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GROWTH OF A POPULATION OF BACTERIA
IN A DYNAMICAL HOSTILE ENVIRONMENT
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Abstract

We study the growth of a population of bacteria in a dynamical hostile environment
corresponding to the immune system of the colonized organism. The immune cells
evolve as subcritical open clusters of oriented percolation and are perpetually reinforced
by an immigration process, while the bacteria try to grow as a supercritical oriented
percolation in the remaining empty space. We prove that the population of bacteria
grows linearly when it survives. From this perspective, we build general tools to study
dependent oriented percolation models issued from renormalization processes.
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1. A growth model in a dynamical hostile environment

We consider the following discrete-time interacting particle system: at time n = 0, a
particularly fertile bacterium (represented here by a type-1 particle) is submerged in a population
of immune cells (type-2 particles) that are going to impede its development. The immune cells
are not very fertile but benefit from a constant immigration process. Our aim is to find conditions
that ensure that the growth of bacteria, when they survive, is linear.

Our system is described by a discrete-time Markov chain taking values in {0, 1, 2}Z
d
,

depending on the three parameters p, q, α ∈ (0, 1). The time is indexed by N = {0, 1, 2, . . . },
and we also note N

∗ = {1, 2, 3, . . . }. The transition between two states is in two steps. First,
between time n and time n + 1

2 , each particle tries to colonize its neighbor sites: it succeeds
with probability p if it is a type-1 particle, and with probability q if it is a type-2 particle. All
events are independent and, in a case of conflict, the type-2 particle wins. Next, between time
n + 1

2 and time n+1, the immigration of type-2 particles occurs: on each site, a type-2 particle
appears with probability α > 0, possibly taking the place of the particle previously occupying
the site. Once again, all events are independent.

In the degenerate case where q = 0 and α = 0, we recover independent oriented percolation
with parameter p, which provides a simple model for the spread of an infection. By classical
arguments, there exists a critical probability −→

pc
alt(d + 1) that independent oriented percolation

on Z
d × N grows infinitely. Of course, we choose p >

−→
pc

alt(d + 1) to avoid the almost-sure
extinction of the bacteria in the absence of immune cells. Hence, if q = 0 and α = 0, we
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know that the bacteria survive with positive probability and, when they survive, their growth
is linear. These results have been proved for the supercritical contact process by Bezuidenhout
and Grimmett [1] and Durrett [5], and can readily be transposed for supercritical independent
oriented percolation.

On the other hand, we choose q <
−→
pc

alt(d + 1), which corresponds to the poor virulence of
type-2 particles. However, the constant immigration rate α guarantees that type-2 particles are
always present in the organism.

Let us now describe the model more formally. We work, for d ≥ 1, on the following
graph.

• The set of sites is V
d+1 = {(z, n) ∈ Z

d × N}.
• We put an oriented edge from (z1, n1) to (z2, n2) if and only if n2 = n1 + 1 and

‖z2 − z1‖1 ≤ 1; the set of these edges is denoted by
−→
E

d+1
alt .

Define
−→
E

d in the following way: in
−→
E

d , there is an oriented edge between two points, z1
and z2, in Z

d if and only if ‖z1 − z2‖1 ≤ 1. The oriented edge in
−→
E

d+1
alt from (z1, n1) to

(z2, n2) can be identified with the couple ((z1, z2), n2) ∈ −→
E

d × N
∗. Thus, we identify

−→
E

d+1
alt

and
−→
E

d × N
∗.

We set �̃ = {0, 1}−→E d × {0, 1}−→E d × {0, 1}Z
d
, and we endow the set � = �̃N

∗
with its Borel

σ -algebra for the product topology. We consider the probability P = Pp,q,α = ν⊗N
∗
, where

ν = νp,q,α = B(p)⊗
−→
E

d ⊗ B(q)⊗
−→
E

d ⊗ B(α)⊗Z
d

and where B(p) stands for the Bernoulli law with parameter p.
Starting from the initial configuration x ∈ {0, 1, 2}Z

d
, we define the Markov chain (ηx

n)n≥0
taking values in {0, 1, 2}Z

d
by

ηx
0 = x and ηx

n+1 = f (ηx
n, ωn+1),

where f : {0, 1, 2}Z
d × �̃ → {0, 1, 2}Z

d
is defined as follows:

f (x, ((ωe
1)e∈−→

E d , (ω
e
2)e∈−→

E d , (ω
k
3)k∈Zd ))

=
(

max{2ωk
3, 2 max(ω

(i,k)
2 : ‖i − k‖1 ≤ 1, xi = 2),

max(ω
(i,k)
1 : ‖i − k‖1 ≤ 1, xi = 1)}

)
k∈Zd

.

Note that type-2 particles do not see type-1 particles in their evolution, which explains why
type-2 particles are assimilated to an environment. Considering two disjoint subsets E1, E2 of
Z

d that represent the initial sets occupied by type-1 and type-2 particles, we also use the notation

η
E1,E2
n = η

1E1 +2 1E2
n . We respectively denote by η

E1,E2
1,n and η

E2
2,n the sets of sites occupied by

type-1 particles and by type-2 particles at time n, and we consider the evolution of the bacteria
population (η

{0},∅
1,n )n≥0. Can this process survive? Does it grow linearly when it survives? We

naturally introduce the following extinction time and hitting times:

τ
E1,E2
1 = inf{n ≥ 0 : η

E1,E2
1,n = ∅},

t
E1,E2
1 (y) = inf{n ≥ 0 : y ∈ η

E1,E2
1,n } for all y ∈ Z

d .

Note that α 	→ Pp,q,α(τ
E1,E2
1 = +∞) is nonincreasing and exhibits a phase transition. We

first prove that this phase transition does not depend on the initial configuration E2 of the
environment.
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Theorem 1. For every p >
−→
pc

alt(d + 1) and every q <
−→
pc

alt(d + 1),

Pp,q,α(τ
0,Zd\{0}
1 = +∞) > 0 for all α ∈ [0, 1] ⇐⇒ Pp,q,α(τ

0,∅
1 = +∞) > 0.

We thus define αc(p, q) = sup{α ≥ 0 : Pp,q,α(τ
0,∅
1 = +∞) > 0}.

Our main result is the following.

Theorem 2. For every p >
−→
pc

alt(d + 1) and every q <
−→
pc

alt(d + 1),

0 < αc(p, q) < 1.

Moreover, for every α < αc(p, q), there exist positive constants A, B, and C such that, for
every E ⊂ Z

d \ {0}, x ∈ Z
d , and t > 0,

Pp,q,α(τ
0,E
1 = +∞) > 0, (1)

Pp,q,α(τ
0,E
1 = +∞, t

0,E
1 (x) ≥ C‖x‖1 + t) ≤ A exp(−Bt), (2)

Pp,q,α(t < τ
0,E
1 < +∞) ≤ A exp(−Bt). (3)

We thus prove that if the immigration of type-2 particles is not too important, the bacteria
population survives with positive probability, and, when it survives, it grows linearly, as is the
case in the absence of immune cells. We can also explain this model in terms of dependent
oriented percolation: on the oriented graph Z

d × N, for each site (z, n) ∈ Z
d × N, with

probability α, we erase the finite cluster of oriented percolation with parameter q starting from
(z, n). The remaining random oriented graph is then given to the type-1 particle, which tries to
develop as an oriented percolation with parameter p. Thus, the growth of type-1 particles can
be seen as a dependent oriented percolation model, with an unbounded but exponentially fast
decreasing dependence. Our result ensures the linear growth of this oriented percolation when
it percolates.

A natural question concerning the existence of an asymptotic shape result arises.

Conjecture 1. For every p >
−→
pc

alt(d + 1), every q <
−→
pc

alt(d + 1), and every α ∈ (0, αc(p,

q)), there exists a norm μ on R
d such that, for any two disjoints subsets E1 and E2 in Z

d

with E1 �= ∅, we have, for ε > 0, Pp,q,α(· | τ
E1,E2
1 = +∞) almost surely, and every large

enough t ,

(1 − ε)Bμ(0, 1) ⊂ 1

t
Bt ⊂ (1 + ε)Bμ(0, 1),

where Bt = {x ∈ Z
d : t

E1,E2
1 (x) ≤ t} + [− 1

2 , 1
2 ]d .

This conjecture is consistent with out simulations (see Figure 1). We think that this result
can be proved with subadditive methods similar to those used in the case of the contact process
in a random environment; see [11].

We can find a certain number of similar competition mechanisms in the literature under
the name of hierarchical competition (see [8]), of contact process (or oriented percolation)
in a dynamical random environment (see [3], [18], [19], and [20]), or without any specific
denomination (see [9] and [10]). The common characteristic of these models is that one type
of particle (here type-2 particles) evolves in a Markovian way, and that the second type evolves
as a contact process or an oriented percolation in the remaining empty space.

In this paper we use renormalization techniques. This is not surprising: the efficiency of
such techniques in the study of particle systems has long been known (see, for instance, [2],
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Figure 1: A simulation with p = 0.7, q = 0.25, and α = 10−3.

[6], or [7]), and the use of renormalization is usual to prove that survival occurs with positive
probability. However, studying the system conditioned to survive can be subtle. Indeed, the
renormalizationprocedures tend to destroy the independence properties given by the Marko-
vianity, and the tried and tested restart arguments described in [4] must be adapted with some
care. While the general idea remains simple, the implementation is quite technical and, for the
moment, there are no ready-made tools for this kind of situation. The tools we build are in the
spirit of the theorem of Liggett et al. [16], but in the context of dependent oriented percolations
resulting from renormalization procedures; see Theorem 3.

