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Asymptotics and sign patterns of Hecke
polynomial coefficients

Erick Ross and Hui Xue

Abstract. We determine the asymptotic behavior of the coefficients of Hecke polynomials. In
particular, this allows us to determine signs of these coefficients when the level or the weight is
sufficiently large. In all but finitely many cases, this also verifies a conjecture on the nanvanishing of
the coefficients of Hecke polynomials.

1 Introduction

For integers m ≥ 1, N coprime to m, and k ≥ 2 even, let Sk(�0(N)) denote the space
of cuspforms of level N and weight k. Let T ′m(N , k) ∶= 1

m(k−1)/2 Tm(N , k) denote the
normalized mth Hecke operator on Sk(�0(N)). For each integer r ≥ 0, let cr(m, N , k)
denote the rth coefficient of the characteristic polynomial T ′m(N , k)(x) associated
with T ′m(N , k) as follows:

T ′m(N , k)(x) =
d
∑
r=0

cr(m, N , k)xd−r ,

where d = dim Sk(�0(N)). Hecke operators are of central importance in the theory
of modular forms, and are completely characterized by the Hecke polynomials. We
would like to study the coefficients of these Hecke polynomials in order to understand
their structure. In particular, for any fixed m and r, the main goal of this article is to
determine the asymptotic behavior of cr(m, N , k) as N + k →∞. This will also show
that cr(m, N , k) is nonvanishing and further determine its sign in all but finitely many
cases.

We give an outline of this article. In Section 2, we apply the Girard–Newton
formula to the coefficients cr(m, N , k), and state the asymptotic behavior of
Tr T ′m(N , k). In Section 3, we consider the case when m is a perfect square and
prove the following result determining the asymptotic behavior of the cr(m, N , k).
In the following, all big-O notation is with respect to N and k. Additionally, we use
the notation “O(N ε)”, for example, to mean “O(N ε) for all ε > 0”.

Theorem 1.1 Fix an integer r ≥ 0 and a perfect square m ≥ 1. Then for N coprime to
m and k ≥ 2 even,
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cr(m, N , k) = (−1)r

r!
( 1√

m
k − 1

12
ψ(N))

r

+ O(kr−1N r−1/2+ε).

Here, ψ(N) denotes the multiplicative function ψ(N) = N ∏p∣N (1 + 1
p).

In Section 4, we consider the case when m is not a perfect square and establish
the following asymptotics of cr(m, N , k). Recall here that σ1(m) denotes the sum
of divisors function σ1(m) ∶= ∑d ∣m d, and that (2r)!! denotes the double factorial
(2r)!! ∶= 2r(2r − 2)(2r − 4)⋯2.

Theorem 1.2 Fix an integer r ≥ 0 and a non-square m ≥ 1. Then for N coprime to m
and k ≥ 2 even,

c2r(m, N , k) = (−1)r

(2r)!!
(σ1(m)

m
k − 1

12
ψ(N))

r

+ O(kr−1N r−1/2+ε) and

c2r+1(m, N , k) = c1(m, N , k) ⋅ (−1)r

(2r)!!
(σ1(m)

m
k − 1

12
ψ(N))

r

+ O(kr−1N r−1/2+ε).

In Section 5, we extend Theorems 1.1 and 1.2 to the new subspace Snew
k (�0(N)).

Finally, in Sections 6 and 7, we discuss these results. In Section 6, we discuss how
the arguments given in Theorems 1.1 and 1.2 for the Hecke polynomials can also be
applied to other polynomials. In particular, these arguments reveal a coefficient sign
pattern for a wide class of polynomials. Then in Section 7, we discuss a conjecture
on the nonvanishing of the Hecke polynomial coefficients and survey its current
progress.

