension, and absorption
of a strongly self-absorbing C*-algebra. Some of our results are new even in the global
case.

We also study the Rokhlin dimension of globalizable actions: while in general it differs
from the Rokhlin dimension of its globalization, we show that they agree if the coefficient
algebra is unital. For topological partial actions on spaces of finite covering dimension, we
show that finiteness of the Rokhlin dimension is equivalent to freeness, thus providing a
large class of examples to which our theory applies.

1. Introduction
Partial dynamical systems have implicitly been used in mathematics long before the notion
was formalized, at least since the study of differential equations. Indeed, the flow of a
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differentiable vector field can be naturally regarded as a partial action of the reals. More
precisely, given a smooth vector field v on a manifold M, for x € M let ¢, be the unique
solution to the differential equation ¢’(r) = v(¢(¢)) with initial condition ¢, (0) = x, and
let I, € R be the largest (open) neighbourhood of 0 on which ¢, is defined. For ¢ € R, set

M, ={xeM:tell}

and let o;: M_; — M, be the diffeomorphism given by o;(x) = ¢, (¢) for all x € M_;.
The collection o = {0y, M, : t € R} satisfies the crucial property that oy, extends o o oy,
in the sense that whenever x € M_; and o;(x) belongs to M_;, then x belongs to M_;_,;
and og44(x) = o5(0;(x)). In modern language, this condition asserts that o is a partial
action of R on M.

Partial actions were originally introduced by Exel and McClanahan in the 1990s, by
isolating and abstracting the conditions observed in the context described above: a partial
action of a discrete group G on a topological space X is a collection {X;: g € G} of
open sets of X and homeomorphisms og: X,-1 — X, such that o = idx and o), extends
o4 o oy, wherever the decomposition is well defined. The notion of a global (or ordinary)
action is obtained by taking X, = X for all g € G. We refer the reader to a recent book
[6] for a modern treatment of this topic and historical references. The study of partial
actions (both on topological spaces and on C*-algebras) has been very fruitful, and has
shed new light on the study of several objects. For example, the fact that the solutions of
a differential equation on a compact manifold are defined on all R can be easily proved in
this more abstract setting; see Proposition 2.4 in [1].

A typical example of a partial action is obtained by starting with a global action
B: G — Aut(B), a not necessarily invariant ideal A in B, and setting A, = AN B,(A)
with o, = B4|a _, for all g € G. Partial actions obtained in this way are called globaliz-
able, and the globalization problem involves determining whether a given partial action
is globalizable and, if it is, describing its globalization; see §3 of [1]. As it turns out,
not every partial action is globalizable (a necessary and sufficient condition is given in
[7]). Even when a globalization exists, identifying it is often a challenging task, and its
dynamical properties may differ significantly from those of «.

Given a partial group action o of a group G on a C*-algebra A, one can construct its
crossed product A X, G; see §1.8 in [6]. Large families of C*-algebras can be naturally
described as partial crossed products, typically with commutative C*-algebras, even in
situations where similar descriptions do not exist for global crossed products. For example,
every unital approximately finite-dimensional (AF)-algebra arises as the crossed product
of a partial homeomorphism of a totally disconnected compact space, whereas no unital
AF-algebra arises as the crossed product of a homeomorphism.

It is therefore particularly important to develop tools to study partial crossed products.
There have been a number of advances in this direction, for example, in reference to
K-theory [5] and Takai duality [1]. On the other hand, the study of partial actions of finite
groups remains conspicuously underdeveloped. Indeed, and even in the globalizable case,
virtually all averaging arguments (and their consequences) that are standard for global
actions completely break down in this setting. The lack of approximate identities that are
compatible with the partial action is also a source of difficulties in this setting. The goal of
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the present work is to make advances in the study of the structure of crossed products by
partial actions of finite groups.

In the modern literature in C*-dynamical systems, several Rokhlin-type properties have
an increasingly central role in the study of crossed products; see [9, 12, 15, 18, 19, 21, 23].
Their wide and fruitful applicability in the global setting make the extension of this theory
to the partial setting worthy of exploration.

Motivated by [18], we define and study the notion of Rokhlin dimension in the partial
setting; see Definition 2.1. The theory that we develop here exhibits phenomena that cannot
be expected for global actions. Among others, the Rokhlin dimension of a globalizable
partial action does not agree with that of its globalization; see Example 3.2. A notable
exception is the unital case.

THEOREM 1.1. (Theorem 3.4) Let o be a globalizable partial action of a finite group on a
unital C*-algebra, and let 8 be its globalization. Then

dimpok (o) = dimgpek(B) and  dimg, (o) = dimg; (B).

Our original motivation was the study of the structure of the crossed product, par-
ticularly from the point of view of the classification programme for simple nuclear
C*-algebras; see [4]. As it turns out, this is technically much more complicated than in the
global setting, and tackling this problem required us to first develop a decomposition theory
for partial actions of finite groups into iterated extensions of relatively simpler systems; see
[2] and particularly §6 there. Here, we prove the following.

THEOREM 1.2. (Theorem 4.7) The following properties are inherited by crossed products
or fixed point algebras by partial actions of finite groups with dimgpex < 00.

(1)  Having finite nuclear dimension or decomposition rank, for example,
dimpuc (A xo G) < (|G| — 1)(dimpyc(A) + D) (dimgok () + 1) + dimpyc(A).
(2)  When dimg, (a) < 0o, having finite stable/real rank; for example,

|G| (sr(A) 4 dimg, (o) 4+ 3) — 2
2 .
(3)  When dimg, («) < oo, absorbing a given strongly self-absorbing C*-algebra.

sr(A Xgq G) <

(See [16] for previously known results regarding nuclear dimension of C*-algebras
attached to partial dynamical systems.)

For unital partial actions, even more can be said; see Theorem 4.10. Most remarkably,
the Universal Coefficient Theorem (UCT) is preserved in the commuting towers version.
In this case, we also show that A* is Morita equivalent to A X, G (see Theorem 4.9) a
fact that rather surprisingly fails if unitality of A is dropped (see Example 4.8).

Our structural results for crossed products are complemented by the fact that partial
actions with finite Rokhlin dimension are relatively common. For example, we show that
this notion is equivalent to freeness in the commutative setting.

THEOREM 1.3. (Theorem 5.10) Let o be a partial action of a finite group G on a locally
compact Hausdorff space X with dim(X) < oo. Then dimrek(0) < oo if and only if o is
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free, in which case we have
dimgek(0) < (|G| — 1) dim(X).

The result in the global case is implicit [10, 17] and is an easy consequence of the
existence of local cross-sections for the quotient map 7 : X — X/G. However, the proof
in the partial setting is considerably more complicated, since for free partial actions there
may not exist local cross-sections for 7. The proof in our context is quite involved and
occupies most of §5. The main technical ingredient is the fact (Proposition 5.6) that an
extension of topological partial actions with finite Rokhlin dimension again has finite
Rokhlin dimension. Roughly speaking, one needs to lift Rokhlin towers from the quotient
to the algebra, while at the same time respecting the domains of the partial action. The fact
that the coefficient algebra is commutative seems to be crucial for this lifting problem to
have a solution.

2. Rokhlin dimension for partial actions of finite groups
In this section we define Rokhlin dimension for partial actions.

Definition 2.1. Let a = ((Ay), (0g))gec be a partial action of a finite group G on a
C*-algebra A. For d € N, we say that o has Rokhlin dimension at most d, and write
dimpok(a) < d, if for every ¢ > 0 and every finite subset F' C A, there exist positive

contractions f;]) €Ay, forge Gand j =0,...,d, satisfying:
(M) g (f0) = fPag(x)al < e forall g, h e G, j=0.....d, aecF andxe
Ag—l NF;

@) NP fPal <efor j=0,...,d,g,h € Gwithg #handa € F;
3 (T Ygeq fe'ha —all <eforalla € F;
@ NS —bfa) < eforall j=0,...,d, g€ G,anda, b€ F.
Moreover, we say that « has Rokhlin dimension with commuting towers at most d, and
write dimCROk () < d, if for every ¢ > 0 and every finite subset F' C A, there exist positive
contractions f;j ) e Ag,forge Gand j =0,...,d, satisfying conditions (1)—(4) above,
in addition to:
S NP P — g0 g Va) < e forall jk=0,...,d, g,he€Ganda € F.
In either case, we call the elements f;j ) above Rokhlin towers for (F, €).

We define the Rokhlin dimension of o by

dimpek (@) = min{d € N: dimgek () < d},

and define the Rokhlin dimension with commuting towers dimg, (o) similarly.

The multiplicative witness a € F that appears in conditions (1)—(5) also appears in the
definition of Rokhlin dimension for global actions setting [17], and it can be omitted when
A is unital. On the other hand, the witness x € F N A,-1 is a conceptually new condition
that cannot be omitted even if A is unital.

In the early stages of this project, it was unclear whether one should not instead require

the stronger condition [lag (f,"'x) — f7 g ()| < ellx| forall g.h € G, j =0, ....d,
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andall x € A,-1. Asitturns out, the stronger condition implies that the given partial action
is in fact globalizable, which suggests that it was not the right notion to consider.

Unlike the case of global actions, the different elements within one tower are not
‘interchangeable’, as they tend to have different ‘sizes’. In fact, the positive contraction
corresponding to the unit of the group is usually much larger than the others. The following
is an extreme example of this situation.

Example 2.2. Let G be a finite group, and let A be a unital C*-algebra. We define the
trivial partial action of G on A by setting A, = {0} for g € G \ {1}. This partial action
has Rokhlin dimension zero, with Rokhlin towers given by f; =14 and f, =0 for g €
G \ {1}. Note that A x, G = A. Moreover, this is the only partial action of G on A with
the 1-decomposition property (Definition 4.2); see Example 2.6 in [2].

Next, we show that condition (1) in Definition 2.1 can be strengthened in the case of
unital partial actions (that is, partial actions whose domains are unital).

Remark 2.3. Let o be a unital partial action of a finite group G on a C*-algebra A, with
units 1, € Ag, for g € G. Then 1g,1, = ag(lhlgfl) forallg,h € G.