2. Comparison and coupling results

While the setting of static renormalization can be defined quite formally, there are other
types of renormalization that are harder to classify: they all consider local events that cannot
be defined in an absolute way, but depend on a local component and also on the past of the
renormalization process. This past can be associated to a time line as in [1] and [5], or to a
sequence of spatial boxes as in [14].

After renormalization, we are led to study a dependent oriented percolation process. The
fact that this process survives with positive probability can be proved quite directly from the
comparison result of Liggett et al. [16]. However, when one wants to study the oriented
percolation process conditioned to survive, things are more intricate: our Theorem 3 thus gives
a general setting to ensure that ‘conditioned on its survival, the oriented percolation process on
Z

d ×N built from the renormalization process stochastically dominates an independent oriented
percolation process with parameter as large as we want’. The aim is of course to transfer the
properties of the supercritical independent percolation process to the dependent percolation
process.

We work on the graph Z
d × N, as defined in the introduction. We consider � = {0, 1}−→E d+1

alt

endowed with its Borel σ -algebra and the probability

Pp = B(p)⊗
−→
E

d+1
alt ;

the edges such that ωe = 1 are said to be open, with all other edges closed. For two sites
v, w in Z

d × N, we denote by v → w the existence of an open oriented path from v to w.
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The critical probability is denoted by −→
pc

alt(d + 1). The time translations θn on � are defined
by θn((ω(e,k))e∈−→

E d , k≥1
) = (ω(e,k+n))e∈−→

E d , k≥1
. We set, for n ∈ N and x ∈ Z

d ,

ξx
n = {y ∈ Z

d : (x, 0) → (y, n)},
ξZ

d

n =
⋃

x∈Zd

ξx
n ,

τ x = min{n ∈ N : ξx
n = ∅},

Hx
n =

⋃
0≤k≤n

ξx
k ,

Kx
n = (ξx

n �ξZ
d

n )c = ξx
n ∪ (Zd \ ξZ

d

n ).

As for the contact process, (Hx
n )n≥0 and (Kx

n ∩ Hx
n )n≥0 grow linearly in the case of survival.

Lemma 1. We consider independent oriented percolation on Z
d ×N. For every p >

−→
pc

alt(d +
1), there exist strictly positive constants A, B, and C such that, for every x ∈ Z

d , and every
L, n > 0,

Pp(τx = +∞, [−L, L]d �⊂ Kx
CL+n) ≤ Ae−Bn

Pp(τx = +∞, [−L, L]d �⊂ Hx
CL+n) ≤ Ae−Bn.

Proof. For the contact process, Durrett [5] showed how to deduce an analogous result from
the construction of Bezuidenhout and Grimmett [1]. As explained in [1], the proofs remain
valid for oriented percolation, which is the discrete-time analog of the contact process.

We now recall the comparison theorem of Liggett et al. [16]. In the following, for two edges
e and f in

−→
E

d , we denote by d(e, f ) the distance ‖ · ‖1 between the centers of e and f .

Proposition 1. Let d ≥ 1 be fixed. For every M ≥ 1, there exists a function gM from [0, 1] to

[0, 1] with limq→1 gM(q) = 1 and such that if μ is a probability measure on � = {0, 1}−→E d

satisfying μ(ωe = 1 | ωf , d(e, f ) ≥ M) ≥ q for q ∈ [0, 1] and every e ∈ −→
E

d , then μ

stochastically dominates a product of Bernoulli law with parameter gM(q):

μ � B(gM(q))⊗
−→
E

d

.

Relying on this result, we prove analogous results for a certain class of dependent oriented
percolations.

Definition 1. Let d ≥ 1 be fixed, let M be a positive integer, and let q ∈ (0, 1). Let (�, F , P)

be a probability space endowed with a filtration (Gn)n≥0. We assume that, on this probability
space, a random field (Wn

e )
e∈−→

E d , n≥1
taking values in {0, 1} is defined. This field gives the

states—open or closed—of the edges in
−→
E

d+1
alt . We say that the law of the field (Wn

e )
e∈−→

E d , n≥1
is in Cd(M, q) if it satisfies the following two conditions.

• For all n ≥ 1 and all e ∈ −→
E

d , Wn
e ∈ Gn.

• For all n ≥ 0 and all e ∈ −→
E

d , P(Wn+1
e = 1 | Gn ∨ σ(Wn+1

f , d(e, f ) ≥ M)) ≥ q.

Here σ(Wn+1
f , d(e, f ) ≥ M) is the σ -field generated by the random variables Wn+1

f , with
d(e, f ) ≥ M .
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First, we give a stochastic comparison between fields in Cd(M, q) and Bernoulli product
measures.

Lemma 2. Let d, M ≥ 1 be positive integers, and let q ∈ (0, 1). If the distribution of
(Wn

e )
e∈−→

E d , n≥1
belongs to Cd(M, q) then the distribution of the field (Wn+k

e )
e∈−→

E d , k≥1
condi-

tioned by Gn stochastically dominates B(gM(q))⊗
−→
E

d+1
alt for each n, where the function gM is

as defined in Proposition 1.
In other words, for each n ≥ 0, each A ∈ Gn, and each nondecreasing bounded function f ,

we have

EW [1A(f ◦ θn)] ≥ P(A)

∫
{0,1}

−→
E

d+1
alt

f dB(gM(q))⊗
−→
E

d+1
alt ,

where θn is the translation operator on � that has been defined previously.

Proof. Let E = {0, 1}−→E d
and q ′ = gM(q), and fix n ≥ 1. We will show that, for each

nonnegative integer k and every nondecreasing bounded function f that depends only on the
first k time coordinates, we have

E[1A f (Wn+1, Wn+2, . . . , Wn+k)] ≥ P(A)

∫
f dB(q ′)⊗

−→
E

d+1
alt .

When k = 0, f is constant and the result is obvious.
Suppose that the result holds for k and let us prove it for k + 1. Let h be a nondecreasing

bounded function on Ek+1, and consider A ∈ Gn. Since we work on a Polish space, we can
disintegrate P with respect to the σ -field Gn+k (see, e.g. [22, p. 256]). Then, we have, with the
notation of Stroock [22],

E[1A h(Wn+1, . . . , Wn+k+1)]
= E[1A E[h(Wn+1, . . . , Wn+k+1) | Gn+k]]
=

∫
A

∫
�

h(Wn+1(ω′), . . . , Wn+k(ω′), Wn+k+1(ω′)) dP
Gn+k
ω (ω′) dP(ω)

=
∫

A

∫
�

h(Wn+1(ω), . . . , Wn+k(ω), Wn+k+1(ω′)) dP
Gn+k
ω (ω′) dP(ω).

Since we supposed that the distribution of (Wn
e )

e∈−→
E d , n≥1

belongs to Cd(M, q), the distri-
bution of (Wn+k+1

e )
e∈−→

E d under P
Gn+k
ω satisfies, for every fixed ω, the assumptions of the

Liggett–Schonmann–Stacey comparison theorem (Theorem 1). Thus, it stochastically domi-

nates B(q ′)⊗
−→
E

d
, which gives∫

�

h(Wn+1(ω), . . . , Wn+k(ω), Wn+k+1(ω′)) dP
Gn+k
ω (ω′)

≥
∫

E

h(Wn+1(ω), . . . , Wn+k(ω), x) dB(q ′)⊗
−→
E

d

(x)

= f (Wn+1(ω), . . . , Wn+k(ω)),

where f is defined by

f (y1, . . . , yk) =
∫

E

h(y1, . . . , yk, x) dB(q ′)⊗
−→
E

d

(x). (4)
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Thus, we obtain

E[1A h(Wn+1, . . . , Wn+k)] ≥
∫

A

f (Wn+1, . . . , Wn+k) dP.

By the induction assumption,∫
A

f (Wn+1, . . . , Wn+k) dP ≥ P(A)

∫
Ek

f (y1, . . . , yk) d(B(q ′)⊗
−→
E

d

)⊗k,

which, using (4), yields the desired result.

We now associate to every {0, 1}-valued random field (Wn
e )

e∈−→
E d , n≥1

an oriented percolation
process (ξ0

n (W))n≥1 = (ξ0
n )n≥1 starting from (0Zd , 0) and defined in the usual way:

ξ0
0 = {0}, ξ0

n+1 = {x ∈ Z
d : there exists y ∈ ξ0

n , Wn+1
(y,x) = 1}.

For simplicity, we will often say ‘oriented percolation in Cd(M, q)’ instead of ‘oriented
percolation associated to a field χ ∈ Cd(M, q)’.

We define the extinction time of the oriented percolation associated to W and starting from
(0Zd , 0) as

τ 0(W) = τ 0 = inf{n ≥ 1 : ξ0
n = ∅}.

The following result allows a coupling between surviving dependent percolation in Cd(M, q)

and supercritical Bernoulli percolation.

Theorem 3. Let d, M ≥ 1 be fixed positive integers, and let q ∈ (0, 1) be such that gM(q) >−→
pc

alt(d + 1).
There exist positive constants β and γ such that, for each field χ ∈ Cd(M, q), we can find a

probability space where live a field W = (Wn
e )

e∈−→
E d , n≥1

, a field (W ′n
e )

e∈−→
E d , n≥1

, both taking

both values in {0, 1}, an N-valued random variable T , and a Z
d -valued random variable D

such that:

• ‖D‖1 ≤ T and E[exp(βT )] ≤ γ ;

• the field (Wn
e )

e∈−→
E d , n≥1

follows the distribution χ and P(τ 0(W) = ∞) > 0;

• T = τ 0(W) on the event {τ 0(W) < +∞};
• conditioning on {τ 0(W) = +∞}, the open cluster issued from (0Zd , 0) of the field

(W ′n
e )

e∈−→
E d , n≥1

has the same distribution as the open cluster issued from (0Zd , 0) condi-
tioned on survival in independent oriented percolation with parameter gM(q); moreover,
on {τ 0(W) = +∞}, we have

ξ0
T +n(W) ⊃ D + ξ0

n (W ′) for all n ≥ 0.

