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Abstract

In a group G,um(G) denotes the subgroup of the elements which normalize every subnormal subgroup of
G with defect at most m. The m-Wielandt series of G is then defined in a natural way. G is said to have
finite m-Wielandt length if it coincides with a term of its m-Wielandt series. We investigate the structure
of infinite groups with finite m-Wielandt length.

2000 Mathematics subject classification: primary 20F22, 20F16.

1. Introduction

If G is a group, the Wielandt subgroup w(G) of G is defined to be the intersection
of the normalizers of all the subnormal subgroups of G. The Wielandt series of G is
defined recursively by setting wo{G) = 1 and ID,(G)/U;1_I(G) = tu(G/u>j_i(G)), for
i > 1. If for some integer n, wn(G) = G, then G is said to have finite Wielandt length,
and the minimal of such n is said the Wielandt length of G. Following Casolo [4], we
denote by W the class of all groups with finite Wielandt length. Wielandt [19] proved
that the socle of a finite group is contained in the Wielandt subgroup; thus any finite
group belongs to W. When we consider infinite groups the situation is more complex.
Clearly, w(G) contains the centre Z(G), and so nilpotent groups have finite Wielandt
length. Also the class Min-sn (that is, groups satisfying the minimal condition on
the subnormal subgroups) and the class of soluble groups with the property that each
subnormal subgroup has finitely many conjugates and there is a bound on their number,
are contained in W (see [3,13,17]). Nevertheless the example of the infinite dihedral
group shows that w (G) can be trivial, also in polycyclic groups. Actually a polycyclic
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[2] m-Wielandt series in infinite groups 77

group belongs to IP if and only if it is finite-by-nilpotent (see [5,12]). Furthermore,
McDougall [11] proved that a minimax soluble group with finite Wielandt length is
(abelian divisible)-by-(nilpotent torsion-free)-by-finite and Casolo in an unpublished
paper has generalized this result by proving that an ©i -group with finite Wielandt
length is (nilpotent divisible)-by-(nilpotent torsion-free)-by-finite. Recall that &i
denotes the class of soluble groups of finite abelian section rank, whose elements have
only finitely many distinct prime orders (see [15, Part 2]).

In 1990, Bryce [2] introduced a new family of subgroups, which generalize the
concept of Wielandt subgroup. For each integer m > 1, he denoted by um(G) the
intersection of the normalizers of all the subnormal subgroups of G with defect at
most m, and he defined inductively the subgroups um ,,(G) by setting wm0(G) = 1 and
for i > 1, Mm,;(G)/«m,,-i(G) = Hm(G/um,,_,(G)).

Then for each m > 1, we have a characteristic series of G, which we shall call the
m-Wielandt series of G. If for some integer n, umn(G) = G, then G is said to have
finite m-Wielandt length, and the least of such integers is the m-Wielandt length of G.

We denote by W£ the class of groups with finite m-Wielandt length for a fixed m,
and by W the class of groups with finite m-Wielandt length for each m > 1. Thus
y/* = f|~=1 W*. Since w,(G) < «m,,(G) for each m > 1, i > 0 (see [2,6]), we have
that W is contained in W*. The infinite dihedral group shows that this inclusion is a
strict one.

The aim of this paper is principally to investigate the structure of groups which
belong to W*. In Section 2 we prove the following

THEOREM 1. If G is a nilpotent-by-finite group, then G 6 W*.

In Section 3 we characterize Si-groups which belong to W* and to W. Moreover,
we prove that W*D&y = W* D &u for each m > 2. Denote by /^(G) the nilpotent
residual of a group G. We have

THEOREM 2. An <S\-group belongs to W* if and only if it is (nilpotent divisible)-
by-(nilpotenttorsion-free)-by-finite.

THEOREM 3. An &\-group G belongs to W if and only if it is (nilpotent divisible)-
by-nilpotent-by-finite, with the property that ifD is the finite residual of G and F/D is
the Fitting subgroup ofG/D, then (S/D)/yoo(S/D) is nilpotent, for each subnormal
subgroup S > F.

For notation and general properties of subnormal subgroups and groups of finite
rank we refer to [9,15].
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2. Groups with finite m-Wielandt length

The proof of Theorem 1 is based on an idea of Casolo and uses the following
lemma.

LEMMA 1. Let G = N S be a group, with N a normal nilpotent subgroup ofG with
nilpotency class at most c, and S a subnormal subgroup of G with defect at most m.
Then S > ymc+l{G).