PROPOSITION 2.4. Adopt the notation from Definition 2.1, and suppose that o is a unital
partial action. For g € G, denote by 1, the unit of A,. Then condition (1) in Definition 2.1
can be replaced by:

(1) ag(fy 1) = i) Vg forall g, h € G, and forall j =0, ... .d.

Proof. We prove the proposition for dimgok, since the proof for dimg, , is analogous. Using
the identity x = x1,-1 forall x € A,-1 and g € G, one easily shows that (17) implies the
following identity forall g, h € G, j =0, ...,d,and all x € Ag—ll

ag(fy ) = [y ag(x).

This identity clearly implies (1). Conversely, let ¢ > 0 and a finite subset FF C A be
given. Without loss of generality, we assume that F consists of contractions and that
{lg: g € GY C F. Set 9 = ¢/(|G|(d + 1) + 1) and find Rokhlin towers f” € Ag, for
g€ G and j=0,...,d, satisfying conditions (1), (2), (3), and (4) in Definition 2.1

for (F, g9). Define positive contractions f;/) € Ag,forallge Gand j =0,...,d, by
fol) = ag(f](])lg_|). Since 1,-1 belongs to F, condition (1) for £ gives

1787 = £ = llag (F7 1) = £ 161 < #0 @.1)
forallg e Gandall j =0, ..., d. We claim that these elements satisfy the conditions in

Definition 2.1 with (1) replaced by (17).
We begin with (1’). For g,h € Gand j =0, . .., d, we have

g (7 1,10) = aglan (£ 1,11
= oty (on (£} 11 1 g1

) 7()
= agn(fy" Ligny-)1g = fon' 1e-
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Finally, conditions (2), (3) and (4) for the f;j ) follow by combining (2.1) with conditions
(2), (3) and (4) for £, We omit the details. O

Remark 2.5. In the context of Proposition 2.4, one can show that condition (2) can be
replaced by:

@) fPFP =0forallg,h € G with g # hand forall j =0, .. ., d.

Since we do not need this, we omit its proof. We stress the fact that it is in general not
possible to replace (1) and (2) simultaneously with (1°) and (2’), since the argument used
to get (1°) from (1) does not preserve (2’), and vice versa.

We close this section by proving that the finite Rokhlin dimension behaves well with
respect to restriction to invariant ideals and passage to equivariant quotients.

PROPOSITION 2.6. Let A be a C*-algebra, let G be a finite group, and let a be a partial
action of G on A. Let I be a G-invariant ideal of A. We denote by o|; and & the induced
partial actions of G on I and A1, respectively. Then

dimpek(@|7) < dimgek(e) and dimgek(er) < dimpoek(ct).

. . e
Similar estimates hold for dimg; .

Proof. We prove the results for dimgek, s ince the case of diquok is similar. We assume
from now on that d = dimpek (o) < 00, otherwise there is nothing to prove.

We prove dimpek(e|7) < dimpek () first. Let € > 0 and let a finite subset ' C I be
given. Without loss of generality, we assume that F' contains only contractions. Set &g =
e/(51G|(d 4+ 1) + 2). Apply Definition 2.1 to find Rokhlin towers f;]) € A, withg e G
and j =0,...,d, for (F, g). By making a small renormalization, we may assume that
> 2€G Z?:O f;] ) is a contraction. By considering an approximate identity of / which is
quasi-central in A, find e € [ satisfying

le' 2 £ — g el < &g, ||be —b|l < e, and |leb — b < &g

forallg € G,all j =0,...,d,andallb € UgGG ag(FNAg).

For g€ G and j=0,...,d, set f;j) = el/zfg(j)el/z. We claim that {fg(j): g€
G, j=0,...,d}areRokhlin towers with respect to (F, ¢) for o|;. Note that ;/ ) belongs

to Ag NI = I,. In order to check (1), let g € G,letx € F'N o1 =FNAgi,letaeF,
andlet j =0, ...,d. Then
oeg(ﬁf])x)a = otg(el/2fh(])el/2x)a Ry otg(fhmex)a
Ney g (f )a ~ey [ tg(x)a
R, fg(ﬁ)eag(x)a Reo e1/2f;£)el/2ag(x)a = f;{l)ag(x)a.
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Thus ||ag(ﬁl(j)x)a — f;f;)ag (x)a|l < 5S¢0 < ¢, as desired. Condition (2) is easily checked
and is left to the reader. For (3), let a € F be given. Then

zd: Z A;j)a _ Zd: Z 61/2fg(j)el/2a

j=0 geG j=0 geG

d
NGl Y D f{)ea

j=0 geG

(J)

where in the second-to-last step we use the fact that } Z j=0 Jg' 1s a contraction.

Finally, to check (4),letg € G, j =0,...,d,anda € F. Then

f”;/)a - 61/2fg(1)el/2a Roe g(/)a Aoy X g(J) Rey xe1/2fg(J)el/2 — afg(*’).

We turn to the inequality dimpgek (o) < d = dimpek(a). Write w: A — A/I for the
canonical equivariant map. Let F € A/I be a finite set and let ¢ > 0. Let F C A be
any finite set satisfying 7 (F) = F, and apply Definition 2.1 for « to find Rokhlin towers

;j ) ¢ Ag,withge Gand j =0, ..., d, for (F, ¢). Itis then immediate that the positive

contractions f i,]) =7 f;] )) witness the fact that dimgok () < d, as desired. O

3. Rokhlin dimension and globalization

The basic example of a partial action is obtained by starting with a global action §: G —
Aut(B) and a (not necessarily invariant) ideal A in B, and then setting A, = AN B,(A)
and o, = f,| A for all g € G. Actions of this form are called globalizable, since they
are induced by a global action. Here is the precise definition.

Definition 3.1. Let G be a finite group, let A be a C*-algebra, and let « be a partial action of
G on A. A triple (B, B, t) consisting of a C*-algebra B, a global action 8: G — Aut(B),
and an embedding (: A — B is said to be an enveloping action for « if the following
conditions are satisfied:

(a) A (identified with ¢(A)) is an ideal in B;

(b) Ay =ANP(A)forall g € G;

(©) ag(a) = Bgy(a)foralla € Ag—l and all g € G;

(d) B =-5span{fs(a): a € A, g € G}.

(If such a dynamical system (B, ) exists, then it is unique up to an equivariant
isomorphism extending the identity on A by Theorem 3.8 in [1].) We say that « is
globalizable if it has an enveloping action.

Not every partial action is globalizable, and even when it is, identifying its enveloping

action may turn out to be challenging. Since there is a vast amount of literature concerning
global actions with finite Rokhlin dimension, it would be very useful if one could relate
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the Rokhlin dimension of a (globalizable) partial action to its globalization. Unfortunately,
these values do not necessarily agree.

Example 3.2. Set X = S'\ {1} and U = X \ {—1}. Let o € Homeo(U) be given by
o(x) = —x for all x € U. Denote by y the partial action of Zp = {—1, 1} on Cp(X)
determined by o. Then y is globalizable, with globalization 7 : Z> — Aut(C(S!)) induced
by multiplication by —1.

Let§: Z, — Aut(C & C) be the flip action. Set « = y ® §, which is globalizable with
globalization given by (B, ) = (C(S) @ C(S"), ¥ ® 8). It is clear that dimge(8) = 0,
since we may take p_; = (1,0) and p; = (0, 1) in B.

We claim that dimgek () 7 0. From now on, we identify X with (0, 2) and U with
(0, 1)U (1, 2). Arguing by contradiction, set ¢ =3/16 and take I} =[¢,2 —¢] and
I1=[e,1 —e]U[l+¢,2—c¢] leta e Cyo(X) be constant equal to 1 on /; and linear
otherwise, and let b = o (b) € Co(U) = Cp(X)—1 be constant equal to 1 on /_; and linear
otherwise. Let f—1 = (§_1,n—1) € Co(U) & Co(U) and f1 = (&1, n1) € Co(X) d Co(X)
be a Rokhlin tower for o with respect to F = {(a, a), (b, b)} and ¢. Then we have:

@  [5-1(0(x)b(x) —ni(x)bx)| < & and |n—1 (0 (x)b(x) — E1(x)b(x)| < €;
() &-1(x0)§1(x)a(x) < e and n_1(x)Mm(x)alx) < &

(© (I—&-1(x)—&i(x)ax) <eand (1 —n_1(x) —ni(x))ax) <e¢

for all x € X. Upon making a small renormalization, we may assume that

1) +&61(x) =1 =n-1(x) +nix) (3.1
for all x € I;. In particular, £, (1) = 1. Fix x € I;. Substituting (3.1) into (b), we get
(I—=§x)&1(x) <,

which yields either &;(x) > 3/4 or &1 (x) < 1/4. Since & is continuous, we must have
either &;(17) € (3/4, 1] or & (I1) C [0, 1/4), and since &;(1) = 1, it must be &;(/;) C
(3/4, 1] and thus

§_1(1) €10, 1/4). (3.2)
An identical argument shows that
nm() € (3/4,1]. (3.3)
Taking now x € I_; C I1, and noting that b(x) = 1 and o (x) € I_1 as well, we get
3 2333 1
= = e Pl b - mwbm] E S - 4,

which is a contradiction. We conclude that dimgek () > O.

We point out that one can construct towers that witness the fact that dimpek (o) < 1,
thus allowing us to conclude that dimrek () = 1. However, we do not need this, so we
omit it.

In contrast with the previous example, we will show in Theorem 3.4 that for globalizable
partial actions which act on unital C*-algebras, their Rokhlin dimension (with or without
commuting towers) agrees with that of their globalization. The result is by no means
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obvious and its proof is quite technical. The following lemma, which deals exclusively with
global actions, represents the first step in proving the inequality dimgek (@) < dimpek(8).-

LEMMA 3.3. Let B: G — Aut(B) be an action of a finite group G on a unital
C*-algebra B. Let A be a unital ideal in B satisfying B =span{f¢(a): a € A, g € G}. If
d = dimpek (B) is finite, then there exist Rokhlin towers f;j )eB for B, satisfying condition
(1’) in Proposition 2.4, such that fl(o), ceey fl(d) belong to A. A similar statement holds
when dimg; (B) < oc.