In fact, this theorem contains two results:

• it ensures the existence of an embedded, independent infinite cluster in the dependent
infinite cluster, and controls its position;

• when the dependent cluster is finite, it also controls its height.
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Proof of Theorem 3. Define q ′ = gM(q). Let E1, . . . , En be finite subsets of Z
d . We define

E = (E1, . . . , En) and |E| = n. The event

AE =
|E|⋂
i=1

{ξ0
i = Ei}

is in Gn; on this event, the history of the directed percolation process starting from (0Zd , 0) up
to time n is characterized by E.

From now on, we only consider histories satisfying χ(AE) > 0; for such a history, we define

a probability measure mE on {0, 1}−→E d×N
∗

by

mE(B) = χ((W |E|+k)k≥1 ∈ B | AE);
we call it the law of the dependent oriented percolation with history E. Thanks to Lemma 2,

the probability measure mE stochastically dominates B(q ′)⊗
−→
E

d×N
∗
.

Strassen’s theorem (see [21] and also [17]) allows us to build a law νE on ({0, 1}−→E d×N
∗
)2

with marginals mE and B(q ′)⊗
−→
E

d×N
∗
, concentrated on {x ≥ y}, with

x ≥ y for all (x, y) ∈ ({0, 1}
−→
E

d×N
∗
)2 ⇔ xe ≥ ye for all e ∈ −→

E
d × N

∗.

For every history E, the law νE allows us to establish a coupling between the states of the bonds
in dependent and independent oriented percolations with common history E. Now, on the same
probability space (�, F , P), we can construct a family of ({0, 1}−→E d×N

∗
)2-valued independent

processes (Eη, Eη′)E , which are indexed by the collection of all histories E in such a way that,
for every history E,

(Eηn
e , Eη′n

e )
e∈−→

E d , n≥1
law= νE.

We denote by Eτx the time for the independent directed percolation related to Eη′ and
starting from x (and not from the whole history E) to die. We write ξn(

Eη) to denote the state
at time n of the dependent percolation process with history E; thus, ξ0(

Eη) = E|E|. We also
denote by ENx = (ξ1(

Eη), . . . , ξEτx (Eη)) the sequence of configurations occupied up to time
Eτx by the dependent percolation process associated to η with history E and denote by ELx

its terminal configuration.
In words, given a history E and a point x, we run the coupling between the independent

percolation associated to Eη and the dependent percolation associated to Eη′ up to time Eτx

when the cluster issued from x in the independent percolation dies out. We then store the new
history of the dependent percolation in ENx and its final state in ELx . Note that:

• the percolation fields both have history E;

• we define the whole percolation fields, not only the clusters issued from a specific set;

• we run the coupling until time Eτx when the open cluster issued from x in the independent
percolation dies out;

• if the terminal configuration ELx of the dependent percolation is empty then, by a stochas-
tic comparison, Eτx is also the lifetime of the dependent percolation after history E.

We then build three sequences: a sequence of sites (xn), a sequence of times (tn), and a sequence
of compatible histories (εn) which we recursively define as follows. Denote by � a cemetery
point added to Z

d , and let ε0 = {0}, t0 = 0, and x0 = 0.

• If xi = � then ti+1 = +∞, xi+1 = �, and εi+1 = εi .
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• If xi �= � (and, thus, ti < +∞) then ti+1 = ti + εi τ xi ; if, moreover, εi τ xi < +∞ and
εi Lxi �= ∅, then

xi+1 = min εi Lxi and εi+1 = (εi,
εi Nxi ),

where min denotes the lexicographic order on Z
d . Otherwise, set xi+1 =� and εi+1 =εi .

Then define

K = min{k ≥ 1 : tk+1 = +∞}, T = tK, and D = xK.

For i ≤ K and e ∈ −→
E

d , put Wn
e = εi η

n−ti
e for n ∈ [ti , ti+1). Finally, for each n ≥ 1 and each

e ∈ −→
E

d , define W ′n
e = εK η′n

e−xK
.

This procedure, which is close to the classical so-called ‘restart argument’, can be described
as follows: starting from 0, we construct a coupling {0}ν between dependent and independent
percolations up to time t1 = {0}τ 0 when independent percolation dies. Then we record the
history of the dependent percolation in ε1, and pick some point x1 occupied by the dependent
percolation process in the terminal configuration. We then construct another coupling ε1ν

between the dependent percolation and some new independent percolation process starting
from x1, following this coupling until time t2 when the new independent percolation also dies.
We can complement the history of the dependent percolation and get ε2, then choose x2 occupied
by the dependent percolation process in the terminal configuration, and so on.

We will soon see that K is almost surely finite; hence, tK < +∞ and tK+1 = +∞. This
can occur for one of the following reasons:

• εK τxK = +∞, which means that the independent oriented percolation starting from xK

at time tK lives forever (and so does the dependent oriented percolation by stochastic
domination);

• εK τxK < +∞ and εK LxK = ∅, which means that the dependent oriented percolation
died exactly at the same time as the independent oriented percolation starting from xK

at time tK .

This procedure stops either because we find a time tK when our Kth independent percolation
process survives, or because the dependent percolation process died together with the indepen-
dent percolation process.

Let us denote by Tn the σ -field generated by the (Eη, Eη′)|E|≤n. We have, for α > 0,

E[exp(αεnτ xn) 1{K>n} | Ttn ] = E[exp(αεnτ xn) 1{tn+1<+∞} | Ttn ]
= E[exp(αεnτ xn) 1{tn<+∞, εnLxn �=∅, εn τxn<+∞} | Ttn ]
≤ 1{K>n−1}

∫
1{τ 0<+∞} exp(ατ 0) dB(q ′)⊗

−→
E

d×N
∗
.

Thus, since q ′ >
−→
pc

alt(d + 1), if we put r = ∫
1{τ 0<+∞} exp(ατ 0) dB(q ′)⊗

−→
E

d×N
∗
, we can

choose α > 0 small enough to have r < 1. Then

E[exp(αtn+1) 1{K=n+1}] ≤ E[exp(α(ε0τx0 + · · · + εnτ xn)) 1{K>n}]
≤ rE[exp(αtn) 1{K>n−1}]
≤ rn+1;

thus, E[exp(αT )] ≤ ∑+∞
i=0 ri+1 = r/(1 − r).
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Since K ≤ T , we obtain the existence of exponential moments for K , and the fact that K is
almost surely finite.

Stacking up the conditional laws, we can check that the field W has the desired distribution.
Assume that τ 0(W) < +∞ and K = k. Then tk < +∞ and tk+1 = +∞. For each

n ∈ [tk, +∞), we have, by construction, (Wn
e )

e∈−→
E d = (εkη

n−tk
e )

e∈−→
E d . If εkLxk �= ∅ then

tk+1 = tk + εk τ xk = +∞, implying that εk τ xk = +∞, which cannot happen because τ 0(W) <

+∞. Thus, εkLxk = ∅, so τ 0(W) ≤ tk = T . The inequality τ 0(W) ≥ tk directly follows from
the inclusion between independent and dependent percolations. Finally, if τ 0(W) < +∞ then
T = τ 0(W).

On the event {τ 0(W) = +∞}, we have, by construction, D ∈ ξ0
T (W), so the inclusion

property gives ξ0
T +n(W) ⊃ D + ξ0

n (W ′) for all n ≥ 0. Let B be any Borel set B in {0, 1}−→E d+1
alt ,

and define, for x ∈ Z
d , x · B = {(ηn

e+x)e∈−→
E d , n≥1

: η ∈ B}. Noting that {τ 0(W) = +∞,

K = n, εn = E, xn = x} ⊂ {Eτx = +∞}, we obtain, by independence,

P(τ 0(W) = +∞, K = n, εn = E, xn = x, W ′ ∈ B)

= P(τ 0(W) = +∞, K = n, εn = E, xn = x, Eη′ ∈ (−x)B)

= P(τ 0(W) = +∞, K ≥ n, εn = E, xn = x, Eη′ ∈ (−x)B, Eτx = +∞)

= P(τ 0(W) = +∞, K ≥ n, εn = E, xn = x)P(Eτx = +∞, Eη′ ∈ (−x)B)

= P(τ 0(W) = +∞, K ≥ n, εn = E, xn = x)Pq ′(τ 0 = +∞, B).

Summing over all possible values for E, n, and x, we obtain the existence of c such that

P(τ 0(W) = +∞, W ′ ∈ B) = cPq ′(τ 0 = +∞, B) for all B ∈ B({0, 1}
−→
E

d+1
alt ).

The constant c is identified by taking B = �, so we obtain P(W ′ ∈ B | τ 0(W) = +∞) =
Pq ′(B | τ 0 = +∞).

3. Some properties of dependent oriented percolation

The coupling theorem, Theorem 3, permits the transfer of some properties from supercritical
independent oriented percolations to dependent oriented percolations in Cd(M, q) for q close
to 1. In practice, such processes often arise after the use of a dynamical renormalization scheme.