2 Preliminary calculations

For simplicity, we write cr for the coefficients cr(m, N , k). Let d = dim Sk(�0(N))
and λ1 , . . . , λd denote the eigenvalues of T ′m(N , k). Observe that (−1)r cr is just the
rth elementary symmetric polynomial of these eigenvalues:

c0 = 1, −c1 = ∑
1≤i≤d

λ i , c2 = ∑
1≤i< j≤d

λ i λ j , −c3 = ∑
1≤i< j<�≤d

λ i λ j λ� , . . .

We also write pr for the sum of rth powers of these eigenvalues:

pr ∶=
d
∑
i=1

λr
i .(1)

Then the Girard–Newton identities yield the following relation between the cr and
the pr .

Lemma 2.1 [13, p. 38] Let cr and pr be defined as above. Then for r ≥ 1,

cr =
−1
r

r
∑
j=1

cr− j p j .
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Asymptotics and sign patterns of Hecke polynomial coefficients 3

We also give estimates on the traces of Hecke operators. These estimates will be
needed shortly when we express the pr in terms of traces of certain Hecke operators.
In a previous paper [11], we proved the following result by analyzing the various terms
of the Eichler–Selberg trace formula.

Lemma 2.2 [11, Lemmas 4.1 and 4.2] Fix an integer m ≥ 1. Then for N coprime to m
and k ≥ 2 even,

Tr T ′m(N , k) =
⎧⎪⎪⎨⎪⎪⎩

1√
m

k−1
12 ψ(N) + O(N 1/2+ε), if m is a perfect square,

O(N ε), if m is not a perfect square.

To gauge the growth of the terms in this formula, note that ψ(N) ≥ N and
ψ(N) = O(N 1+ε) [7, Sections 18.1 and 22.13].

3 When m is a perfect square

In this section, we consider the case when m is a perfect square. We then have the
following estimates on the p j (1).

Lemma 3.1 Fix an integer r ≥ 1 and a perfect square m ≥ 1. Then for N coprime to m
and k ≥ 2 even,

p1 =
1√
m

k − 1
12

ψ(N) + O(N 1/2+ε), and

p j = O(kN 1+ε), for all 1 ≤ j ≤ r.

Proof The first claim follows immediately from Lemma 2.2.
For the second claim, note from Lemma 2.2 and the fact that ψ(N) = O(N 1+ε),

d ∶= dim Sk(�0(N)) = Tr T ′1 = O(kN 1+ε).

Then utilizing Deligne’s bound ∣λ i ∣ ≤ σ0(m) = ∑d ∣m 1, we obtain

∣p j ∣ = ∣
d
∑
i=1

λ j
i ∣ ≤

d
∑
i=1

σ0(m) j = O(kN 1+ε),

as desired. ∎

For m and r fixed, we now determine the asymptotic behavior of cr(m, N , k)
as N + k →∞. Note cr(m, N , k) is not technically defined for N , k such that
dim Sk(�0(N)) < r. However, there are only finitely many such pairs (N , k) [10,
Theorem 1.1], so it is well-defined here to ask about cr(m, N , k) as N + k →∞.

Theorem 1.1 Fix an integer r ≥ 0 and a perfect square m ≥ 1. Then for N coprime to
m and k ≥ 2 even,

cr(m, N , k) = (−1)r

r!
( 1√

m
k − 1

12
ψ(N))

r

+ O(kr−1N r−1/2+ε).
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Proof We proceed by strong induction on r. The base case of r = 0 is immediate
since c0 = 1.

For r ≥ 1, we have by Lemma 2.1 that

cr =
−1
r

r
∑
j=1

cr− j p j =
−1
r

⎡⎢⎢⎢⎢⎣
cr−1 p1 +

r
∑
j=2

cr− j p j

⎤⎥⎥⎥⎥⎦
.(2)

Then by the induction hypothesis,

cr−1 =
(−1)r−1

(r − 1)!
( 1√

m
k − 1

12
ψ(N))

r−1

+ O(kr−2N r−3/2+ε),

cr− j = O(kr−2N r−2+ε), for 2 ≤ j ≤ r,

and by Lemma 3.1,

p1 =
1√
m

k − 1
12

ψ(N) + O(N 1/2+ε),

p j = O(kN 1+ε), for 2 ≤ j ≤ r.