Proof. We divide the proof into claims.

Claim I. There exist projections p, € A, for g € G, which are central in B and satisfy
Ip = deG ,Bg(Pg)~

Set n=|G| and fix an enumeration G = {lg = g1,82,...,8&n}. Since B=
> ccGB4A), we have 1p < 3, Be(14). Note that the projections Sy (14) are central
and therefore together with 1p generate a commutative C*-algebra. In the rest of this
claim, we regard 15 and B4(14), for g € G, as {0, 1}-valued functions on some compact
Hausdorff space and identify them with their supports. In particular, the support of 15 is
equal to the union of the supports of B,(14), for g € G. By successively removing the
double intersections, adding the triple intersections, and proceeding similarly for higher
degrees, we can write 1p as follows:

1B=) Ba(a)— D Bau(la)Bg(1a)

i=1 1<i<j<n

+ Z Boi (1a)Bg; (14) By (14) + - - -

1<i<j<k<n

+ (=" Be (14)Bey(14) - - - Be, (14). (3.4)

Observe that every element appearing in (3.4) is central in B. We now proceed to write
the unit of B as a sum of orthogonal projections in the following manner. The first summand
consists of all the elements appearing in (3.4) that have B,,(14) as a factor. The second
summand consists of all the elements appearing in (3.4) that have B,,(14) as a factor but
not Bg, (14). Continue inductively, and note that the process finishes after n steps; indeed,
the only element left at the nth step is B, (14).

For 1 < k < n, the kth summand is

Pi=Bo(1a) = D> BB, (1) + Y Be(1a)Be(14)Bg; (1a)

k<j<n k<i<j<n

o (D) R B (L) By (1a) - - - Be, (1),

and we have 1p = P; + - - - + P,,. We want to see that Py is a projection. Set

Or= Y By — Y. Bu(a)Be;(1a)+-+ (D" T B (1a)

k<j<n k<i<j<n j>k
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Then Qy is the unit of the ideal ) sk ,ng (A) and therefore Qy is a projection. Moreover,
an easy computation shows that Py = B¢, (14)(1p — Q) and thus Py is also a projection.
Note that P, P, = 0if k #£ £.

Fork=1,...,n,set py = ,Bg_kl(Pk), which can be written as

pe=1la— Z IAﬂgk*Igj(lA) +ooe (_1)(n_k)1A:3gk*lgk+|(1A) o Bgig, (1a).

k<j<n

Then py is a central projection, and it belongs to A because 14 is a factor in each of its
summands. Since 13 = Y ;_; B, (pk). this concludes the proof of Claim 1.

Lete > 0 and let ' C B be finite. Without loss of generality, F is S-invariant, contains
13, and consists of contractions. Set g9 = £/|G|*(d + 2), and let f(]) € B,forg € G and
j=0,...,d, be Rokhlin towers for (F, &9). Using Proposition 2.4 for the equality, and
by replacing f, ) with (/A + &) fe Y for the inequality, we may assume

d
B =f) and Y D £V <1 (3.5)

geG j=0

forallg,he Gandall j =0,...,d.

Claim 2. There are positive elements x(] ) e A,forge Gand j =0,...,d, for which:
Ca) [ =Y e e
(2b) DX (] JeAisa positive contraction;
2.0) ﬂh(x(’))b ey bBu(xy) forall b € F,all g, h € Gandall j =0, ..., d; and
2.d) ||x(f)ﬂg(x,(”)|| <epforall j=0,...,dandall g, h,t € G with g # 1.

Using Claim 1, fix projections p, € A, for g € G, which are central in B and satisfy
18 =Y geq Bs(pg)- For j =0, ... d, multiply both sides of the identity by f,” to get

=37 BB (AP0 = D Be(£ ) Py

geG geG

Setx(]) f(flpg forallg € Gand j =0,...,d. Since p, is central in B and belongs to

A, it is clear that x(J )isa positive element in A. Condition (2.a) is satisfied by construction.

Using centrality 0f Py at the second step, we get

YIRTIED DU TIPS UL 35 0Y -1

geG geG geG j=0 geG
and thus ) geG X (j )is a positive contraction, verifying (2.b). In order to check (2.c), let
g,heGand j=0,...,d. Since ,Bh(x(])) = f(J) 1Br(pg) and pg is central, it follows

that

181 (g’ = BB xg I < 111,76 = b, I < e
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for all b € F. We turn to (2.d). Given j =0,...,d and g, h,t € G with g # 1, we
have

5 Bei™y = £ pu £ Be () = N S Be (PO

If gt~ # h=" then || £) féfj}l I < &o and hence [lx\” B, (x/)|| < &o. Otherwise, we
have gr~! = h~! and thus g = h~!¢. In particular, & # t. Then

1Bg(p) Pl = 11Bp-1:(P) pill = | B (p1) Bu (p1) Il = O,

since B (p;) is orthogonal to B, (py) by Claim 1. Tt follows that x\”’ B, (x\”’) = 0, and thus
(2.d) is satisfied. This proves Claim 2.

Let x(j ) e A,forge G and j=0,...,d, be positive elements satisfying the con-
) = 4G Xg x) € A. For g € G, we set
ad’ = Be(@). Then By(a))) = a‘” forall g, € G and j =0, ...,d. In particular,
condition (1) in Definition 2.1 is satlsﬁed To check condition (2), let j=0,...,dand
g, h € G with g # h. Then

clusion of Claim 2. For j =0,...,d, set a,

la’a,” | = lla\” By-1, @) =

> B, lh(x”>H G2 <e.

s,teG

Moreover, condition (3) follows from the following identity:

S =Y a( D)= ¥ S ae

geG j=0 geG j:O gheG j=0
DI WIS ﬁg( > misi)
gheG Jj=0 geG j=0 heG
DD IATLUED B WD
8eG j=0 geG j=0
Letbe F,ge G and j=0,...,d. In order to check condition (4) in Definition 2.1,

and since a(J ) = =B (afj )) and F is B-invariant, it suffices to take g = 1. In this case, we
have

. . : e
lay”b — ba” || < Y lag”b — bx || < 1Gleo < e
geCG

This proves the first part of the lemma.
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Assume now that dimy , (8) = d < oo, and choose the Rokhlin towers as above to
moreover satisfy condition (5) in Definition 2.1. For g, h € G and j, k=0, ...,d, we
get

a)a = Bo(a")uai) = 7 Bee”)Bu(x{)

t,seG
=Y BB po = 3 F B £ Bapy)
t,seG t,seG
~G|2eo Z (k) 1Br(ps) f(])1/3g(171) _a;,k)ai’])- 0

tseG

We are now ready to prove the main result of this section: the Rokhlin dimension of
a globalizable partial action on a unital C*-algebra equals the Rokhlin dimension of its
globalization. In particular, we obtain a large family of examples of partial actions with
finite Rokhlin dimension.

THEOREM 3.4. Let o be a globalizable partial action of a finite group G on a unital
C*-algebra A, and let B: G — Aut(B) denote its globalization. Then

dimpek (@) = dimpek(B) and  dimgg («) = dimg, (B).

Proof. The proofs for dimgex and dimCROk are very similar, so we provide full details for
dimgyk and indicate how one modifies the proof to obtain the result for dimfzok. We divide
the proof into two parts, namely the inequalities dimgek () < dimpek(8) and dimgek (o) >
dimgek (). Since A is unital and « is globalizable, it follows that A, is unital for all g € G,
with unit given by 1, = 148,(14).

To show that dimgek () < dimpgek(8), it suffices to assume that d = dimgek(8) is
finite. Let ¢ > 0 and F € A be given. Using Lemma 3.3, let f;j) € B, for g € G and
j=0,...,d,such that:

@ B =Ff forallg.h e Gand j =0,....d;
(b) ||f;j)f}fj)|| <eforallj=0,...,dandall g, h € G with g # h;
© N5 =Yg Ximp F Il < &

@ b —bfP | <eforallge G,all j=0,...,dandallb e F.

Set f(J) fgml € Agforall g e Gandall j =0,...,d. We claim that these are
Rokhlin towers for o with respectto (F, ¢). Forg, h € G and j=0,...,d,weuse at the
second step that B, | Ay =g to get

@
g (1) = o ([ 11 g-0) = B () el 2 Fp Lanle = £33 g

thus verifying condition (1) in Definition 2.1. Moreover, || f, ) I G )|| < f;j ) f;j )|| and
hence condition (2) is also satisfied by (b) above. Since

d d -
Z Z 7 = Z Z :Bg(fl(]))lg = Z Z ﬁg(]?](])lA):Bg(lA)lA = Z Z ]isj)lA’

geG j=0 geG j=0 geG j=0 geG j=0
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it follows from (c) that condition (3) is also satisfied. Finally, given b € F, g € G and
j=0,...,d, we have

: : : @,
16 = bf N = 17 b1g = b F 16 < 1D = b 71
establishing condition (4). It follows that dimgek (o) < d, as desired. Note that
k k k k) 7

forallg,he Gand j,k=0,...,d. Thus,if dim%ok(ﬁ) < d and the Rokhlin towers ;j)
for B also satisfy condition (5) in Definition 2.1, then the Rokhlin towers fg(j ) for « also
satisfy (5) and hence dimg , («) < d.

We turn to the inequality dimgek (8) < dimpek (), so we set d = dimgek (o) and assume
that d < oo. Let ¢ > 0 and let F € B be a finite subset. Without loss of generality, we
assume that F contains 1, for all g € G and that it is B-invariant. Since B is generated
by the B-translations of A (condition (d) in Definition 3.1), there exist a, € A for g € G
such that 1 = deG Bglag). Set &9 = ¢/|G| maxgei |lagll. Using Proposition 2.4, let

;j ) e Ag,forge Gand j =0, ...,d, be positive contractions satisfying the following
conditions:
i) ag(fy 1) = fi) 1y forallg.h € Gand j =0, . ... d;
Gi) 17 f7 ) <eforall j=0,...,dandall g, h € G with g # h;
(i) | Egeq Yoo f& — lall <e.
Gv) 1fPb—bf|| <eforallg e G,all j=0,...,dandallb € F.