As a by-product of the proof of Theorem 3, we obtain information on the exponential
moments of the extinction times. For oriented Bernoulli percolation, a Peierls-like argument
shows that

lim
p→1

inf
β>0

∫
1{τ 0<+∞} exp(βτ 0) dPp = 0, (5)

which can be transposed to the dependent fields of Cd(M, q) as follows.

Corollary 1. Let ε > 0 and M > 1. There exist β > 0 and q < 1 such that, for each
χ ∈ Cd(M, q),

Eχ [1{τ 0<+∞} exp(βτ 0)] ≤ ε.

Proof. We observed in the proof of Theorem 3 that T = τ 0 when {τ 0 < +∞}. We also
have the bound

Eχ [1{τ 0<+∞} exp(βτ 0)] ≤ Eχ [eβT ] ≤ r

1 − r
,

with r = ∫
1{τ 0<+∞} exp(βτ 0) dPgM(q); the result then follows from (5).
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As a direct application of the coupling theorem, Theorem 3, the linear growth of the set Hn

of points reached before time n, given in Lemma 1 for independent directed percolation, can
be transposed to any dependent percolation in Cd(M, q).

Corollary 2. Let d, M ≥ 1 be fixed positive integers, and let q ∈ (0, 1) be such that gM(q) >−→
pc

alt(d + 1). There exist positive constants β, D1, and D2, and random variables (Sy)y∈Zd

such that
E[eβSy ] ≤ D2 for all y ∈ Z

d ,

and such that, for each field χ ∈ Cd(M, q), on the event {τy = +∞}, the directed percolation
associated to χ satisfies

y + [−D1n, D1n]d ⊂ H
y
Sy+n for all n ∈ N.

Having in mind an accurate study of certain particle systems, it could be interesting to have
estimates on the density of bi-infinite points in the dependent oriented percolation. Thus, we
define

G(x, y) = {k ∈ N, (x, 0) → (y, k) → ∞},
γ (θ, x, y) = inf{n ∈ N : |{0, . . . , k} ∩ G(x, y)| ≥ θk for all k ≥ n}.

Corollary 3. Let M > 1. There exist q0 < 1 and positive constants A, B, θ , and β such that,
for each χ ∈ Cd(M, q0), we have

P(+∞ > γ (θ, x, y) > β‖x − y‖1 + n) ≤ Ae−Bn for all x, y ∈ Z
dand all n ≥ 0.

Such estimates allow us to study the large deviations of the asymptotic shape of the contact
process [13]. Considering Theorem 3, Lemma 3 easily follows from the independent case. We
define

Ĩ∞ = {(x, n) ∈ Z
d × N : Z

d × {0} → (x, n) → ∞}.
Note that ifx ∈ K0

k and (x, k) ∈ Ĩ∞, then, by the definition of the coupled regionK0
k , (0Zd , 0)→

(x, k) → ∞.

Lemma 3. Consider independent directed percolation on Z
d × N. For each ρ ∈ (0, 1), there

exists p0(ρ) < 1 such that, for each p > p0(ρ),

Pp(A ∩ Ĩ∞ = ∅) ≤ 16ρ|A|−2 for all finite A ⊂ {0} × N.

Proof. Note first that, by inclusion, it is sufficient to prove the lemma for d = 1; when
d = 1, we can use contour arguments. The oriented graph we defined is not the classical graph
for oriented percolation in dimension 2: our graph has more edges. However, once again, by
inclusion, it is sufficient to prove the lemma for the classical oriented percolation model in
dimension 2 (see, for example, [4]) for which the dual graph is particularly simple. So we
consider independent and identically distributed (i.i.d.) percolation with parameter p on the
following oriented graph L+.

• The set of sites is V = {(z, n) ∈ Z × Z : |z| + n is even}.
• There is an oriented edge from (z1, n1) to (z2, n2) if and only if n2 = n1 + 1 and

|z2 − z1| = 1.

The critical probability for this model is denoted by −→
pc .
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We define L− by simply reversing the oriented edges of L+. The state—open or closed—of
an edge is the same in the two graphs. We respectively denote by ‘→+’ and ‘→−’ the events of
being linked by an open oriented path in L+ and in L−. As before, we define, for ε ∈ {+, −},

ξx
ε,n = {y ∈ Z : (y, n) ∈ Lε(1), (x, 0) →ε (y, n)},
τ x
ε = max{εn ∈ N : ξx

ε,n �= ∅},
I ε∞ = {(x, n) ∈ Lε : τx

ε ◦ θεn = +∞},
I∞ = I+∞ ∩ I−∞.

As Ĩ∞ ⊃ I∞, it is sufficient to prove the lemma when we replace Ĩ∞ by I∞. Let A be a fixed
finite subset of {0} × 2N and let n be the smallest integer larger than |A|/2. Then

Pp(A ∩ I∞ = ∅) ≤ Pp(there exists B ⊂ A; |B| = n; B ∩ I+∞ = ∅)

+ Pp(there exists B ⊂ A; |B| = n; B ∩ I−∞ = ∅)

≤ 2Pp(there exists B ⊂ A; |B| = n; B ∩ I+∞ = ∅)

≤ 2
∑

B⊂A, |B|=n

Pp(B ∩ I+∞ = ∅).

We work from now on with the graph L+. We fix a finite set B ⊂ A. For v ∈ V, denote by
C(v) the open cluster starting from v:

C(v) = {w ∈ V : v →+ w}.
We set Cf (v) = C(v) if C(v) is finite and Cf (v) = ∅ otherwise. We also set

Cf (B) =
⋃
v∈B

Cf (v).

If C ⊂ V is a finite set of vertices, we denote by ∂eC the set of edges entering in or exiting
from C and by ∂∗

e C the union of the segment lines corresponding to the dual edges of ∂eC: it
is a union of circuits. Note that

|∂eC| ≥ 2|C ∩ ({0} × 2Z)|.
Thus, as B ⊂ A ⊂ {0} × 2Z,

{B ∩ I+∞ = ∅} ⊂ {B ⊂ Cf (B)} ⊂ {|∂eC
f (B)| ≥ 2|B|},

and so

Pp(B ∩ I+∞ = ∅) ≤
∑

i≥|B|/2

P(|∂eC
f (B)| = 4i) =

∑
i≥|A|/4

P(|∂eC
f (B)| = 4i).

Let i be a fixed integer, and assume that |∂eC
f (B)| = 4i. Note first that all edges exiting

Cf (B) must be closed. Looking on a ‘diagonal line’, we see that there are at least as many
edges exiting Cf (B) as edges entering Cf (B) (here we count an edge which is both entering
Cf (B) and exiting Cf (B) as an exiting edge), and, thus, at least half of the edges in Cf (B)

must be closed. Next, ∂∗
e Cf (B) is composed of at most i circuits. In Cf (B), consider the set
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of minima for the order relation ‘→’: all edges entering B in these points are necessarily in
∂eC

f (B), which allows us to root the circuits of ∂∗
e Cf (B) to some points in B. So,

Pp(∂eC
f (B)) = 4i) ≤

(|B|
i

)
44i

P

( 4i∑
k=1

Xk ≤ 2i

)
≤ 2n44i

P

( 4i∑
k=1

Xk ≤ 2i

)
,

where (Xk)k≥1 are i.i.d. random variables with Bernoulli law of parameter p. Now, large
deviation inequalities imply that, for every r ∈ (0, 1), there exists p(r) ∈ (0, 1) such that, for
all p ≥ p(r),

P

( 4i∑
k=1

Xk ≤ 2i

)
≤ r4i .

Let ρ ∈ (0, 1) be fixed, and apply the previous estimate for r = ρ/4
√

2 ∈ (0, 1). This gives,
for every p ≥ p(r),

Pp(A ∩ I∞ = ∅) ≤ 2
∑

B⊂A, |B|=n

Pp(B ∩ I+∞ = ∅)

≤ 2
∑

i≥|A|/4

P(∂eC
f (B) = 4i)

≤ 4 × 2|A|/2
∑

i≥|A|/4

(4r)4i

≤ 4

1 − 4r
(4

√
2r)|A|

≤ 16ρ|A|.

Lemma 4. We consider independent directed percolation on Z
d × N. There exist positive

constants A, B, θ, β, and p < 1 such that, for every x, y ∈ Z
d ,

Pp(τx = +∞, γ (θ, x, y) ≥ β‖y − x‖∞ + n) ≤ Ae−Bn for all n ∈ N. (6)

Proof. We actually prove the following simpler result: there exists p close to 1, and positive
constants A, B, C′, and θ such that, for all x ∈ Z

d and all n ∈ N,

Pp(τ 0 = +∞, |k ∈ {C′‖x‖∞, . . . , C′‖x‖∞ + n : (0Zd , 0) → (x, k) → ∞}| ≤ θn)

≤ Ae−Bn. (7)

Let us show that (7) implies (6). We note that γ (θ, x, y) has the same distribution as
γ (θ, 0, y − x) and that θ < 1. Then, using (7),

Pp

(
τ 0 = +∞, γ (θ, 0, x) ≥ C′

θ
‖x‖∞ + n

)

= Pp

(
τ 0 = +∞, there exists k ≥ C′

θ
‖x‖∞ + n,

|{l ∈ {0, . . . , k} : (0Zd , 0) → (x, l) → +∞}| ≤ θk

)
≤ Pp(τ 0 = +∞, there exists k ≥ n,

|{l ∈ {C′‖x‖∞, . . . , C′‖x‖∞ + k} : (0Zd , 0) → (x, l) → +∞}| ≤ θk)
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≤
∑
k≥n

Pp(τ 0 = +∞,

|{l ∈ {C′‖x‖∞, . . . , C′‖x‖∞ + k} : (0Zd , 0) → (x, l) → +∞}| ≤ θk)

≤
∑
k≥n

A exp(−Bk).