Applying these estimates to (2), we obtain

cr =
−1
r

⎡⎢⎢⎢⎢⎣
cr−1 p1 +

r
∑
j=2

cr− j p j

⎤⎥⎥⎥⎥⎦

= −1
r

⎡⎢⎢⎢⎢⎣

⎛
⎝
(−1)r−1

(r − 1)!
( 1√

m
k − 1

12
ψ(N))

r−1

+ O(kr−2N r−3/2+ε)
⎞
⎠

× ( 1√
m

k − 1
12

ψ(N) + O(N 1/2+ε)) +
r
∑
j=2

O(kr−2N r−3/2+ε) ⋅ O(kN 1+ε)
⎤⎥⎥⎥⎥⎦

= −1
r

⎡⎢⎢⎢⎢⎣

(−1)r−1

(r − 1)!
( 1√

m
k − 1

12
ψ(N))

r

+ O(kr−1N r−1/2+ε)
⎤⎥⎥⎥⎥⎦

= (−1)r

r!
( 1√

m
k − 1

12
ψ(N))

r

+ O(kr−1N r−1/2+ε).

This completes the proof. ∎

Theorem 1.1 allows us in particular to determine the sign of cr(m, N , k) for all but
finitely many pairs (N , k).

Corollary 3.2 Fix an integer r ≥ 0 and a perfect square m ≥ 1. Then cr(m, N , k) has
sign (−1)r for all but finitely pairs (N , k).

Proof Since ψ(N) ≥ N , we can write the asymptotic formula from Theorem 1.1 as

cr(m, N , k) = (−1)r

r!
√

mr (
k − 1

12
ψ(N))

r
[1 + O (kr−1N r−1/2+ε)( k − 1

12
ψ(N))

−r
]

= (−1)r

r!
√

mr (
k − 1

12
ψ(N))

r
[1 + O (k−1N−1/2+ε)] .

https://doi.org/10.4153/S0008439525000190 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439525000190


Asymptotics and sign patterns of Hecke polynomial coefficients 5

Then since the O (k−1N−1/2+ε) term tends to 0 as N →∞ or k →∞, it will have
magnitude less than 1 for all but finitely many pairs (N , k). This then yields the desired
result. ∎

4 When m is not a perfect square

In this section, we consider the remaining case when m is not a perfect square. First,
we have the following estimates on the p j (1).

Lemma 4.1 Fix an integer r ≥ 0 and a non-square m ≥ 1. Then

p1 = −c1 = O(N ε),

p2 =
σ1(m)

m
k − 1

12
ψ(N) + O(N 1/2+ε),

p3 = O(N ε),
p j = O(kN 1+ε), for all 1 ≤ j ≤ r.

Proof The first claim follows immediately from Lemma 2.2.
For the second claim, observe that p2 = Tr T ′m

2. Then by the Hecke operator
composition formula [6, Theorem 10.2.9] and Lemma 2.2,

p2 = Tr T ′m
2 = ∑

d ∣m
Tr T ′m2/d2 = ∑

d ∣m

d
m

k − 1
12

ψ(N) + O(N 1/2+ε)

= σ1(m)
m

k − 1
12

ψ(N) + O(N 1/2+ε).

For the third claim, we similarly have by the Hecke operator composition formula
and Lemma 2.2,

p3 = Tr T ′m
3 = Tr ∑

d ∣m
T ′m2/d2 T ′m = ∑

d ∣m
∑

δ∣(m2/d2 ,m)
Tr T ′m3/d2 δ2

= ∑
d ∣m

∑
δ∣(m2/d2 ,m)

O(N ε)

= O(N ε).

Finally, the fourth claim follows from an identical argument as in Lemma 3.1. ∎

For m and r fixed, we now determine the asymptotic behavior of cr(m, N , k) as
N + k →∞.