For ge G and j=0,...,d, set A”) ﬁg(f](”) € B. We claim that the N(j)
Rokhlin towers for g with respect to (F , £). Condition (1) in Definition 2.1 is clearly
satisfied. In order to check (2),let j =0, ...,d and g, h € G with g # h be given. Using
that f(J) = fl(j) 14 at the second step, and that 1g*1h = lAﬂg—lh(lA) at the third, we get

L7 FN = 18 LB AN = 1A 1aBg1,(La £
= 151 g-14Be 1h<ff”>||—||f‘” et A

(1) 11)
= ”fl /)f(]

To check (3), it suffices to show that for any a € A and h € G, we have

d
S5 A Bu@) — Buta)

j=0 geG

< llallo-

Indeed, once this is established, and since 15 = ) nec Bnlar), it will follow that

d
ZZ 15])_13

j=0 geG

< |G| max |laglleo = &,
geG
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thus establishing (3). Leta € A and i € G be given; without loss of generality we assume
that ||a|| < 1. Then:

Z > 7B = Z 3" B (A)Bu(@)

j=0 geG j=0 geG

= Z > BBy, (f1 14) 1 40)

j=0 geG

d
=3 BuBro1g (7 1aBg- 15 (1a))a)

j=0 geG

d
=3 a1, (f 7 1))

as desired. Finally, to check condition (4),leta € F, g € G and j =0, ..., d be given.
Using at the last step that B,-1(a) € F, we get

170~ af1 = 18 a — ape (£
= ||f1(j)/3g71(a) — ﬂg—l(a)fl(j)” (Z) co.

This shows that dimgek (8) < dimpek (). Observe that the Rokhlin towers for 8 that we
constructed satisfy the following identity forall j,k =0,...,dand g, h € G:

F 7o ,Bg(fl(]))ﬂh(fl(k)) = Be (S 1 4By (14 £
= B ety (1o S0 = B (A7 1),

By taking adjoints, we also get f;k) F) = = Bg( fg(]f)] hfl(j )). In particular,
k k j j k k j
“T/)]?; ) ]?; )J'E;J)” < ||f1(J)f;—)1h N f;—)lhflmw

Thus, if dimg (@) <d and the Rokhlin towers fgj) for o also satisfy condition

(5) in Definition 2.1, then the Rokhlin towers N(J ) for B also satisfy (5) and hence
dimg , (B)< d. O

4. Structure of the crossed product

Since its introduction in [18], the Rokhlin dimension has predominantly been used to

study structural properties of the associated crossed products. Of greatest relevance are

those properties related to the classification programme for nuclear C*-algebras, such

as the UCT, finiteness of the nuclear dimension, absorption of a strongly self-absorbing
*-algebra [24], or divisibility properties on K-theory.
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In this section, we explore the structure of the crossed products and fixed point
algebras of partial actions with finite Rokhlin dimension. Our approach makes use of
the decomposition property introduced and studied in [2], which we recall in §4.1. For
unital partial actions, a more direct argument can be given, which even yields better results
(notably in the zero-dimensional case). In this setting, we show that the crossed product is
Morita equivalent to the fixed point algebra, a fact that fails for general partial actions of
finite Rokhlin dimension.

4.1. The decomposition property. Animportant ingredient in our study of partial actions
with finite Rokhlin dimension is our previous work [2] on decomposable partial actions.
For the convenience of the reader, we make here a small digression.

Definition 4.1. Let G be a finite group. Given n =1, .. ., |G|, we define the space of
n-tuples of G to be

To(G)={tr € G:1ertand|t| =n}

For g € G, we set 7,(G); = {t € 7,(G): g € t}. There is a canonical partial action Lt
of Gon 7,(G), with Lt : 7;(G)g_1 — T.(G), induced by left translation by g. For €
Tu(G), we write G - T € 7,(G) for the orbit of t with respect to Lt.

We will adopt the following convention. Let o be a partial action of a finite group G
on a C*-algebra A, and let n =1, ...,|G|. For t € T,(G), we write A; for the ideal
A = ﬂger A,. Then ag(A;) = Agy for g e G and 7 € ’7;,(G)g71. For t € T,(G), we
set Ag.; = derl Agr. When A = Cy(X) for a locally compact Hausdorff space X, we
write X for the spectrum of Co(X);, and identify it canonically with (1 Xg. We use
similar notation for X¢.;.

gert

Definition 4.2. Let G be a finite group, let A be a C*-algebra, and let o =
((Ag)geG, (ag)gec) be a partial action of G on A. Given n =1, ..., |G|, we say that
o has the n-decomposition property if:

(a) A= Zteﬂ(@ Ay; and

(b) A NA;={0}forallz € 7,(G)andall g € G suchthat g ¢ 7.

We say that « is decomposable if it has the n-decomposition property for some n € N. A
partial action on a locally compact space X is said to have the n-decomposition property if
the induced partial action on Co(X) has it.

Notation 4.3. Adopt the notation from Definition 4.2. For 7 € T,(G), we set H; = {h €
G: ht =t} and m; = (n/(|H[)) — 1. Using Lemma 2.8 in [2], we fix elements xj =
Lx{,...,x; € G satisfying

> Vme
t:H,quxfu---uer;”.

Whenever t is understood from the context, we will omit it from the notation for H, m,
and xj’., for j =1,...,m;. Let O,(G) be the orbit space for the partial system described
in Definition 4.1. We denote by « : 7,,(G) — O,(G) the canonical quotient map and fix,
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for the rest of this work, a global section n: O,(G) — T,(G) for it. For z € O, (G), we
write T, for n(z), H; for H;_, and m; for m,.

The following is part of Proposition 2.11 in [2].

PROPOSITION 4.4. Let G be a finite group, let A be a C*-algebra, letn =1, . . ., |G|, let
a be a partial action of G on A with the n-decomposition property, and let T € T,(G).
Adopt the conventions from Notation 4.3. Then:

(1)  the restriction of o|p, to A is a global action;

(2) there is a natural G-equivariant isomorphism

Q: @ AG.r, — A

2€0,(G)
given by ¢(a) = Zze@n(G) a; forall a = (a;);co,G)-

By part (2) above, many facts about decomposable partial actions can be reduced to
the G-invariant direct summands Ag... In particular, for many purposes it suffices to work
with a single T € 7,(G) and the induced partial action on Ag.;.

Next, we recall Theorem 6.1 from [2], which asserts that every partial action of a finite
group is canonically an iterated extension of decomposable partial actions. It follows that
many aspects of partial actions of finite groups can be reduced to the case of decomposable
partial actions, as long as one has control over the resulting equivariant extension problem
(which is in general quite complicated).

THEOREM 4.5. Let G be a finite group, let A be a C*-algebra, and let « be a partial action
of G on A. Then there are canonical equivariant extensions

0——= (D®,§H0)) — 5 (AB ®)y 5 (A*=D gk=Dy___

for2 < k < |G|, satisfying the following properties:
(@ AY9D = Aand o€l = a;

(b) 8% has the k-decomposition property;

(¢) oD has the 1-decomposition property.

We close this subsection by showing that the Rokhlin dimension of a decomposable
partial action can be computed in terms of the global subsystems H; ™ A;.

THEOREM 4.6. Let G be a finite group, let A be a C*-algebra, letn =1, ..., |G|, and
let o be a partial action of a finite group G on A with the n-decomposition property. Fix
T € Ty(G). Then

dimpok (| g7,) = dimgok(a|ag,) and dimgg (a|p,) = dimgg (@|ag.,)-
Consequently,

dimpek () = rr71_ax dimpek (o|g,) and dimg () = max  dimgg (@|q,).
7€/, €T (

Proof. We begin by observing that the last two identities are consequences of the first two,
by part (2) of Proposition 4.4.
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We give a proof for the first equality; the proof for dimg , is similar. We start by
showing dimgok (| 4.,) < dimgek(ct|p, ). For this we set d = dimgok(e| g, ) and assume
thatd < oo. Adopt Notation 4.3, and fix xo = 1, x1, . . ., x;, € G with

t=H, UHx1U---UHxp.

Let F C Ag., be a finite subset consisting of contractions, and let & > 0. Since Ag.; can
be canonically identified with 7. A -1, we may assume that F' can be written as a
14
disjoint union F = FoU - - - U F,,, where F; C Ax—lr forevery £ =0,...,m. Set K =
4

U@ 1 @x, (F¢) € A, and let S(]) € A;,forh € H;and j =0, ..., d, be Rokhlin towers

for | g, with respect to (K, €). (Note that E(]) #0forallh € Hyandall j =0,...,d.)
Forge Gand j =0,...,d, weset

() {axz_.(g,i-")) ifg=x[1hforsome€=0,...,mandheHr,
o

otherwise.

Observe that f, ) is well defined (because xe_lH, Nx. lH, =@ if ¢ # r) and that it

is a positive contraction in Ag.; N Ag. We claim that the f, ) satisfy the conditions in
Definition 2.1 and thus witness the fact that dimgek(t| a5, ) < dimgek(a| g, ).

In order to check (1),let g, k € G, j =0,...,d,let{ =0,...,m,andletx € Ag—l N
F;. We need to show that

lag (7 x) = fL @) < e. (4.1)

Since by the decomposition property (specifically, condition (b) in Definition 4.2), the
element x € A,—1 N Fy is zero (and hence the inequality holds trivially) whenever g ¢
X, Iz, it suffices to assume that there exist unique h € H; and r =0, . .., m such that

) -1 U _

g =1x; ~Ihxy. By construction, we have f,’" = 0 unless k € ™, and 51m11ar1y f

unless gk € T~!. We accordingly divide the proof into three cases.