Taking β = C′/θ , this proves (6).
Let us now prove (7). We define

Ĩ∞ = {(x, n) ∈ V
d+1 : Z

d × {0} → (x, n) → ∞}.
Note that if x ∈ K0

k and (x, k) ∈ Ĩ∞, then, by the definition of the coupled region, (0Zd , 0) →
(x, k) → ∞. We take C′ = �1/C�, where C is given in Lemma 1: we choose any θ

with 0 < θ < 1
4 . Then

Pp(τ 0 = +∞, |{k ∈ {C′‖x‖∞, . . . , C′‖x‖∞ + n} : (0Zd , 0) → (x, k) → ∞}| ≤ θn)

≤ Pp

(
τ 0 = +∞, there exists k ≥ C′‖x‖∞ + n

2
, K0

k �⊃ [−CC′‖x‖∞, CC′‖x‖∞]d
)

+ Pp

(∣∣∣∣
{
k ∈

{
C′‖x‖∞ + n

2
, . . . , C′‖x‖∞ + n

}
: (x, k) ∈ Ĩ∞

}∣∣∣∣ ≤ θn

)
.

For the first term, using Lemma 1,

Pp(τ 0 = +∞, there exists k ≥ C′‖x‖∞ + n

2
, K0

k �⊃ [−CC′‖x‖∞, CC′‖x‖∞]d)

≤
∑

k≥n/2

Pp(τ 0 = +∞, KC′‖x‖∞+k �⊃ [−CC′‖x‖∞, CC′‖x‖∞]d)

≤
∑

k≥n/2

A exp(−Bk).

To control the second term, we use Lemma 3. Choosing 0 < ρ < 1 such that 2ρ1/2 < 1, we
obtain, for p ≥ p0(ρ),

Pp

(∣∣∣∣k ∈ {C′‖x‖∞ + n

2
, . . . , C′‖x‖∞ + n} : (x, k) ∈ Ĩ∞

∣∣∣∣ ≤ θn

)
≤ 2n/2+116ρn/2−θn−3.

This concludes the proof of (7), and therefore of the lemma.

4. An abstract restart procedure

In this section we formalize the restart procedure for Markov chains. Let E be the state
space on which our Markov chains (Xx

n)n≥0 evolve, where x ∈ E denotes the starting point
of the chain. We suppose that we have at our disposal a set �̃, an update function f : E ×
�̃ → E, and a probability measure ν on �̃ such that, on the probability space (�, F , P) =
(�̃N

∗
, B(�̃N

∗
), ν⊗N

∗
), endowed with the natural filtering (Fn)n≥0 given by Fn = σ(ω 	→

ωk : k ≤ n), the chains (Xx
n)n≥0 starting from the different states satisfy the following

representation:
Xx

0 (ω) = x, Xx
n+1(ω) = f (Xx

n(ω), ωn+1).
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As usual, we define θ : � → � which maps ω = (ωn)n≥1 to θω = (ωn+1)n≥1. We assume that,
for each x ∈ E, we have defined an (Fn)n≥0-adapted stopping time T x , an FT x -measurable
function Gx , and an F -measurable function Fx . We are interested in the following quantities:

T x
0 = 0 and T x

k+1 =
{+∞ if T x

k = +∞,

T x
k + T xk (θT x

k
) with xk = Xx

θT x
k

otherwise;

Kx = inf{k ≥ 0 : T x
k+1 = +∞}, Mx =

Kx−1∑
k=0

Gxk (θT x
k
) + FXxK

(θT x
K
).

We wish to control the exponential moments of the Mxs with the help of exponential bounds
for Gx and Fx . In numerous applications of directed percolation or the contact process, T x is
the extinction time of the process (or of some embedded process) starting from the smallest
point (in the lexicographic order) in the configuration x.

Lemma 5. Suppose that there exist real numbers A > 0, c < 1, p > 0, and β > 0, and that
the real-valued functions (Gx)x∈E and (F x)x∈E defined above are such that, for all x ∈ E,

G(x) = E[exp(βGx) 1{T x<+∞}] ≤ c,

F(x) = E[1{T x=+∞} exp(βF x)] ≤ A,

T(x) = P(T x = +∞) ≥ p.

Then, for each x ∈ E, Kx is P-almost surely finite and

E[exp(βMx)] ≤ A

1 − c
< +∞.

Before presenting the proof, we note that we could give a statement about Markov chains
avoiding the use of an update function, by working directly with the trajectory space of the
Markov chain rather than with the generic underlying space: in this way, P(T x = +∞) would
be replaced by P

x(T = +∞) and many of the formulae would be simpler. However, the
processes we plan to apply this lemma to are often built from a graphical construction (here the
� where the growth model lives), and the functions G· and H · we plan to apply the lemma to
are defined from the graphical representation, and not from the Markov chain.

Proof of Lemma 5. We can assume without loss of generality that β = 1. Let x ∈ E be
fixed. At first, we have, for each n ≥ 0,

P(Kx > n | FT x
n
) = P(T x

n+1 < +∞ | FT x
n
)

= P(T x
n < +∞, T xn(θT x

n
) < +∞ | FT x

n
)

= 1{T x
n <+∞}(1 − T(xn))

≤ (1 − p) 1{T x
n <+∞}

= 1{Kx>n−1}(1 − p).

Then P(Kx > n) ≤ (1 − p)P(Kx > n − 1), which ensures that Kx is P-almost surely finite.
Let Sx−1 = 1, and, for k ≥ 0, put

Sx
k = exp

( k∑
i=0

Gxi (θT x
i
)

)
1{T x

k+1<+∞} .
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We note that Sx
k is FT x

k+1
-measurable. For k ≥ 0, we have

exp(Mx) 1{Kx=k} = Sx
k−1 1{T xk ◦θ

T x
k =+∞} exp(F xk );

hence, by the strong Markov property, E[exp(Mx) 1{Kx=k} | FT x
k
] = Sx

k−1F(xk). Then

E[exp(Mx) 1{Kx=k}] ≤ AE[Sx
k−1].

For k ≥ 1, the strong Markov property again gives

E[Sx
k+1 | FT x

k+1
] = Sx

k × G(xk+1).

Then E[Sx
k+1] ≤ cE[Sx

k ] and E[exp(Mx) 1{Kx=k}] ≤ Ack . We conclude the proof by summing
over k.

5. Application to the model

5.1. Dependence to initial conditions

We first prove that the positivity of the probability of survival for the bacteria does not depend
on the initial condition of the environment. We note that Steif and Warfheimer [20] proved a
similar result for the model introduced by Broman [3].

Proof of Theorem 1. Let p >
−→
pc , q <

−→
pc , and α > 0 such that Pp,q,α(τ

0,∅
1 = +∞) > 0.

We want to show that Pp,q,α(τ
0,Zd\{0}
1 = +∞) > 0. Let us denote by Cn the event ‘there

exists x ∈ [−n, n]d such that Z
d × {0} is linked to (x, n) by open bonds of directed oriented

percolation with parameter q’. By a time reversal argument, we obtain

Pp,q,α(Cn) ≤ (2n + 1)dPq(T > n) ≤ A exp(−Bn),

where T is the extinction time of some subcritical oriented percolation process with parameter q.
We conclude that, if AN = ⋂

k≥N Cc
k ,

lim
N→+∞ Pp,q,α(AN−1 ◦ θ1) = lim

N→+∞ Pp,q,α(AN−1) = 1,

whence
lim

N→+∞ Pp,q,α(τ
0,∅
1 = +∞, AN−1 ◦ θ1) = Pp,q,α(τ

0,∅
1 = +∞).

In particular, there exists N such that Pp,q,α(τ
0,∅
1 = +∞, AN−1 ◦ θ1) > 0. Let us denote by

B the event ‘all the oriented edges issued from [−3N, 3N ]d ×{0} are closed for the percolation
with parameter q’. By independence, we have

Pp,q,α(τ
0,∅
1 = +∞, AN−1 ◦ θ1, B) = Pp,q,α(τ

0,∅
1 = +∞, AN−1 ◦ θ1)Pp,q,α(B) > 0.

It remains to prove that τ
0,Zd\{0}
1 = +∞ holds on this event. It is sufficient to prove that the

processes (η
0,Zd\{0}
1,n )n≥0 and (η

0,∅
1,n )n≥0 coincide on this event; but, because of the definition of

the dynamics, it is sufficient to note that, on the event (AN−1 ◦ θ1) ∩ B, we have

η
∅

2,n ∩ [−n, n]d = η
Z

d\{0}
2,n ∩ [−n, n]d for all n ≥ 1,

which completes the proof.
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5.2. Outline of the proof of Theorem 2

The idea of the proof is to define a local block event with probability close to 1, which
expresses the fact that if the bacterium occupies a sufficiently large area at a given place, it will
presumably extend itself a bit further. If the associated block process percolates then the linear
growth is ensured by Theorem 3. With a restart argument, we find a point in space–time, not
too far from the origin, where the bacterium occupies a sufficiently large area and where the
associated block process percolates, which will give the desired result.

The statement of Theorem 2 actually contains two facts that must be proved separately: the
fact that αc > 0 and the fact that, for α < αc, the process, when surviving, grows linearly.
We can find in the literature many examples of block events similar to those we use. Most of
these papers take inspiration from the Bezuidenhout and Grimmett article [1]. We think that,
for this kind of dynamical renormalization scheme, the existence of a coupling between the
dependent oriented percolation of blocks and a Bernoulli oriented percolation conditioned to
survive is barely explained in the literature. This led us to write Theorem 3. In Subsection 5.3
we focus on the case where α is small and the renormalization event simpler. The construction
for α < αc, which is technically more subtle, is explained in Subsection 5.4.