Theorem 1.2 Fix an integer r ≥ 0 and a non-square m ≥ 1. Then for N coprime to m
and k ≥ 2 even,

c2r =
(−1)r

(2r)!!
(σ1(m)

m
k − 1

12
ψ(N))

r

+ O(kr−1N r−1/2+ε) and

c2r+1 = c1 ⋅
(−1)r

(2r)!!
(σ1(m)

m
k − 1

12
ψ(N))

r

+ O(kr−1N r−1/2+ε).
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Proof We proceed by strong induction on r. The base case of r = 0 is immediate
since c0 = 1 and c1 = c1.

Then for r ≥ 1, we have from Lemma 2.1 that

c2r =
−1
2r

2r
∑
j=1

c2r− j p j =
−1
2r

⎡⎢⎢⎢⎢⎣
c2r−1 p1 + c2r−2 p2 +

2r
∑
j=3

c2r− j p j

⎤⎥⎥⎥⎥⎦
.(3)

Then by the induction hypotheses,

c2r−1 = O(kr−1N r−1+ε),

c2r−2 =
(−1)r−1

(2r − 2)!!
(σ1(m)

m
k − 1

12
ψ(N))

r−1

+ O(kr−2N r−3/2+ε),

c2r− j = O(kr−2N r−2+ε), for 3 ≤ j ≤ 2r,

and by Lemma 4.1,

p1 = O(N ε),

p2 =
σ1(m)

m
k − 1

12
ψ(N) + O(N 1/2+ε),

p j = O(kN 1+ε), for 3 ≤ j ≤ 2r.

Applying these estimates to (3), we obtain

c2r =
−1
2r

⎡⎢⎢⎢⎢⎣
c2r−1 p1 + c2r−2 p2 +

2r
∑
j=3

c2r− j p j

⎤⎥⎥⎥⎥⎦

= −1
2r

⎡⎢⎢⎢⎢⎣
O(kr−1N r−1+ε) ⋅ O(N ε)

+
⎛
⎝
(−1)r−1

(2r − 2)!!
(σ1(m)

m
k − 1

12
ψ(N))

r−1

+ O(kr−2N r−3/2+ε)
⎞
⎠

× (σ1(m)
m

k − 1
12

ψ(N) + O(N 1/2+ε)) +
2r
∑
j=3

O(kr−2N r−2+ε) ⋅ O(kN 1+ε)
⎤⎥⎥⎥⎥⎦

= −1
2r

⎡⎢⎢⎢⎢⎣
O(kr−1N r−1+ε) + (−1)r−1

(2r − 2)!!
(σ1(m)

m
k − 1

12
ψ(N))

r

+ O(kr−1N r−1/2+ε) + O(kr−1N r−1+ε)
⎤⎥⎥⎥⎥⎦

= (−1)r

(2r)!!
(σ1(m)

m
k − 1

12
ψ(N))

r

+ O(kr−1N r−1/2+ε),

verifying the first claim of the inductive step.
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For the second claim of the inductive step, we similarly have from Lemma 2.1 that

c2r+1 =
−1

2r + 1

2r+1
∑
j=1

c2r+1− j p j =
−1

2r + 1

⎡⎢⎢⎢⎢⎣
c2r p1 + c2r−1 p2 + c2r−2 p3 +

2r+1
∑
j=4

c2r+1− j p j

⎤⎥⎥⎥⎥⎦
.(4)

Then by the induction hypotheses and the proof for c2r ,

c2r =
(−1)r

(2r)!!
(σ1(m)

m
k − 1

12
ψ(N))

r

+ O(kr−1N r−1/2+ε),

c2r−1 = c1 ⋅
(−1)r−1

(2r − 2)!!
(σ1(m)

m
k − 1

12
ψ(N))

r−1

+ O(kr−2N r−3/2+ε),

c2r−2 = O(kr−1N r−1+ε),
c2r+1− j = O(kr−2N r−2+ε), for 4 ≤ j ≤ 2r + 1,

and by Lemma 4.1,

p1 = −c1 ,

p2 =
σ1(m)

m
k − 1

12
ψ(N) + O(N 1/2+ε),

p3 = O(N ε),
p j = O(kN 1+ε), for 4 ≤ j ≤ 2r + 1.