PROOF. The proof is similar to the proof of [3, Lemma 4.6], with obvious modifi-
cations. D

PROOF OF THEOREM 1. First, note that if H is a finite group and y denotes the
set of all subnormal subgroups of H, then it is possible to order y = {H =
Ho, / / , , . . . , Hn = 1} in such a way that, for each i = 1 , . . . , n, the subgroup
Hi permutes, by conjugation, the elements of the set {Ho, / / , , . . . , #,_i}.

Now let G be a nilpotent-by-finite group and fix an integer m > 1. We want to
show that G has finite m-Wielandt length. Let N be the Fitting subgroup of G: then
N is nilpotent and G/N is finite. Denote by S£ the set of all subnormal subgroups of
G containing N. Clearly, 1£ is finite and NS € S£ for each subnormal subgroup 5 of
G. By the previous remark, we can fix an ordering S£ = {G = Ho, Hu ... , Hn = N]
of .2? in such a way that //, fixes, by conjugation, the set {Ho, Hu ... , / / ,_i}, for each
i = I,... ,n.

For i = 0 , . . . , n, set U(0, i) = 1, and for j > 0, define inductively the subgroup
U(j + 1, i) as the intersection of the normalizers in N of all subnormal subgroups S
of G with defect at most m, such that 5 > U(j, i) and NS — Hr, where r < i. We
show by induction on i that U(d'+1, i) = N, where d = cm and c is the nilpotency
class of N. Therefore, for i = n we have N = U(d"+l, n) < umidn+i(G), and thus,
since G/N is finite, we get that G has finite m-Wielandt length.

Let i = 0 and set No = 1 and N, = N C\ Yd+\-j (G) , for j = 1 , . . . , d. It can
be proved by induction on j that Nj < U(j, 0), for each j — 0, 1 , . . . , d, using
Lemma 1 to start the induction. Hence N — Nd — U(d, 0).

Now let i > 1 and assume by induction that N = U(d', i — 1). Set Do = 1 and
Dj = N n yd+1_j (Hd, for j< = 1 , . . . , d. For 0 < k < di+l write k-qd + r, where
q and r are the quotient and the remainder, respectively, of the division of k by d (thus
obviously0 < q < d'andO < r < d-l),andsetXk = U(q, i-l)DrC\U(q+l, / - I ) .
Note that for k = di+l, we have Xd>+i = U(d\ i - 1) = N. We claim that if 5 > Xk,
0 < k < d'+i, is a subnormal subgroup with defect at most m in G such that NS = H,,
with t < i, then [Xk+l, S] < S. To see this we have to distinguish two cases.
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(a) r < d - 1. Then k + 1 = qd + (r + 1) and XM = U{q, i - l)£>r+, D U(q +
1, i — 1), whence

[*t+i. S] < [U(q, i - \)Dr+u 5] n [U(q + 1, i - 1), 5] =: L.

Now, if t < i, then

L < [U(q + 1, i - 1), 5] < £/(.?, i - 1)5 < XkS < S.

If t = i, then Ht normalizes each U(J, i — 1), j = 0 , . . . , J \ since //, fixes the set
{Ho,..., Hi-i). Moreover, 5 > yd+,(//,), by Lemma 1, and thus [Dr+U S] < Dr

when r > 0, and [Du S] < S. Hence we have

L < U(q, i - l)[Dr+1, S] n U(q + 1, i - 1) < XkS < S.

(b) r = d - 1. Then k + 1 = (4 + l)d and Xk+l = U(q + 1, i - 1). Set
L = [Xk+U S] = [U(q + 1,1 - 1), 5]. Thus if / < i, then L < U(q, i - 1)5 <
XkS < S. If t = i, then, as above, U(q + 1, i — 1) is normalized by //; and
[AT, 5] < [//,, Hi] n Af = Dd_!. Hence

^ < f / (9 + 1, i - 1) D D r f _ , < U(q, i - \)Dd_x n U(q +l,i-l)=Xk< 5 .

This completes the proof that [Xk+l, S] < 5. Now if k — 0, then Xo = f/(0, j -
1)DO n f/(l, 1 — 1) = 1, and so by a recursive argument we have that Xk < U(k, i),
for each 0 < k < di+l. It follows that Xk+l < NC(S) for every 5 which goes into
the definition of U(k + 1, i), so X*+1 < U(k + 1, i). Thus for k = di+l we have
N < U(di+l, i) and the theorem follows. •

The following lemma contains a result similar to that of Theorem 1. In particular,
it implies that if a group G is the extension of a nilpotent group by a T-group with
finitely many normal subgroups, then it belongs to W*. Recall that a T-group is a
group in which every subnormal subgroup is normal.