5.3. Positivity of αc (the case of small α)

We prove here that, when α is small enough, Pp,q,α(τ
0,Zd\{0}
1 = +∞) > 0 and the growth

is linear on the event {τ 0,Zd\{0}
1 = +∞}.

5.3.1. The block event. Let I, L ∈ N
∗ with I < L. Recall that the constant C is given in

Lemma 1. We let
T = 6CL and J = 2(L + T ).

For k̄ ∈ Z
d , x ∈ [−L, L)d , and u ∈ Z

d such that ‖u‖1 ≤ 1, we define the following event:

A(k̄, x, u) =
{

there exists s ∈ [−L, L)d,

2L(k̄ + u) + s + [−I, I ]d ⊂ η
2Lk̄+x+[−I,I ]d ,Zd\(2Lk̄+[−J,J ]d )
1,T ,

η
2Lk̄+x+[−I,I ]d ,Zd\(2Lk̄+[−J,J ]d )
2,T ∩ (2L(k̄ + u) + [−J, J ]d) = ∅,

2Lk̄ + [−L, L]d ⊂
⋃

0≤t≤T

η
2Lk̄+x+[−I,I ]d ,Zd\(2Lk̄+[−J,J ]d )
1,t

}
.

If A(k̄, x, u) holds, we denote by s(k̄, x, u) an element s satisfying the condition above.
Let us briefly explain the significance of the event A(k̄, x, u). Obviously, η

A,B
1,T is non-

decreasing with respect to A and nonincreasing with respect to B, whereas ηB
2,T is nondecreasing

with respect to B. Thus, if A(k̄, x, u) holds and if one knows that at time 0 the block
2Lk̄ + x + [−I, I ]d is full of ‘1s’ and the block 2Lk̄ + [−J, J ]d contains no ‘2’, then one
knows that analogous conditions will be fulfilled around 2L(k̄ + u) at time T . Of course, the
idea is to follow a chain of such events in an oriented percolation and to draw a path ensuring
the development of the bacteria.

Lemma 6. For each p >
−→
pc

alt(d + 1), each q <
−→
pc

alt(d + 1), and each ε > 0, we can
find large enough integers I < L and small enough α ∈ (0, 1) such that, for every k̄ ∈ Z

d ,
x ∈ [−L, L)d , and u ∈ Z

d such that ‖u‖1 ≤ 1,

Pp,q,α(A(k̄, x, u)) ≥ 1 − ε.
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Moreover, as soon as ‖k̄ − l̄‖1 > 4 + 18C, for every x, y ∈ [−L, L]d , every u, v ∈ Z
d such

that ‖u‖1 ≤ 1, and ‖v‖1 ≤ 1, the events A(k̄, x, u) and A(l̄, y, v) are independent.

Proof. First note that Pp,q,α(A(k̄, x, u)) = Pp,q,α(A(0̄, x, u)), which allows us to consider
only the n̄ = 0̄ case.

Under Pp,q,α , the collections of random variables ω1 = (ωe
1,n)e∈−→

E d , n∈N∗ and ω2 =
(ωe

2,n)e∈−→
E d , n∈N∗ have the law of the bonds of an independent directed percolation with

parameters p and q, respectively. We realize these percolation structures on �, keeping the
notation introduced in the introduction: thus, under Pp,q,α , (ξA

n (ω1))n≥0 is a directed Bernoulli
percolation process with parameter p starting from the set A and (τ x

1 (ω2))n≥0 is the extinction
time for a directed Bernoulli percolation process with parameter q starting from x. Under
Pp,q,α , the collection of random variables ω3 = (ωe

3,n)e∈−→
E d , n∈N∗ are independent Bernoulli

with parameter α. They represent the immigration of immune cells.
Let ε > 0. We choose two integers I and L with I < L—their values will be fixed later.

Define

B(x, u) =
{

there exists s ∈ [−L, L)d, 2Lu + s + [−I, I ]d ⊂ ξ
x+[−I,I ]d
T (ω1),

for all (y, n) ∈ [−(4L + 2T ), (4L + 2T )]d × {1, . . . , T }, ω
y,n
3 = 0,

and τ
y
1 ◦ θn(ω2) ≤ T

2
, [−L, L]d ⊂

⋃
0≤t≤T

ξ
x+[−I,I ]d
t (ω1)

}
.

We will show that B(x, u) ⊂ A(0̄, x, u) and also that one can choose I and L in such a way
that Pp,q,α(B(x, u)) ≥ 1 − ε, which will give the desired result. The advantage of using B

isthat it does not deal with the competition process, using only the directed percolation and the
immigration processes. Thus, it is easier to estimate its probability.

Step 1: show that B(x, u) ⊂ A(0̄, x, u). The existence of a convenient s for the condition
of A(0̄, x, u) is given by B(x, u) for the oriented percolation with parameter p embedded in
the model. We need to verify that our event ensures that the type-2 particles cannot disturb the
progress of type-1 particles.

Note that A = x + [−I, I ]d and B = Z
d \ [−J, J ]d . At time 0, the smallest distance

between points in η
A,B
1,0 and ηB

2,0 is at least 2L + 2T − (L + I ) > 2T . In the zone [−J, J ]d ,
there is no immigration between time 0 and time T , so η

A,B
1,t and ηB

2,t get closer at a speed that
does not exceed 2 per time unit; thus, by time T , the type-2 particles have not disturbed the
movement of type-1 particles.

It remains to see that η2,T cannot reach 2Lu + [−J, J ]d . Remember that there is no
immigration between time 0 and time T in the area [−(4L + 2T ), (4L + 2T )]d . Moreover,
type-2 particles that are outside [−(4L + 2T ), (4L + 2T )]d at time 0 do not have enough
time to reach 2Lu + [−J, J ]d at time T , so only type-2 particles that were already inside
[−(4L + 2T ), (4L + 2T )]d at time 0 must be considered. But these particles are all dead at
time T/2. This completes the proof of the inclusion.

Step 2: bound the probability of B(x, u) from below. Recall that P = Pp,q,α . We first
choose an integer I large enough to have

P(τ
x+[−I,I ]d
1 (ω1) = +∞) ≥ 1 − ε

12
for all x ∈ Z

d . (8)

By the Fortuin–Kasteleyn–Ginibre inequality, P(for all y ∈ [−I, I ]d , τ
y
1 (ω1) = +∞) > 0.
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Translation invariance and ergodicity of P then give

lim
L→+∞ P(there exists n ∈ [0, L] : for all y ∈ nu + [−I, I ]d , τ

y
1 (ω1) = +∞) = 1.

Let L1 > I be such that, for each L ≥ L1,

P(there exists n ∈ [0, L] : for all y ∈ nu + [−I, I ]d , τ
y
1 (ω1) = +∞) > 1 − ε

12
.

Let L ≥ L1. By a time reversal argument, we have, for each t > 0,

P(there exists n ∈ [0, L] : nu + [−I, I ]d ⊂ ξZ
d

t (ω1))

= P(there exists n ∈ [0, L] : for all y ∈ nu + [−I, I ]d , τ
y
1 (ω1) ≥ n)

≥ 1 − ε

12
. (9)

Now, Lemma 1 gives the existence of some L2 ≥ L1 such that, for each L ≥ L2, we have
simultaneously

P(there exists y ∈ [−2L, 2L]d : τ
y
1 (ω1) = +∞, Lu + [−2L, 2L]d �⊂ K

y
6CL(ω1))

≤ (4L + 1)dP(τ 0
1 (ω1) = +∞, [−5L, 5L]d �⊂ K0

6CL(ω1))

≤ ε

12
, (10)

and
P(there exists y ∈ [−2L, 2L]d : τ

y
1 (ω1) = +∞, [−L, L]d �⊂ H

y
6CL(ω1))

≤ (4L + 1)dP(τ 0
1 (ω1) = +∞, [−3L, 3L]d �⊂ H

y
6CL(ω1))

≤ ε

12
. (11)

With (9) and (10), we obtain

P(τ
x+[−I,I ]d
1 (ω1) = +∞, for all n ∈ [0, L], Lu + nu + [−I, I ]d �⊂ ξ

x+[−I,I ]d
T (ω1))

≤ P(there exists y ∈ x + [−I, I ]d : τ
y
1 (ω1) = +∞, Lu + [−2L, 2L]d �⊂ K

y
T (ω1))

+ P(for all n ∈ [0, L], Lu + nu + [−I, I ]d �⊂ ξZ
d

T (ω1))

≤ ε

6
.

With (8) and (11), we conclude that, for each x ∈ [−L, L]d ,

P(H
x+[−I,I ]
T (ω1) ⊃ [−L, L]d , there exists n ∈ [0, L],

(L + n)u + [−I, I ]d ⊂ ξ
x+[−I,I ]
T (ω1))

≥ 1 − ε

3
. (12)

Since q <
−→
pc

alt(d + 1), there exist positive constants A and B such that, for each L,

P

(
there exists y ∈ [−(4L + 2T ), (4L + 2T )]d : τ

y
1 (ω2) >

T

2

)

≤ (8L + 4T + 1)dA exp

(
−BT

2

)
.
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We deduce that there exists some integer L3 ≥ L2 such that, for each L ≥ L3,

P

(
there exists y ∈ [−(4L + 2T ), (4L + 2T )]d : τ

y
1 (ω2) >

T

2

)
≤ ε

3
. (13)

Now fix L ≥ L3 and choose α > 0 small enough such that

P(there exists (y, n) ∈ [−(4L + 2T ), (4L + 2T )]d × {1, . . . , T }, ωy
3,n = 1) ≤ ε

3
. (14)

We conclude by putting (12), (13), and (14) together.