Applying these estimates to (4), we obtain

c2r+1 =
−1

2r + 1

⎡⎢⎢⎢⎢⎣
c2r p1 + c2r−1 p2 + c2r−2 p3 +

2r+1
∑
j=4

c2r+1− j p j

⎤⎥⎥⎥⎥⎦

= −1
2r + 1

⎡⎢⎢⎢⎢⎣
( (−1)r

(2r)!!
(σ1(m)

m
k − 1

12
ψ(N))

r

+ O(kr−1N r−1/2+ε)) ⋅ (−c1)

+
⎛
⎝

c1 ⋅
(−1)r−1

(2r − 2)!!
(σ1(m)

m
k − 1

12
ψ(N))

r−1

+ O(kr−2N r−3/2+ε)
⎞
⎠

× (σ1(m)
m

k − 1
12

ψ(N) + O(N 1/2+ε))

+ O(kr−1N r−1+ε) ⋅ O(N ε) +
2r+1
∑
j=4

O(kr−2N r−2+ε) ⋅ O(kN 1+ε)
⎤⎥⎥⎥⎥⎦

= −1
2r + 1

⎡⎢⎢⎢⎢⎣
− c1 ⋅

(−1)r

(2r)!!
(σ1(m)

m
k − 1

12
ψ(N))

r

+ O(kr−1N r−1/2+ε)

+ c1 ⋅
(−1)r−1

(2r − 2)!!
(σ1(m)

m
k − 1

12
ψ(N))

r

+ O(kr−1N r−1/2+ε)

+ O(kr−1N r−1+ε) + O(kr−1N r−1+ε)
⎤⎥⎥⎥⎥⎦
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= c1 ⋅
1

2r + 1
( (−1)r

(2r)!!
− (−1)r−1

(2r − 2)!!
) ⋅ (σ1(m)

m
k − 1

12
ψ(N))

r

+ O(kr−1N r−1/2+ε)

= c1 ⋅
(−1)r

(2r)!!
(σ1(m)

m
k − 1

12
ψ(N))

r

+ O(kr−1N r−1/2+ε),

verifying the second claim of the inductive step.
This completes the proof. ∎

Theorem 1.2 allows us in particular to determine the sign of the even-indexed
coefficients for all but finitely many pairs (N , k). The following corollary can be shown
using an identical argument as in Corollary 3.2.

Corollary 4.2 Fix an integer r ≥ 0 and a non-square m ≥ 1. Then c2r(m, N , k) has
sign (−1)r for all but finitely pairs (N , k).

The behavior of the odd-indexed coefficients, on the other hand, is determined by
the behavior of the trace.

Corollary 4.3 Fix an integer r ≥ 0, a non-square m ≥ 1, and an even inte-
ger k ≥ 2. Consider N such that Tr T ′m(N , k) ≠ 0. Then c2r+1(m, N , k) has sign
(−1)r+1 sgn(Tr T ′m(N , k)) for all but finitely many N.

Proof Since ψ(N) ≥ N , we can write the asymptotic formula from Theorem 1.2 as

c2r+1 =
(−1)r

(2r)!!
(σ1(m)

m
)

r

( k − 1
12

ψ(N))
r
[c1 + O (kr−1N r−1/2+ε)( k − 1

12
ψ(N))

−r
]

= (−1)r

(2r)!!
(σ1(m)

m
)

r

( k − 1
12

ψ(N))
r
[c1 + O (k−1N−1/2+ε)] .