Case 1.k ¢ T—",sothat f} ) — 0. We claim that f;,{)otg (x) = 0. Arguing by contradiction,

assume that the product f ( )oeg(x) which belongs to Agi N A;, is non-zero. By the
intersection property, we must have gk € t and thus there are unique s =0, ..., m and
hy € Hy with gk = x; ~1h,. Since f ok ozg(x) which belongs to A, Slp NA, 1 ,1s nonzero,
the decomposition property 1mphes that » = 5. Thus

-1 1

k=g xs_lh1 =xt_lhxrxs_lh1 =x[1hh1 € x[lH Ct -,
contradicting our assumption. This verifies (4.1) in this case.

Case 2. gk ¢ T~!, so that f(j) = 0. We claim that ag(f(’)x) = 0. Arguing by contradic-
tion, assume that the product f, v )x which belongs to Ax N A -i_, is non-zero. By the
(4

intersection property, we must have k € x,° Iz, and thus there is hy € H; with k = X, hs.
Thus

gk = xr_lhxgx[lhz = xr_lhhz € xr_lH - r_l,
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contradicting our assumption. This verifies (4.1) in this case.

Case 3. gk, k € =1, Then there exists & € H; withk = x[]ﬁ, so that gk = xr’lhﬁ. Thus,

g () = fdarg Ol = 1 @1, (0,1 (5700 =01 (G D (O < e,

~ )]
~e axr—l (shg )ag (x)

verifying (4.1) also in this case.

‘We turn to condition (2) in Definition 2.1 Let g, k € G with g#kletj=0,...,d,let
£=0,...,m,andleta € Fy;. We need to show that f(/)f(/)a has norm at most e. We may
assume that there existr, s =0, ...,m and hy, h, € H; with g = x_lhl and k = xs_lhz
(or else either f, ¥ — 0 or fi - O) Additionally, since the product f, ) fe /g belongs to
Ag N Ax N A -1, we may assume that r = s = £ (or else f(J)f(J) = 0). In this case, we

(4
have
e = a1 e 1 ha = a1 66 ax @) & 0,
—_— —
~, 0
as desired. In order to check condition (3), let £ =0,...,m and a € F,;. Using at the

second step that a product of the form o -1 (Shj )a is zero unless r = £, we have

d m
Y-y Yy 167 )a

Jj=0geG j:0 heH; r=0
= Z Z o 71(5}51))0
j=0 heH;
d
= Z > a6 (@)
j=0 heH;
(Z Z E(J)lee (a)) N oy, (a),
‘ j=0 heH,

as desired. Finally, to check condition (4), let g € G, j=0,...,d,£=0,...,m, and
a € Fy be given. Since f(/) =0 unless g € 77!
and s =0, ..., m such that g = x"'h. Since the products f(’)a and af(j) are both zero
unless g € xe_lr, we may assume that s = ¢. For b € F, we have

, we may assume that there are h € H;

1" a = afg™)bll = e, 1 (&)a — aa, 1 E)b
= 16 o, (@) — s, (@& et D) < e

This completes the proof that dimgoek (@] 4;.,) < dimgok(ct|q, ).

Next, we show dimgek(ot|p,) < dimpek(et|4g.,). Set d = dimgek(c|4,.,) and assume
that d < oo. Fix an approximate unit (ey)yecp of A; andletm: Ag.; — A be the quotient
map given by m(x) = lim,, xe, for all x € Ag.;. (The map = does not depend on the
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approximate identity, but this is not relevant to us.) Note that
w(x)a = xa 4.2)

for all x € Ag.; and all a € A;. Let F € A; be a finite subset and let ¢ > 0. We may
assume without loss of generality that F' is H;-invariant and consists of contractions. For
every right cosetg € H; \ G, let g, € G satisfy H; g, = q. Set g9 = ¢/[G : H.]? and let

ééj) € Ag:NAg, forge Gand j =0, ..., d, be Rokhlin towers for «| 4, with respect
to (F, &g).
Forh € Hyand j =0, ..., d, we set
f(]) Z n(s(})) e A‘L’-
qeH\G

We claim that these positive contractions witness that dimgek (| gr,) < d for (F, ¢).
Lethy,h, € Hy,let j =0,...,d andleta € F be given. Then

lewn, (f)a = frmal < Y llaw, (e (&ly Na — &) all

qeH\G

“4.2) i)

= lem €y, 0 @) =5 al
qeEHN\G

=[G : Hrleg <,

thus establishing condition (1) in Definition 2.1. In order to prove (2), let k1, ho, € H; with
hy #ho,let j =0,...,d,andleta € F. Then

() ()
D g, b,

Pq€HN\G

”f(j)f(])a” _ <[G: Hf]zso =g,

using at the second step that h1g, # hagp for all p,g € H; \ G. To check (3), leta € F.
Then

Z > fia= Z > D wlEya

j=0 heH; j=0 heH; qeH\G

EDID D I

j=0 heH; qeH\G
d
DI ILLER
j=0 geG
Finally, to check (4),leth € H;, j =0,...,d,and a, b € F be given. Then
Z (E(l)a _ aéh]) b

qeH\G

1 a —af )bl = <[G: H;leo <.

as required. This shows that dimgek (| x,) < d, and completes the proof. O]
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4.2. Crossed products and fixed point algebras. Our next result shows that a number
of properties are preserved by formation of crossed products and fixed point algebras by
partial actions with finite Rokhlin dimension. The kind of properties preserved in this
setting are more restrictive than in the global setting, particularly since the properties in
question must pass to extensions. For unital partial actions, we will show in Theorem 4.10
that even more properties are preserved.

Recall that if « is a partial action of a finite group G on a C*-algebra A, then its crossed
product A Xy G is the set of all formal linear combinations of elements of the form a,ug,
where g € G and ag € Ag, subject to the relations

agughbpup = ag(a,-1(ag)bp)ug, and (agug)* = otgq(a;)ugq.

We consider A X, G with its greatest C*-norm, which is not hard to see exists.
Moreover, its fixed point algebra A% is defined as

A ={x e A: ag(xag-1) = xag(a,-1) forallg € Gandalla,—1 € A1}

THEOREM 4.7. Let G be a finite group, and let d € N. Let P be a property for C*-algebras

which is preserved by:

(E) passage to ideals, quotients and extensions;

(M) Morita equivalence;

(C) crossed products by global actions of G with dimpekx < d.

Let A be a unital C*-algebra, and let o be a partial action of G on A. If dimgek () < d

and A satisfies P, then so do A Xy G and A®. In particular, the following hold.

(1) If dimgek (@) < 00 and dimpyc(A) < 00, then dimpyc(A%), dimpyc(A X G) < 0.
Indeed,

dimpyc(A Xo G) = (|G| — D(dimgok (@) + 1) (dimpyc(A) + 1) + dimpyc(A).
(2) Ifdimpek(ar) < 00 and dr(A) < oo, then dr(A%), dr(A Xy G) < o0. Indeed,
dr(A %t G) < (1G] — 1)(dimpok(e) + 1)(dr(A) + 1) + dr(A).
A similar statement is true for dimg_, . In particular, the following hold.
(3) Ifdimg , (o) < 00 and sr(A) < 0o, then st(A%), st(A Xy G) < o0. Indeed,

|G| (sr(A) 4 dimg, (o) 4+ 3) — 2
> .
(4) Ifdimg,, (@) < oo and RR(A) < oo, then RR(A%), RR(A x4 G) < 00.
(5) Let D be a strongly self-absorbing C*-algebra. If dimg (o) < 00 and A is
D-absorbing, then A* and A x4 G are D-absorbing as well.

sr(A xq G) <

Proof. Let P be a property as in the statement, let A be a C*-algebra satisfying P, and
let o be a partial action of G on A with dimpek (o) < d. By Theorem 4.5, there there are
canonical equivariant extensions

0 —— (D, 51) —— (A0, g®) > (AFD, g*D) 0, @43)
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for 2 < k < |G|, satisfying the following properties:
(D.1) AUGD = A and ¢!C! = @;
(D.2) 8% has the k-decomposition property;
(D.3) aD has the 1-decomposition property.

In particular, each A® is a quotient of A, and each D™ is an ideal of a quotient of
A. By (E), all of these C*-algebras satisfy P. By repeatedly applying Proposition 2.6, we
deduce that

dimgex(@®) <d and dimge (8% < d (4.4)

for all k=2, ...,|G|, while dimge (") =0 by (D.3) and Example 2.2. For k =
2,...,]G]|, apply crossed products to (4.3) to get the extension

0—— DW Xty G — A® Hyty G —— Ak=D Hgtk-1y G —=0. 4.5)

Claim. A® x4 G satisfies P for all k = 1, ..., |G|. We prove this by induction on k.
Since A x,0) G = AW by Example 2.2 and A) is a quotient of A, this follows from
(E). Assume we have proved it for k — 1, and let us prove it for k. Since P passes
to extensions by (E), the exact sequence in (4.5) implies that it suffices to show that
D® % st G satisfies P. Combining (D.2) and Theorem C in [2], it follows that D® % NG
G 1is isomorphic to a finite direct sum of algebras of the form M,,, (ng) X6 Hy), for

m; = k/|Hy| < |G| and t € T¢(G), where ng) is an ideal in D®, H is a subgroup of
G, and 8§k) is the global action obtained as the restriction of 8® to H, and to ng). Thus, by
(M) it suffices to show that ng) X s H; satisfies P for every t € 7x(G). Using Theorem
4.6 at the first step, we have '

(4.4)
dimpok(8%) < dimpek (%) "< d.

Moreover, ng) satisfies P by (E), since it is an ideal in D® Tt follows from (C) that
Dik) 0 H, satisfies P, as desired. This proves the claim.

Since A x4 G equals AUGD X g6y G by (D.1), this proves the first assertion in the
theorem. Note that an identical argument applies to dim , in place of dimgrex. Moreover,
the argument for fixed point algebras is analogous, by applying fixed point algebras to the
extensions in (4.4), using Theorem 4.5 in [2] instead of Theorem C there, and using the
fact that fixed point algebras and crossed products are Morita equivalent in the global case.
We omit the details.

The properties listed in conditions (1)—(5) are well known to satisfy (E) and (M); see
[3, 20, 22, 25]. Finally, they also satisfy (C) by Corollary 4.25 in [14] and Theorem 3.20
in [13].