5.3.2. Block events percolation. Let I < L be fixed integers. First, for each x ∈ Z
d , we build

a field (xWn
(z,u))n≥1, z∈Zd , ‖u‖1≤1 from the events defined above. The random variable Wn+1

(z,u)

will give the state of the oriented bond between the macroscopic sites (z, n) and (z+u, n+ 1);
these sites correspond to the coordinates of the boxes (2Lz, nT ) + [−L, L]d × [1, T ] and
(2L(z + u), (n + 1)T ) + [−L, L]d × [1, T ]. The field (xWn

(z,u))n≥1, z∈Zd , ‖u‖1≤1 then defines
a macroscopic dynamical dependent oriented percolation.

For x ∈ Z
d , we denote by [x]2L ∈ Z

d the unique integer such that x ∈ 2L[x]2L +[−L, L)d ,
and we set {x}2L = x−2L[x]2L ∈ [−L, L)d . We set dx

0 ([x]2L) = {x}2L and also dx
0 (k̄) = +∞

for every k̄ ∈ Z
d that is not equal to [x]2L. Then, for each k̄ ∈ Z

d , each u ∈ Z
d with ‖u‖1 ≤ 1,

and each n ≥ 1:

• if dx
n (k̄) = +∞, define xWn+1

(k̄,u)
= 1;

• otherwise, define
xWn+1

(k̄,u)
= 1A(k̄,dx

n (k̄),u) ◦ θnT ,

dx
n+1(k̄) = min{s(k̄ − u, dx

n (k̄ − u), u) ◦ θnT : ‖u‖1 ≤ 1, dx
n (k̄ − u) �= +∞}.

Let Gn = σ(ω
e,k
1 , ω

e,k
2 , ω

x,k
3 , e ∈ −→

E
d , x ∈ Z

d , k ≤ nT ). Note that, conditionally on Gn,
the random variables xWn+1

(k̄,u)
and xWn+1

(l̄,v)
are independent as soon as ‖k̄ − l̄‖1 > 4 + 18C.

Then we take M = 5 + 18C, and prove the following lemma.

Lemma 7. For each p >
−→
pc

alt(d + 1), q <
−→
pc

alt(d + 1), and q0 < 1, we can find some
integers I < L and a parameter α > 0 such that, for each x ∈ Z

d ,

the law of (xWn
e )

n≥0, e∈−→
E d under Pp,q,α belongs to C(M, q0).

Proof. Note that, for every x, k̄ ∈ Z
d and each n ≥ 1, the variable dx

n (k̄) is Gn-measurable,
and so is xWn

(k̄,u)
.

Let us now consider x, k̄ ∈ Z
d , n ≥ 0, and u ∈ Z

d such that ‖u‖1 ≤ 1: Lemma 6 ensures
that

Ep,q,α[xWn+1
(k̄,u)

| Gn ∨ σ(xWn+1
(l̄,v)

, ‖v‖1 ≤ 1, ‖l̄ − k̄‖1 ≥ M)]
= Ep,q,α[xWn+1

(k̄,u)
| Gn]

= 1{dx
n (k̄)=+∞} + 1{dx

n (k̄)<+∞} Pp,q,α(xWn+1
(k̄,u)

= 1 | dx
n (k̄) < +∞)

= 1{dx
n (k̄)=+∞} + 1{dx

n (k̄)<+∞} Pp,q,α(A(k̄, dx
n (k̄), u)).

Using Lemma 6, we can find some integers I < L and a parameter α > 0 such that

Ep,q,α[xWn+1
(k̄,u)

| Gn ∨ σ(xWn+1
(l̄,v)

, ‖v‖1 ≤ 1, ‖l̄ − k̄‖1 ≥ M)] ≥ q0.

This completes the proof.
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5.3.3. From the macroscopic to microscopic scale.

Proof of Theorem 2 for small α. The inequality αc ≤ 1 − 1/(2d + 1) easily follows from
a counting argument. Let p >

−→
pc

alt(d + 1) and q <
−→
pc

alt(d + 1), and take M = 5 + 18C as
previously. By Lemma 1, we can find q0 < 1 with gM(q0) >

−→
pc

alt(d + 1) and β0 > 0 such
that, for each field χ ∈ Cd(M, q0),

Eχ [1{τ 0
1 <+∞} exp(β0τ

0
1 )] ≤ 1

2 . (15)

We choose I, L, and α to satisfy the conditions given in Lemma 7. We will prove that, for this
α, the survival of the bacteria is possible, as well as for the other announced estimates.

Let x ∈ {0, 1, 2}Z
d

be some configuration; we denote by E1(x) the set of sites occupied by
type-1 particles in configuration x. If E1(x) �= ∅, we denote by j (x) the smallest point in
E1(x) (in the lexicographic order). Note that there exists c > 0 such that

Pp,q,α(ηx
1,4dT ⊃ j (x) + [−4T , 4T ]d) ≥ c for all x ∈ {0, 1, 2}Z

d

. (16)

Indeed, it is sufficient to open in ω1 every bond in

B = (j (x), 0) + [−4dT − 1, 4dT + 1]d × [0, 4T ],
to close in ω2 every bond in B, and to forbid in ω3 every birth of type-2 in B: all of this
corresponds to fixing a finite number of coordinates in ω, which can be done with a positive
probability.

If the event in (16) happens, we have at time 4dT a large box j (x) + [−4T , 4T ]d occupied
by type-1 particles. From this box, we can start the macroscopic percolation by building the
random field xW = (j (x)Wn

e ◦ θ4dT )
e∈−→

E d , n≥0
. Our choices of I, L, and α, and Lemma 7,

ensure that xW belongs to Cd(M, q0). Since gM(q0) >
−→
pc

alt(d + 1), (16) gives

Pp,q,α(τ x
1 = +∞) ≥ Pp,q,α(ηx

1,4dT ⊃ j (x) + [−4T , 4T ]d)PgM(q0)(τ
0
1 = +∞) > 0,

which proves (1).
To show the exponential estimates, we will apply Lemma 5. If E1(x) = ∅, we let T x = +∞;

otherwise, let

T x =
{

4dT if the event in (16) does not occur,

4dT + T × τ
[j (x)]2L

1 ◦ θ4dT otherwise,

where τ
[j (x)]2L

1 represents the extinction time in the percolation xW starting from the macro-
scopic site [j (x)]2L containing j (x).

For each x ∈ {0, 1, 2}Z
d

such that E1(x) �= ∅, we have

Pp,q,α(T x = +∞) ≥ cPgM(q0)(τ
0
1 = +∞).

We take Gx = T x ; for 0 < β1 < β0, inequality (15) gives

Ep,q,α[eβ1T
x

1{T x<+∞}] ≤ eβ14dT sup
χ∈C(M,q0)

Eχ [1{τ 0
1 <+∞} eβ0τ

0
1 ] ≤ eβ14dT

2
≤ 2

3
,
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provided β1 is small enough. We take F∅ = 0 and, for x �= ∅,

Fx = T × S[j (x)]2L ◦ θ4dT ,

where S is as defined in Corollary 2. This corollary moreover gives the existence of exponential
moments for S. Thus, the restart lemma ensures that the variable

Mx = T x
K + F

ηx
T x
K ◦ θT x

K

admits exponential moments.
Let us begin to work on the event {τx

1 = +∞}. In this case, ηx
1,T x

K
is nonempty and, at

time T x
K + 4dT , the bacteria occupy a large box j (ηx

T x
K+4dT

) + [−4T , 4T ]d , from which the
macroscopic percolation lives forever; moreover,

Mx = T x
K + T × S

[j (ηx
T x
K

+4dT
)]2L ◦ θT x

K+4dT .

By the definition of the macroscopic percolation, if the bond

j (ηx
T x
K

+4dT
)
Wn

k̄,u
◦ θT x

K+4dT

is open then every point in the box 2Lk̄ + [−L, L]d is visited by the bacteria between time
T x

K + 4dT + nT and time T x
K + 4dT + (n + 1)T . In particular, using Corollary 2, it follows

that

2L[j (ηx
T x

K+4dT
)]2L + [−2nD1L, 2nD1L]d ⊂

⋃
0≤m≤n+Mx+4dT

ηx
1,m for all n ∈ N.

We can then deduce (2) and the existence of exponential moments for Mx and T x
K .

Finally, since {τx
1 < +∞} ⊂ {τx

1 ≤ Mx}, (3) follows from the bound for the exponential
moments of Mx given in Lemma 5; this completes the proof of Theorem 2 for small α.

5.4. The case α < αc(p, q): the Bezuidenhout–Grimmett way

We fix p, q, and α such that

Pp,q,α(τ
0,Zd\{0}
1 = +∞) = P(τ

0,Zd\{0}
1 = +∞) > 0,

or, in other words, such that α < αc(p, q).
The proof for the linear growth of the bacteria conditioned to survive is, as in the case of

small α, based on a renormalization process leading to the construction of a d-dimensional
supercritical oriented percolation.