Then observe that since Tr Tm ∈ Z and c1 = −Tr T ′m = −m−(k−1)/2 Tr Tm ≠ 0, we must
have ∣c1∣ = ∣Tr T ′m ∣ ≥ m−(k−1)/2. And because the O (k−1N−1/2+ε) term tends to 0 as
N →∞, it will have magnitude less than m−(k−1)/2 for all but finitely many N. This
yields the desired result. ∎

We note that the condition Tr T ′m(N , k) ≠ 0 here is not overly restrictive. Rouse
[12, Theorem 1.6] showed that there are only finitely many k for which we could
possibly have Tr T ′m(N , k) = 0 for some N. And even for these finitely many remaining
k, he showed in [12, Theorem 1.7] that Tr T ′m(N , k) ≠ 0 for 100% of N. He further con-
jectured in [12, Conjecture 1.5] that Tr T ′m(N , k) ≠ 0 for all N ≥ 1 and k = 12 or ≥ 16.

We also note that there are various ways one could try to improve this result
to where N and k both vary. The only reason we fixed k was to guarantee that
c1 = −Tr T ′m(N , k) was bounded away from 0. If we relax the condition of k being
fixed to just that k ≤ (1 − δ) logm(N) for some δ > 0, then we have the same result
for all but finitely many pairs (N , k). One could also try to bound Tr T ′m(N , k) away
from 0 using some sort of vertical Atkin–Serre type result for the trace (e.g., along the
lines of [8, Theorem 2.2]).
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5 Extending to the new subspace

All of our results extend to the Hecke polynomial over the new subspace. Let
T ′new

m (N , k) denote the restriction of T ′m(N , k) to the new subspace Snew
k (�0(N)).

Let cnew
r (m, N , k) denote the rth coefficient of the characteristic polynomial

T ′new
m (N , k)(x) as follows:

T ′new
m (N , k)(x) =

dnew

∑
r=0

cnew
r (m, N , k)xdnew−r .

Here, dnew = dim Snew
k (�0(N)). Just like before, we can then determine the asymp-

totic behavior of cnew
r (m, N , k) as N + k →∞. Note cnew

r (m, N , k) is not technically
defined for N , k such that dim Snew

k (�0(N)) < r. However, there are only finitely
many such pairs (N , k) [10, Theorem 1.3], so it is perfectly well-defined here to ask
about cnew

r (m, N , k) as N + k →∞.
Let

ψnew(N) ∶= ∏
pr∥N

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p (1 − 1
p) , if r = 1,

p2 (1 − 1
p −

1
p2 ) , if r = 2,

pr (1 − 1
p −

1
p2 + 1

p3 ) , if r ≥ 3,

and note that ψnew(N) ≤ N and ψnew(N) = Ω(N 1−ε) [7, Sections 18.1 and 22.13].
In [1, Lemmas 4.2 and 4.3], Cason et al. showed that for fixed m,

Tr T ′new
m (N , k) =

⎧⎪⎪⎨⎪⎪⎩

1√
m

k−1
12 ψnew(N) + O(N 1/2), if m is a perfect square,

O(N ε), if m is not a perfect square.

The following two theorems then follow by an identical argument as in
Theorems 1.1 and 1.2. The details are omitted.

Theorem 5.1 Fix an integer r ≥ 0 and a perfect square m ≥ 1. Then for N coprime to
m and k ≥ 2 even,

cnew
r (m, N , k) = (−1)r

r!
( 1√

m
k − 1

12
ψnew(N))

r

+ O(kr−1N r−1/2).

Theorem 5.2 Fix an integer r ≥ 0 and a non-square m ≥ 1. Then

cnew
2r (m, N , k) = (−1)r

(2r)!!
(σ1(m)

m
k − 1

12
ψnew(N))

r

+ O(kr−1N r−1/2) and

cnew
2r+1(m, N , k) = cnew

1 (m, N , k) ⋅ (−1)r

(2r)!!
(σ1(m)

m
k − 1

12
ψnew(N))

r

+ O(kr−1N r−1/2+ε).