For the estimates in (1), (2), and (3), one combines the estimates from Corollary 4.25
in [14] and Theorem 3.20 in [13] with the known estimates for dimyyc, dr, or sr of an
extension, or of A ® M,,, and applies these a total of |G| — 1 times to the extensions in
(4.5). We omit the details. ]
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We note in passing that if « is a partial action of a finite group G on A, and A satisfies
P, then A x4, G x4 G also satisfies P. Indeed, A is Morita equivalent to an ideal I of
A X G x5 G whose linear orbit under the bidual action & is all of A Xq G x5 G ([1,
Theorem 6.1]). Since P is preserved by Morita equivalence and by passage to ideals,
quotients and extensions, then &g (I), and each sum &g ) + &g/(l), also satisfy P. So
Axg G g G =Y g bg(l) satisfies P.

The fact that the preservation results for A* and A x4, G from Theorem 4.7 look
identical suggests that there may be a tighter connection between these algebras. Indeed,
in the global setting we have A% ~); A X, G whenever G is abelian and dimgek (@) < 00;
see Corollary 1.18 in [13]. The situation for partial actions is much more complicated, and
there exist partial actions of finite groups with finite Rokhlin dimension such that A* is not
Morita equivalent to A x4 G.

Example 4.8. Set X = (0,2] and U = (0, 1) U (1,2) C X, and let 0 € Homeo(U) be
given by o(x) =x + 1 mod 2 for all x € U. Let « be the partial action of G = Z; =
{—1,1} on A = Cyp(X) induced by o. This action is considered in Example 5.2 of [2],
where it is shown that Co(X)%2 is not Morita equivalent to Co(X) Xy Zo.

We claim that dimgek () < 00. Let F € Co(X) be a finite set, and let ¢ > 0. For § > 0,
let fs € Co(X) and e5 € Co(U) be given by

1 ifx >4,
fs(x) = and

linear otherwise

) 1 ifxel[s,1 —8JU[l+6,2—4],
es(x) =
’ linear otherwise.

Find § € (0, 1/4) such that |esa — al|| < e foralla € F N Cy(U) and || fsa — a| < ¢ for
alla € F. Set

0 0 1
fil) = eslo,n» fl( ) — eslz;,  J-1=(fs —es),), and fl( "= (fs — e

It is easy to check that the above positive contractions are Rokhlin towers for (F, ¢), thus
showing that dimgek (¢) < 1, as desired. (In fact, one can also show that dimgek (o) # O,
so that dimgek (@) is actually 1.)

4.3. Unital partial actions. For unital partial actions, a different approach can be used
to obtain information about the crossed product, leading to a result which is stronger than
Theorem 4.7, in that here we only demand that the property in question pass to direct
sums and summands, as opposed to general extensions and ideals; see Theorem 4.10. Most
significantly, this implies that the UCT is preserved in this setting; note that the UCT is
not in general known to pass to ideals or quotients and hence does not satisfy condition (E)
in Theorem 4.7. The same applies to several properties of the K-theory. Additionally, we
isolate the case of Rokhlin dimension zero, for which considerably more can be said with
this approach.

In contrast to Example 4.8, we show next that A* and A X, G are always Morita
equivalent whenever dimgek (o) < oo and « is unital. Our proof is very different from
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the arguments used in [13] and has the advantage of being applicable to global actions of
groups that are not necessarily abelian, thus obtaining new information even in the global
setting.

In the next proof, for § € A X, G we write £(g) € Ag, g € G, for the coefficient of ug
ing, sothaté =3, §(g)ug.

THEOREM 4.9. Let « be a unital partial action of a finite group G on a C*-algebra A with
dimgek (@) < 00. Then A% is Morita equivalent to A Xy G.

Proof. Set x4 = deG lo. Then x, is central and positive, and since x, > 1, it is
invertible. Moreover, x,, belongs to A%, since for 4 € G we have

anColy-1) =D an(lgly-1) =Y Ingly = xq 1,
geG geG

where at the second step we used Remark 2.3. We define a Hilbert A*-A X, G-bimodule
structure on A as follows. Fora € A% x € Aand § € A x, G, seta - x = ax (the product
istakeninA)and x - £ = dec og-1(x5(8)). The inner products are given by

Ac X, y) =D ag(xy 1) and (%, ) ar,G = Y ¥Fog(y1-1)ug
geG geG

fora € A% x,y € Aand & € A Xy G. (One readily checks that 4« (x, y) belongs to A*.)
The properties of the inner products are easily verified. For example, for x € A we have

*
Xo Z Xag(xly-1)ug = ( Z ag(xlg_1)ug> ( Z ag(xlg_l)ug) >0,
geG geG geG

SO (X, X)Ax,G = dec x*og (xlg-1ug =0, with equality exactly when x = 0. One can
also easily check the properties of a bimodule. For example, given £ € A xq Gand x,y €
A, we have

(X, M) AngG & = ) xXrag(yly-ug Y E(Muy

geG heG

= Y aglog1 (xFag(y1-1))E))ugh
g.,heG

= Y aglag-1(x 1) yE(h))ugh
g,heG

= Y xag(yEM)g-)ug
g,heG

= Y X1 (VEM) -1y
g,heG

= D Xraglay- (GEI) 1-1)ug
g,heG

= (X, ¥ &) Ax,G-
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The other properties can be shown similarly. Moreover, for x € A%, we have

= Z ah(xxojllhq) = Z xxa_llh =X.

heG heG

In particular, A is a full left A*-module. Finally, we claim that A is a full right
A X G-module. For this, it suffices to show that given t € G, x € A; and ¢ > 0, there
exist k € Nand ay, by, ...,a by € A such that xu, ~¢ Y5_ (ar, be) as,. Set d =
dimpek (@) and g9 = €/2(d 4 1)|G|, and use Proposition 2.4 to find f;]) €Ay, forgeG
and j =0, ..., d, satisfying:
@  ag(fi1,1) = fP) 1 forall g, h € G;
(b) (j)f(/) o Oforall j =0,...,d and all distinct g, h € G;

( )~
© e Z] —o f¢! mey 1.
Using at the last step that x € As, we get

ZZ ft(j)l/z * (1)1/2>A><1 G = Z Zx (J)/ (1) lhfl)uh

8eG j=0 ghEGj 0

@ 3 Z ftml/z W2

g.heG j=0

as desired. We conclude that A is an A%-A %, G-imprimitivity bimodule, so these
C*-algebras are Morita equivalent, and the proof is complete. O

THEOREM 4.10. Let G be a finite group, and let d € N. Let P be a property for

C*-algebras which is preserved by:

(S) passage to direct sums and summands;

(M) Morita equivalence;

(C) crossed products by global actions of G with dimpekx < d.

Let A be a unital C*-algebra, and let a be a unital partial action of G on A. If dimpek (@) <

d and A satisfies P, then so do A X, G and A“. A similar statement is true if dimgek is

replaced everywhere by dimy . In particular, the following hold.

(1) Ifdimg , () < oo and A satisfies the UCT, then so do A x4 G and A°.

(2) If dimg (o) < 00 and K4 (A) is either trivial, free, torsion-free, or finitely gener-
ated, then the same holds for A x4, G and A“.

When dimpek (o) = 0, it follows that the properties listed in the main theorem of [8]
pass from A to A* and A x4 G. This includes having real rank zero, having stable
rank one, being an AF/approximately interval (Al)/approximately circle (AT)-algebra,
being purely infinite, the order on projections being determined by traces, being weakly
semiprojective, and having K-groups which are either trivial, free, torsion-free, or finitely
generated.
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Proof. By Theorem 4.9 and condition (M), it suffices to show the result for A x4 G. Let
(B, B) denote the globalization of (A, o).

Claim. There exist central projections pi, ..., pG| € A such that B=piA®---&®
D|G|A. Since A is a unital ideal in B and B = deG Bg(A), it suffices to show the
following: if 7, J are unital ideals in a C*-algebra, then I + J = pI & J for some central
projection p € I. This follows by taking p = 1; — 171y andlettingy: I +J — pl & J
be ¥ (x) = (px, 1yx) forall x € I + J. We omit the easy details.

Assume that A satisfies P and that dimgok (o) < d. By the claim above and (S), it follows
that B satisfies P. By Theorem 3.4, we have dimgek(8) = dimpek () < d, and hence by
(C) the global crossed product B xg G satisfies P. Finally, since B xg G ~); A X4 G by
Theorem 4.18 in [2], the result follows from (M).

For the properties listed in (1) and (2), the preservation conditions (S) and (M) are
well-known, while (C) is part of Theorem 3.20 in [13]. The properties mentioned in the
last part of the statement are also known to satisfy (S) and (M), and for d = O they also
satisfy (C) by the main result in [8]. L]

Remark 4.11. In the context of the above theorem, one can obtain bounds for dimyyc, dr, sr,
and RR of A X, G and A® that are much better than the ones in Theorem 4.7, particularly
since they do not depend on the cardinality of G. For example, one gets dimpyc(A Xy G) <
(dimgok (@) + 1)(dimpyc(A) + 1) — 1.

5. Topological partial actions

In this section, we study the Rokhlin dimension of topological partial actions. In Theorem
5.10, we will show that a topological partial action G ~ X on a finite-dimensional space
X has finite Rokhlin dimension if and only if it is free. The case of global actions is
implicitin [17], and it is an easy consequence of the existence of local cross-sections for the
quotient map w : X — X/G. However, the proof in the partial setting is considerably more
complicated, since even for free partial actions there may not exist local cross-sections for
7. The proof in our context is quite involved and will occupy the entire section.

Definition 5.1. Let X be a topological space. A topological partial action of a discrete
group G on X is given by a pair ((Xg)geG, (0¢)geG), consisting of open subsets X, € X
and homeomorphisms 6y : X,-1 — X, satisfying
(1) Xy =Xand#; =idyx; and
(2) 6006, COgpforall g, heG.

We say that 6 is free if 6, (x) # x forall g € G \ {lg} and all x € X ,—.