In the previous case, when building the local block event, we could choose α small enough
for our model to behave nearly as independent oriented percolation. This is no longer the
case when α is close to αc. Instead, we adapt the strategy developed by Bezuidenhout and
Grimmett [1] for the supercritical contact process on Z

d , which is also the strategy followed
by Steif and Warfheimer [20] in the case of a contact process where the death rate depends on
a dynamical environment. The key point is the following proposition (which corresponds to
Proposition 2.22 of [15] or Lemma 4.10 of [20]). For the sake of brevity, the proof is omitted.
We provide a complete proof of the proposition in the preprint version of this work that can be
found online; see [12]. We denote by V the set of e ∈ Z

d with ‖e‖1 ≤ 1.
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5.4.1. The block event.

Proposition 2. Let ε > 0 and k ≥ 1 be fixed. There exist n, a, and b with n < a such that,
for every u ∈ V , every n̄0 ∈ Z

d , every x0 ∈ [−a, a]d , and every t0 ∈ [0, b], we can define the
random variables Y (n̄0, u, x0, t0) ∈ Z

d and S(n̄0, u, x0, t0) ∈ N ∪ {+∞} such that

• Y (n̄0, u, x0, t0) ∈ [−a, a]d ;

• S(n̄0, u, x0, t0) ∈ [5kb, (5k + 1)b] ∪ {+∞};
• y + 2ka(n̄0 +u)+[−n, n]d ⊂ η

x0+2kan̄0+[−n,n]d ,Zd\(x0+2kan̄0+[−n,n]d )
1,s−t0

◦ θt0 on the event
{Y (n̄0, u, x0, t0) = y, S(n̄0, u, x0, t0) = s};

• Pp,q,α(S(n̄0, u, x0, t0) < +∞) ≥ 1 − ε;

• the event {Y (n̄0, u, x0, t0) = y, S(n̄0, u, x0, t0) = s} belongs to the σ -algebra generated
by the background random variables related to the space–time area

(k−1⋃
j=0

([−5a, 5a]d × [0, 6b]) + (2jau, 5jb)

)
∩ (Zd × [t0, s]).

5.4.2. Dependent macroscopic percolation. Note that T = 5b. For n̄0 ∈ Z
d , x0 ∈ [−a, a)d ,

t0 ∈ [0, b], and u ∈ Z
d such that ‖u‖1 ≤ 1, we define A(n̄0, u, x0, t0) = {S(n̄0, u, x0, t0) <

+∞} and �(n̄0, u, x0, t0) = (S(n̄0, u, x0, t0), Y (n̄0, u, x0, t0)) ∈ N × Z
d .

We now build a field (n̄0Wn

(k̄,u)
)n≥0, k̄∈Zd , ‖u‖1≤1 in an analogous manner to the small α case.

That is, we let d0(ȳ) = 0 for each ȳ ∈ Z
d , t0(n̄0) = 0, and also t0(ȳ) = +∞ for every ȳ ∈ Z

d

that differs from 0. Then, for each ȳ ∈ Z
d , each u ∈ Z

d such that ‖u‖1 ≤ 1, and each n ≥ 0,

• if tn(ȳ) = +∞, define n̄0Wn+1
(ȳ,u) = 1;

• otherwise, define n̄0Wn+1
(ȳ,u) = 1{S(ȳ,u,dn(ȳ),tn(ȳ))<+∞} ◦ θnT .

Then

(tn+1(ȳ), dn+1(ȳ))

= min{�(ȳ + u, −u, dn(ȳ + u), tn(ȳ + u)) ◦ θnT : ‖u‖1 ≤ 1, tn(ȳ + u) �= +∞}.
To specify what ‘min’ means, choose the smallest t in the natural order, and then the smallest s

in the lexical order. If the set is empty, the min is (+∞, 0). Then (tn+1(ȳ), dn+1(ȳ)) represents
the relative position of the entrance area for the n̄0Wn+1

(ȳ,u)s, with ‖u‖1 ≤ 1.
Note that nT + tn+1(ȳ) is an (Fk)k≥0-stopping time.
It is now time to put the pieces together: take M = 2, and choose q0 < 1 such that

gM(q0) >
−→
pc

alt and q0 satisfies the conclusion of Corollary 3 with M = 2.
Using Proposition 2 with 1−ε = q0 and k > 7, we can build an oriented percolation process

(n̄0Wn

(k̄,u)
)n≥0, k̄∈Zd , ‖u‖1≤1. Among open bonds, only those corresponding to the realization of

good events are relevant for the propagation of type-1 particles. Let us note however that the
percolation cluster starting at n̄0 only contains bonds that are effectively used by the process.

Let us denote by χn̄0 the law of the field (n̄0Wn

(k̄,u)
)n≥0, k̄∈Zd , ‖u‖1≤1 under Pp,q,α .

Lemma 8. We can choose the construction parameters a, b, and n of Proposition 2 such that
χn̄0 belongs to Cd(M, q0).
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The proof, which is quite technical, is omitted, but uses only tested methods. It can be found
in the related technical report [12]. Note that, as the exit points are at random heights, the
σ -field Gn must be chosen with care to ensure that χn̄0 belongs to Cd(M, q0).

5.4.3. From macroscopic to microscopic scale. The proof of Theorem 2 can be split into two
parts.

1. Prove that if the epidemy survives then points not far from x will often be occupied at a
reasonable time.

2. Deduce that x itself will be hit at a reasonable time.

The first part can be formalized as follows.

Lemma 9. Let E ⊂ Z
d \ {0}. There exist a ∈ N and positive constants C1, C2, A, and B such

that, if we define Ra
n(x) with n ∈ N and x ∈ Z

d by Ra
0 (x) = 0 and

Ra
i (x) = inf{t ≥ Ra

i−1; there exists y ∈ x + [−a, a]d; y ∈ η
0,E
1,t },

then we have

Pp,q,α(τ
0,E
1 = +∞, Ra

n(x) ≥ C1‖x‖ + C2n) ≤ Ae−Bn for all x ∈ Z
d and all n ≥ 0. (17)

Thanks to our tools for dependent oriented percolation, Lemma 9 is a consequence of
Proposition 2. Before presenting its proof, we show now it can be used to prove Theorem 2.

Proof of Theorem 2. Let E ⊂ Z
d \ {0}, fix x ∈ Z

d , and define T ′
0 = 0, and for i ≥ 1,

Ti = Ti(x) = inf{t ≥ T ′
i−1; there exists y ∈ x + [−a, a]d; y ∈ η

0,E
1,t }

T ′
i = Ti + a + 1.

Consider the event B = {for all y ∈ x + [−a, a]d; there exists t ≤ a; x ∈ η
y,Zd\{y}
1,t } and also,

for n ≥ 1

An =
n⋂

i=0

{Ti < +∞, θ−Ti (Bc)}.

Note that, by construction, θ−Ti (B) is FTi+1 -measurable, so

Pp,q,α(An | FTn) = 1An−1∩{Tn<+∞} Pp,q,α(Bc).

It is easy to see that P(B) ≥ c for some c does not depend on x. It follows that Pp,q,α(AN) ≤
(1 − c)n for each n ≥ 1. Note that the sequence (Tk(x))k≥1 does not consider all infections
around x, but it is not difficult to see that Tn(x) ≤ Ra

(a+1)n(x). So, Lemma 9 gives

Pp,q,α(τ
0,E
1 = +∞, t (x) ≥ C1‖x‖ + C2(a + 1)n + a + 1) ≤ Ae−B(a+1)n + (1 − c)n,

completing the proof.

Proof of Lemma 9. Note that the events in (17) and Corollary 3 control the density of times
where a point (or a neighborhood of a point) is occupied.

Using the events described in Proposition 2, we exhibit (after a restart procedure) a macro-
scopic percolation that satisfies the assumptions of Corollary 3. This will prove (17) and, hence,
the lemma.
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Assume that τ
0,E
1 = +∞. Take M = 2, and choose q0 < 1, θ, β such that gM(q0) >

−→
pc

alt

and q0,θ ,β satisfies the conclusion of Corollary 3 with M = 2. By Lemma 8, we can choose
the parameters a, b, and n in Proposition 2 to ensure that the distribution of the macroscopic
oriented percolation is in Cd(M, q0). Then, using the events of Proposition 2, the construction of
Subsection 5.4.2, and Theorem 3, a restart argument gives the existence of some (Y, T ) ∈ Z

d×N

such that

• Y + [−2a, 2a]d ⊂ η
0,E
1,T ;

• for every k ≥ 1, ‖Y‖ ≤ T ≤ k with probability at least 1 − Ae−Bk ;

• a macroscopic oriented percolation (Ȳ Wn
(x̄,u))n≥0, x̄∈Zd , ‖u‖1≤1 ◦ θT which almost surely

survives starts from Y + [−2a, 2a]d at time T . More precisely, the distribution of the
field (Ȳ Wn

(x̄,u))n≥0, x̄∈Zd , ‖u‖1≤1 ◦ θT is χȲ (· | τ̄Ȳ = +∞). Recall that χn̄0 is the law of

the field (n̄0Wn

(k̄,u)
)n≥0, k̄∈Zd , ‖u‖1≤1 under Pp,q,α , which was defined in Subsection 5.4.2.

Then, Lemma 3 says that γ (θ, Ȳ , x̄) ≤ β‖x̄ − Ȳ‖ + k with probability at least 1−Ae−Bk , where
x̄ and Ȳ respectively stand for the coordinates of macroscopic blocks containing x and Y .

By the very definition of γ (·), we have

Ra
k (x) ≤ T + 6b

θ
max(γ (θ, Ȳ , x̄) ◦ θT , k).

This leads to

Pp,q,α(Ra
k (x) ≤ k + 6b

θ
(β(‖x̄‖ + k) + k)) ≥ 1 − 2Ae−Bk,

which completes the proof.
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