Then just like in Corollaries 3.2, 4.2, and 4.3, this tells us the sign of the cnew
r in all

but finitely many cases.

Corollary 5.3 Fix an integer r ≥ 0 and a perfect square m ≥ 1. Then cnew
r (m, N , k)

has sign (−1)r for all but finitely pairs (N , k).

https://doi.org/10.4153/S0008439525000190 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439525000190


10 E. Ross and H. Xue

Corollary 5.4 Fix an integer r ≥ 0 and a non-square m ≥ 1. Then cnew
2r (m, N , k) has

sign (−1)r for all but finitely pairs (N , k).

Corollary 5.5 Fix an integer r ≥ 0, a non-square m ≥ 1, and an even integer
k ≥ 2. Consider N such that Tr T ′ new

m (N , k) ≠ 0. Then cnew
2r+1(m, N , k) has sign

(−1)r+1 sgn(Tr T ′ new
m (N , k)) for all but finitely many N.

6 Sign patterns for more general polynomials

In response to our previous paper showing that c2 tends to be negative [11], Kimball
Martin suggested to us that c2 might display a similar bias more generally for
polynomials with totally real roots. In fact, the sign tendencies for all the coefficients
given in Corollaries 4.2 and 4.3 hold more generally for a wide class of polynomials
with totally real roots. Essentially the only two conditions we need to impose are that
the roots are distributed over an interval [−A, A] in a roughly symmetric way about
the origin, and that the roots are not all clustered at the origin.

More precisely, for A > 0 and r fixed, consider a sequence of polynomials fn with
totally real roots lying in the interval [−A, A]. Let dn denote the degree of fn , and let
the c j(n) and p j(n) be defined as above in Section 2. We assume that p1(n) = o(d 1/3

n )
and p3(n) = o(dn) (which will occur if the roots x1 , . . . , xdn of fn are distributed in
a roughly symmetric way about the origin). Also note that p2(n) = α2

ndn , where αn
denotes the quadratic mean of the roots of fn . We assume that αn is bounded away
from 0 (which will occur as long as the roots are not all clustered at the origin). Finally,
observe that ∣p j(n)∣ ≤ Ardn = O(dn) for each 1 ≤ j ≤ r. These estimates

p1(n) = −c1(n) = o(d 1/3
n ),

p2(n) = α2
ndn ,

p3(n) = o(dn),
p j(n) = O(dn) for each 1 ≤ j ≤ r,

are essentially the content of Lemma 4.1 (except that Lemma 4.1 has much stronger
error bounds, and where in that case, αN ,k tends to

√
σ1(m)/m as N + k →∞

[2, Theorem 1.1]).
Then using an identical argument as in Theorem 1.2, one can show that

c2r(n) = (−1)r

(2r)!!
(α2

ndn)
r + o(d r−1/3

n ) and

c2r+1(n) = c1(n) (−1)r

(2r)!!
(α2

ndn)
r + o(d r

n).

In particular, this means that as dn →∞, the coefficients of fn will tend to the sign
pattern

+ − − + + − − + + − − + +⋯ if c1 is bounded below 0,
+ + − − + + − − + + − − +⋯ if c1 is bounded above 0.
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For example, browsing the polynomials with totally real roots of degree 10 in
LMFDB, almost all of them follow this sign pattern; see [9] (such polynomials given
by LMFDB are shifted so that their roots are roughly symmetric about the origin).

If the roots of a polynomial are perfectly symmetric about the origin, then we will
have c1 = 0, and the sign pattern becomes

+ 0 − 0 + 0 − 0 + 0 − 0 +⋯.

For example, the roots of the Chebyshev polynomials are distributed in [−1, 1] in a
perfectly symmetric way, and their coefficients follow precisely this pattern.

We also note what happens when the roots of a polynomial are not distributed
symmetrically about the origin. If all the roots have the same sign, then the coefficients
cr follow the sign pattern

+ − + − + − + − . . . if all the roots are positive,
+ + + + + + + + . . . if all the roots are negative.