Next, we show that finite Rokhlin dimension implies freeness in the above setting.

PROPOSITION 5.2. Let X be a locally compact Hausdorff space, let G be a finite group,
let 6 be a topological partial action of G on X, and denote by « the induced partial action
of G on Co(X). If dimpek (@) < 00, then 6 is free.

Proof. Setd = dimpek(e), and assume thatd < oco. Let g € G \ {1} be given. Arguing by
contradiction, assume that F, = {x € Xg-1: g (x) = x}is not empty, and fix x € F,. Note
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that x belongs to X N X,-1. Leta € Co(X,-1) be a positive contraction satisfying a(x) =

1. Choose & > O with & < (1/2(|G|(d + 1) + 1)%), and let £/ € Co(Xy), for h € G, and
J =0,...,d be Rokhlin towers for ({a, az(a)}, ). Givenh € G and j =0,...,d, we

have:
15 e (f @) oo < 157 (g (@) = f P otg @)oo + 1| 17 15 @)oo < 2e.
——
~e0 ~:0

Evaluating at x, we get

gy an@ = 17 @ £ 01 (0)aO (0) < 26,

Since ,-1(x) = x and a(x) = 1, we deduce that

900 < V2e, 1)
forallh € Gand j =0, ..., d. Moreover, condition (3) from Definition 2.1 gives
‘ (x)=1 d
j a(x)= P
Y3 P wa) —a@)| =TI P -1 <,
Jj=0 heG j=0 heG

) Z?:o Y oheG f}fj)(x) > 1 — e. Using this at the second step, we get

d
Gld+1v2e S 3 @) > 1—e = 1= V2e.

j=0 geG

This contradicts the choice of ¢, showing that F, is empty. Thus 6 is free. O

The rest of the section will be devoted to proving that free partial actions have finite
Rokhlin dimension. The general strategy is as follows.
Step 1:  Show that free decomposable partial actions have finite Rokhlin dimension.
Step2:  Show that an extension of topological partial actions with finite Rokhlin
dimension again has finite Rokhlin dimension.
Step 3:  Use the equivariant decomposition into successive extensions from Theorem 4.5
to conclude that the given action has finite Rokhlin dimension.

Using the results we proved in §4, we can easily establish the first step.

PROPOSITION 5.3. Let G be a finite group, letn € {1, . . ., |G|}, let X be a locally compact
space with dim(X) < oo, and let o be a partial action of G on X with the n-decomposition
property (see Definition 4.2). Denote by o the induced partial action of G on Co(X). If &
is free, then dimpek () < dim(X).

Proof. Fix © € T,,(G). Then X; is an open subset of X and thus dim(X;) < dim(X). By
part (2) of Theorem 5.4 in [2], the restricted global action of H; on X; is free. Using
Proposition 2.11 in [17] at the first step, it follows that

dimpok (| ) < dim(X) < dim(X).

Thus, the result follows from Theorem 4.6. O]
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Step 2 is considerably more complicated. Roughly speaking, one needs to lift Rokhlin
towers from the quotient to the algebra, while at the same time respecting the domains of
the partial action. If we did not care about respecting the domains (such as in the global
case), the result would be an immediate consequence of the fact that the cone of C" is
projective. In our setting, the greatest difficulty lies in showing that this can be done in
a way compatible with the domains, and for this we will need some lemmas that allow
us to assume that the Rokhlin towers and their lifts are orthogonal; see Lemma 5.4 and
Lemma 5.5. It is unclear whether these results hold without assuming that the algebra is
commutative.

First, we show that for partial actions on commutative unital C*-algebras, the elements
of each Rokhlin tower can be assumed to be exactly orthogonal.

LEMMA 5.4. Let a be a partial action of a finite group G on a unital, commutative
C*-algebra A, and let d € N. Then dimpek(a) < d if and only if for all ¢ >0 and

every finite subset F C A there exist positive contractions fg € Ag, for g € G and

j=0,...,d, satisfying:

(1 ||ag(f(])a) f(])otg(a)n <eforallae FN Ay, i;

@ fPF =0forall g, h € G withg # handforall j =0, . .., d;

B) 1 geq Dhop £ =l <.

Proof. Ttis clear that any action satisfying conditions (1), (2), and (3) in the statement has
Rokhlin dimension at most d (the approximate commutation condition from Definition 2.1
is vacuous since A is commutative). We therefore prove the non-trivial implication. Let
& > 0 and let a finite subset ' C A be given. Without loss of generality, we assume that F
consists of positive contractions.

Fix g9 < 1 such that (d + 2)|G| /€0 < &, and choose positive contractions xé € Ag,
forge Gand j =0,...,d, satisfying:
(a) ||ag(x(J)a) — x(/)ag(a)H <egpforallae FNA g 13
) xS x| < e forall g, h € G with g # hand forall j =0, ..., d;
© 1 g6 Ximgxd =11l < e0.

Forge Gand j =0,...,d,set yéj) = heG\ig) x;(,j) and
£ =0 =y

0

Since A is commutative, we have f, ol < xg ) and hence f¢'’ 1s a positive contraction in

A,. We will show that these elements satisfy the conditions in the statement. We begin by

noting that the £/’ are very close to the xS,

Claim. We have ||x(]) f;j)H < |Gli/eo for all g € G and j =0,...,d. To see this,

since A is abelian, it is enough to prove that |x(])(t) - fg(j)(t)| < |G|4/eo for every t €
Spec(A). Fix t € Spec(A). We divide the proof into two cases.
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Suppose thatx(])(t) > y(j)(t). Then f;j)(t) = x(])(t) (j)(t) and hence
Wo-fo=yo= > x’o. (5.2)

heG\{g}
For h # g, we have xh’)(t) < yg/)(t) < x(/)(t) and thus
D 0)? < 0)xd (1) < s0. (5.3)

‘We conclude that

10— 012 Y w012 (161 - e < 161V
heG\(g)
Suppose that x{ (1) <y (1). Then f(1) =0 and hence x{ (1) — f(1) =
xéj ) (1). Moreover,

. . . (b)
xé”(r)%( > x,‘,”(t))xé”(t) < (IG| = Deo. (5.4)
heG\{g}
Thus,

. 5.4)
@) — 0= 1k 01 < VG = Deo < |Gl/zo.

This proves the claim. _

We check that the positive contractions f;’ ) for geG and j=0,...,d satisty
conditions (1), (2), and (3) in the statement. Conditions (1) and (3) follow immediately
by combining the claim above with conditions (a) and (c), respectively, so we only check
(2). Let g,h € G with g # h and let j =0, ..., d. Using the inequalities x{/ < y'/’
and x(] ) < yé.j ) (which are valid since g # h) at the second step, and the identity
(z— u))+(w — 2)+ = 0 at the last step, we get

f(])f(]) (J) (J))+(x(1) ;lj))+
< (y(j) (J))+(y(J) (1))+ -0 0

The following lemma deals with obtaining domain-respecting orthogonal lifts.

LEMMA 5.5. Let A be a commutative C*-algebra, let n € N, and let J, Ay, ..., A, be
ideals in A. We set B = A/J with quotient map w: A — B, and
Aj A+
Bj J
AN 7
for j=1,...,n For j=1,...,n, let x; € A; be a positive contraction satisfying
xjxp € J forallk =1,...,nwith j # k. Then there exist pairwise orthogonal positive

contractions y; € Aj, for j =1, ..., n, satisfying w(y;) = m(x;).

Proof. We prove the lemma by induction on #, the case n = 1 being trivial. Assume that
n =2,andletx; € Aj and xp € A; be positive contractions satisfying x1x, € J. Set y; =
(x1 — x2)+ and y» = (x2 — x1)4, which are positive contractions. Since A is abelian, we
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have y; < x; and hence y; belongs to A; for j = 1, 2. Moreover, y;y» = 0. Finally, using
at the first step that 7 (x1)7 (x2) = 0, we get

w(x) = (@(x)) —w(x2))+ = 7w (x1 — x2)4) = 7w(y1).

Similarly, 7w (x2) = m(y2). This proves the case n = 2 of the statement.

Assume now that we have proved the result for an integer n > 2, and let us prove it for
n+ 1. Thus, let Ay, ..., Ay+1 beidealsin A, and let xq, . . ., x,41 be as in the statement.
Set x = Z;f:l x; and define y,4+1 = (xp41 — x)4. Then y,41 is a positive contraction
with y,4+1 < x,41, and hence y,+1 € A,4+1. Moreover, since 7 (x)m (x,41) = 0 and using
the same argument as in the case n = 2, it follows that 7w (y,+1) = 7 (xp+1)-

For j =1,...,n,set z; = (xj — X44+1)+, which is a positive contraction in A; with
Zj < xj. Since 7w (x)m(x,41) = 0 for j < n, it follows that 7(z;) = 7 (x;). In particular,
for 1 < j #k < n we have m(z;zx) =0, thatis, z;zx € J. By the inductive step applied
to z1, ..., Zs, there exist orthogonal positive contractions y; < zj, for j=1,...,n,
satisfying 7 (y;) = m(z;). Then y; < x; and w(y;) =m(x;) for j=1,...,n+ 1. It
remains to prove that the yi, ..., y,+| are pairwise orthogonal. By construction, the
contractions yi, . . ., ¥, are pairwise orthogonal, so it suffices to check orthogonality with
Ynt1. For j =1,...,n, we have

Vivn+1l < ZjYn+1 = (Xj — Xp1 1)+ g1 — X))+ < () — Xpe D)+ (Xngp1 — xj)4 =0,
using at the third step that A is commutative and x > x;. O

We are now ready to prove that an extension of partial actions on commutative
C*-algebras with finite Rokhlin dimension again has finite Rokhlin dimension. For use
in this proof, we recall the following standard fact. Let A be a unital C*-algebra, let J be
an ideal in A, let 7: A — A/J denote the quotient map, let (ej)rca be any approximate
identity for J, and let a € A. Then |7 (a)|| = lim sup, <, lla(l —e;)].

PROPOSITION 5.6. Let G be a finite group, let A be a commutative unital C*-algebra,
let a be a partial action of G on A, and let J be an o-invariant ideal in A with a
G-invariant approximate identity. Denote by « the induced partial action of G on A/J
as in Proposition 2.6. Then

dimgok (o) < dimgok(|y) + dimgek (@) + 1.

Proof. Setd; = dimpek (| ;) and d» = dimpek (@). Without loss of generality, we assume
that dj, d» < 0o. Let ¢ > 0 and let F C A be a finite subset. We abbreviate B = A/J
and B, = A, /(Ag N J) for all g € G. We denote by 7m: A — B the canonical quotient
map. We use Lemma 5.4 to choose positive contractions xé(,j ) e By, for g e G and j =
0,...,d>,satisfying:

B.1) @y (x\b) — x;ﬁ)ag(b)n <eforall g,h e G, forall j =0,...,d, and for all

ben(F)N Bg-1;
(B.2) xéj)x}(lj) =O0forall g,h € Gwithg #handforall j =0,...,d;

Lora
B3) 10 X0 1) <.
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Fix j =0,...,d>. Use Lemma 5.5 to find mutually orthogonal positive contractions
v e A, for g € G, satisfying 7(y{") = x{/’. Using that J has a G-invariant approxi-
mate identity, find a positive contraction g € J satisfying:
(@) ag(gx) =qag(x)forall x € Ag—l nJ;

) 10 = Tgeg Lo 90—l <&
© (g a) =y eg(@)(1 — )| < eforalla e Agi NF.

Claim. ag(ga) = qag(a) forall a € Ag—l. To prove this, let (e)))eca be an approximate
identity for A 1 NJ. Then (ag(ex))rea is an approximate identity for A, N J. Fix a €
A,-1. In the next computation, we use at the third step condition (a) above with x = ae;,
and the fact that ga belongs to A,—1 N J at the fourth step:

qagla) = lim gag(@)ag(er) = lim gag(aey) = lim ag(qae,) = o, (qa).

This proves the claim.
Setz(]) = yéj)(l —qg)forge Gand j =0,...,d>. Then

P2 =0 (5.5)
for g,h € Gwithg #h and for j =0, ...,ds, since 1 — ¢ is central. Let g, h € G, let
ac FNA g andlet j =0, ..., d be given. Using the above claim at the second step,
we get

lag (2 a) — 2 ag @] = lag (3" a(l — @) = y P eg@A =)l (5.6)
(©)
= (g (v @) = Y otg (@)1 — )|l < e.
Furthermore,

< e. 5.7

Z Z Z(1)

geG j=0

Set Fj ={ga: a € F}U{q} C J. Choose positive contractions ég(k) €A, NJ, forge
Gandk =0,...,d, satisfying:
(J.1) ||ag(s,§">c) g“‘)ag(c)n <ecforall g,heG, forall k=0,...,d;, and for all

ce F;N Jg—l ;
1.2) [1EPEWe| < e forall g, h € G with g # h, forallk =0, . . ., dy, and for all ¢ €
Fy;
13) e = c(Ceee Tilo &8 < e forall c € Fy.
Set n(k) (k)q forallg € Gandk =0,...,d;. Fora € F N A,-1, we have
D
lerg (@) — 1B arg @I = llag (6P ga) — P gag@) ] < e, (5.8)

because ga € J,-1 N Fy. Since g is central (because A is commutative), we have

OO0 < 1EPEF) < e (5.9)
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forg,h € Gwithg #handfork =0, .. ., d;. Further, taking ¢ = ¢ in (J.3) gives

d
oY P —q| <. (5.10)
¢€G k=0
Forge Gand¢=0,...,d; +dy+ 1, set
0 _ Zéj) fort =0,...,ds,
¢ NP fore=da+ 1, da+2, ... di+da+ 1.

Then { f;j ). g€G,0<{<d;+dy+ 1} are Rokhlin towers for o with respect to
(F, 2¢). Indeed, condition (1) follows from (5.5) and (5.8); condition (2) follows from
(5.6) and (5.9); and condition (3) follows from (5.7) and (5.10). O]

For technical reasons it will be more convenient to work with unital C*-algebras. In
order to reduce to the unital case, we define the minimal partial unitization of a partial
action. This unitization differs from the usual unitization of a global action, since the
minimal partial unitization is never a global action, even if the original action was. For a
C*-algebra A, we denote by A™ the unitization of A, which as a Banach space is isomorphic
to A C.

Definition 5.7. Let G be a locally compact group, let A be a C*-algebra, and let
a = ((Ag)geG» (ag)gec) be a partial action of G on A. We define the minimal partial
unitization a of « to be the partial action of G on A" determined by A} = A, and
af =agforallg e G\ {1}.

For later use, we record the following easy observation.

Remark 5.8. Let G be a finite group, let A be a commutative C*-algebra, and let o be
a partial action of G on A. Then (A, ) is an equivariant ideal in (AT, @™), and hence
dimpek (@) < dimgek (™) by Proposition 2.6.

For a partial action 8 of a group G on a locally compact space X, one defines its
minimal partial compactification 9+ analogously to Definition 5.7, only by compactifying
the domain of the identity element and leaving the rest unchanged. It is clear that the partial
action of G on C(X™) induced by 8T can be canonically identified by the minimal partial
unitization of the partial action induced by 6.

One feature of the minimal partial unitization, in comparison with the unitization in the
sense of global actions, is that the minimal partial unitization of a free action on a locally
compact space is again free, as we show next. On the other hand, the unitization (in the
global sense) of a free action is never free, since the point at infinity is necessarily fixed.

LEMMA 5.9. Let G be a locally compact group, let X be a locally compact Hausdorff

space, and let 0 = ((Xg)geG» (05)gec) be a partial action of G on X. Then 0 is free if and
only if 0T is free.
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Proof. Ttis clear that 6 is free if 87 is free. Conversely, and arguing by contradiction, let
geG\{l}andx € X;,l satisfy Qg(x) = x. Since g # 1, this implies that x € X,-1 and
04 (x) = x, which contradicts the fact that 6 is free, as desired. O

We have now arrived at the main result of this section.

THEOREM 5.10. Let G be a finite group, let X be a locally compact space with dim(X) <
oo, let 6 be a partial action of G on X, and let a denote the partial action of G on Cy(X)
induced by 0. If 0 is free, then

dimgok (@) < (|G| — D(dim(X) + D).
Proof. We begin with a general fact.

Claim. Let B be a free partial action of G on a unital commutative C*-algebra B with
finite-dimensional spectrum. Suppose that there is an equivariant extension

0——(D,d) —(B.p) C.y) 0,

with § decomposable and dimgek(y) < oo. Then
dimpok (B) < dimgek(8) + dimpok(y) + 1 < oo.

By Proposition 4.4 in [2], (D, d) admits a G-invariant approximate identity. Since
B is unital and commutative, by Proposition 5.6, we have dimpek(8) < dimpek(5) +
dimgok (y) + 1, so it suffices to show that dimgk () is finite. Since 8 is free, it is easy
to see that so is 6. Since § is decomposable, the claim follows from Proposition 5.3.

We now prove the theorem. We will obtain the bound for dimgek (™), which is enough
by Remark 5.8. Since a™ is free by Lemma 5.9, upon replacing a with o™ we may assume
that X is compact. By Theorem 6.1 in [2], there are canonical equivariant extensions

0—> (D(k), 5(k)) . (A(k), a(k)) . (A(kfl)’ a(kfl)) — =0, (5.11)

for 2 < k < |G], satisfying the following properties:
(1) A6 = (X) and &6l = @;

(2) 8™ has the k-decomposition property;

(3)  «aD has the 1-decomposition property.

Note that all the partial actions involved are free (this is shown inductively, using that
restrictions of free actions are free). Moreover, A® is unital and commutative for all k =
2,...,|G|. Note that &) has Rokhlin dimension zero by Example 2.2. Applying the
above claim to the extension in (5.11) with k = 2, we get

dimgek (@®) < dimpe(8?) + 1 < oo.
Continuing inductively, after |G| — 1 steps we deduce that
dimgok (@) < (dimpek(8?) + 1) + - - - + (dimpok (81°) + 1) < o0. (5.12)

Suppose now that dim(X) is finite. For k =2, ..., |G|, let Y; denote the spectrum
of D®_ Since dimge(8*)) < dim(Y}) by Proposition 5.3, and dim(Y;) < dim(X), the
dimensional estimate in the statement follows from (5.12). O]
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For clopen partial actions (that is, partial actions with clopen domains), no dimension-
ality assumptions on X are needed.

PROPOSITION 5.11. Let G be a finite group, let X be a (not necessarily finite-dimensional)
compact Hausdorff space, let 6 be a free clopen partial action of G on X, and let o denote
the induced partial action of G on C(X). Then

dimgek (@) < min{dim(X) + 1, oo}.
In particular, dimgek (o) < 00 even if dim(X) = oo.

Proof. Denote by (C(Y), B) the globalization of (C(X), «); see Proposition 3.5 in [1],
noting that the graph of 6 is closed. Note that dimgek(«¢) = dimgek(8) by Theorem 3.4.
Let o denote the action of G on Y induced by .

We claim that o is free. Note that ¥ = (J,cg 0¢(X). Let g € G and y € Y satisfy
0g(y) =y. Choose h € G and x € X such that y = 03,(x), so that Op-1gp(X) = X. Thus
x belongs to X N oy-1,;,(X) = Xj-1,,, which is where oy,,;,-1 agrees with 6;,,;,-1. Thus
9,1gh71 (x) = x, and since 9 is free, this implies that hgh_1 = 1¢ and hence also g = 1¢.
Hence o is free.

Since Y is compact, it follows from Theorem 4.2 in [11] that dimgek(8) < o0, and thus
dimgek (@) < oo.

We complete the proof by showing that dimpek () < dim(X). Note that dim(Y) =
dim(X) (this follows, for example, by the claim in the proof of Theorem 4.10). Using
[17, Lemma 1.9] at the second step, we get

dimgok (&) = dimgek(B) < dim(Y) = dim(X). O
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