When m is a perfect square, most of the roots of T ′m(N , k)(x) are positive, and
Corollary 3.2 shows that the coefficients of T ′m(N , k)(x) tend to this first pattern.

7 A conjecture on Hecke polynomial coefficients

In [12, Conjecture 1.5], Rouse gave the generalized Lehmer conjecture: that for all
m ≥ 1, N coprime to m, and k = 12 or ≥ 16, Tr Tm(N , k) ≠ 0. More recently, Clayton
et al. [5, Conjecture 5.1] similarly conjectured that none of the Hecke polynomial
coefficients vanish in the level one case. We propose the following conjecture that
further extends both the generalized Lehmer conjecture, and [5, Conjecture 5.1]. The
results in this article verify Conjecture 7.1 in all but finitely many cases.

Conjecture 7.1 Fix integers m ≥ 1 and r ≥ 1. Then the rth coefficient of the Hecke
polynomial Tm(N , k)(x) is nonvanishing for all N ≥ 1 coprime to m, and k = 12r or
≥ 12r + 4 even.

We note that these lower bounds on k are the minimum possible. For any k less than
these bounds, we will have dim Sk(�0(1)) < r, and hence cr(m, 1, k) = 0, trivially.
Even relaxing the lower bound on k to just requiring that dim Sk(�0(N)) ≥ r will not
work; Rouse [12, Theorem 1.2] showed that for any given m and k ∈ {4, 6, 8, 10, 14},
Tr Tm(N , k) = 0 for infinitely many N.

We now survey all the relevant previous results through the lens of Conjecture 7.1
(although they were not explicitly stated in these terms).
• When r ≥ 1, m = 1, Conjecture 7.1 follows from the fact that dim Sk(�0(N)) ≥ r for

k = 12r and k ≥ 12r + 4.
• In 2006, when r = 1 and m is a non-square, Rouse [12] showed Conjecture 7.1 for

all but finitely many k, and for 100% of N. When r = 1, m = 2, he also completely
verified Conjecture 7.1.

• In 2022, when r = 1, m = 2, Chiriac and Jorza [3] verified Conjecture 7.1 in the case
of N = 1.
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• In 2023, when r = 2, m ≥ 2, Clayton et al. [5] showed Conjecture 7.1 in the case of
N = 1 for all but finitely many k. When r = 2, m = 2, they also completely verified
Conjecture 7.1.

• In 2023, when r = 1, m = 3, Chiriac et al. [4] verified Conjecture 7.1 in the case of
N = 1.

• In 2024, when r = 2, m ≥ 2, we [11] showed Conjecture 7.1 for all but finitely many
pairs (N , k). When r = 2, m = 3, 4, we also completely verified Conjecture 7.1.

• In 2024, when r = 2, m ≥ 2, Cason et al. [1] showed a corresponding conjecture on
the newspace Snew

k (�0(N)) for all but finitely many pairs (N , k). When r = 2,
m = 2, 4, they also completely verified the corresponding conjecture on the
newspace.

• In this article, when r ≥ 1 and m is a square, Corollary 3.2 proves
Conjecture 7.1 for all but finitely many pairs (N , k).

• In this article, when r is even and m is a non-square, Corollary 4.2 proves
Conjecture 7.1 for all but finitely many pairs (N , k).

• In this article, when r is odd and m is a non-square, Corollary 4.3 shows that for k
fixed, if Conjecture 7.1 holds for r = 1, then it also holds for each odd r for all but
finitely many N. In particular, combining with Rouse’s result, this means that there
exists a finite set K such that: (1) for all k /∈ K, Conjecture 7.1 holds for all but finitely
many N, and (2) even for k ∈ K, Conjecture 7.1 holds for 100% of N.

We observe that the last result listed here essentially reduces the problem of studying
odd-indexed coefficients cr to just studying the trace, −c1.
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