LEMMA 2. Let G be a group, and let N be a normal subgroup of G.

(i) If G/Cc{N) has only a finite number n of normal subgroups, then N <
U2,n(G).

(ii) If G/CG(N) is a T-group with a finite number n of normal subgroups, then
N < «m,n(m-i)(G), for each m > 1.

PROOF. Fix m to be either equal to 2 if (i) holds or an integer greater than 0 if (ii)
holds. Set C = CC{N) and let {5, , . . . , Sn} be the set of all normal subgroups of
G containing C. For each 1 < r < n(m — 1) denote by Ar the set of all r-tuples
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Xr = (I'I , . . . , ir) such that 1 < i} < n and each symbol appears at most m — 1 times.
Set lQ = 0 and Ao = {A.o}- Then for each Xr = (h,... , ir) e Ar, 1 < r < n(m - 1),
define XK = [N,Sh S.Jandforr = 0, X^ = N. Finally, forO < r < n ( m - l ) ,
set tf, ='(*, , , | X , e A r ) .

We prove, by a recursive argument, that Afn(m_i)_; < umj(G), for each 1 = 0,...,
n{m-\). If/ = 0, then by definition XXiAm_t) < [N, C] = 1, for each An(m_i) 6 An(m_i).
Hence Afn(m_i, = 1.

Let / > 0 and assume that A^n(m_i)_(+1 < Mm,/-i(G). Then in order to prove that
N«m-i)-i < umJ(G) it is enough to show that [X^. , , . , , R] < /?A^n(m_1)_;+1, for each
subnormal subgroup R with defect at most m, and A.n(m_i)_( e An(m_u_/. So let R
be a subnormal subgroup of G with defect at most m and let / ? G m " 'C = S,, where

RG,m-i ._ /?[G,m_, R]. If Xn(m_D_; has at most m - 2 entries equal to ; , then
[Xkn(a^,, R] < [ X W l H , 5,-] < 7Vn(m_i,_/+1. Otherwise, Xn(m-i)-i has exactly m - 1
entries equal toy and then X W l M < [A^,m_i 5,] = [A^,m_i RGm^] < NHR0"-1 <
NG(R).

Therefore, Mi(m_iw — umj(G) as claimed. In particular, for / = n(m — 1) we have
N = N0< Mm>n(m_1)(G). •

Recall that by a theorem of Wielandt [19], w(G) contains every minimal normal
subgroup of G which satisfies the minimal condition on the normal subgroups. Let M
be a minimal normal subgroup of G and let R be a subnormal subgroup with defect at
most 2. Then either M D RG — 1, and thus M centralizes R, or M < RG < NG(R).
Therefore, u2(G) contains every minimal normal subgroup of G.

We conclude this section with an example of a group which does not belong to W*.
Another example is given in Section 3.

Let G = M xi A, where M = M(Q, GF(p)) is the McLain group (see [15, Part 2,
page 14]), and A is the group of automorphisms of M induced by the affine group
of Q. Then by [15, Theorem 6.21.iv], M is a minimal normal subgroup of G. Thus
M < u2(G). Furthermore A is metabelian and [a, A'] = A', for each a e A \ A'.
Hence A' < u2(A) and then G € "W2*. Now if Af is a normal subgroup of G not
containing M, then [N, M] < N DM — 1. Suppose by contradiction that Af ^ 1 and
choose an element 1 ^ ma € Af, with m e M, I ^ a € A. Then there exist A., \i e Q
such that 1 + eXM G CM(m) and hence 1 + eXll = (1 + ekll)

a. It follows that a = 1,
a contradiction. Therefore, N = 1 and G is a monolithic group, with monolith M.
Since M3(G) is a T-group (see [2,6]), then M £ u->,(G), and so u-s(G) = 1.

3. 61-groups

Let ux(G) denote the normalizer of all subgroups of a group G lying between
a characteristic subgroup and its derived subgroup. Then ux(G) is a characteristic
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subgroup of G and ux(G) > um(G), for each m > 2. We define by iteration an
ascending series of G, 1 < ux(G) = uXil(G) < uXi2(G) < . . . , where for i > 1,
ux,i+l(G)/uxJ(G) = ux(G/uxJ(G)). Let Wx be the class of all groups G such that
G = ux_n{G), for some n > 0. Trivially #^* c >^. Moreover, for each characteristic
subgroup H < G, we have that «X(G) n // < u x (#) and ux(G)H/H < ux(G/H).
Therefore, the class >^ is closed for characteristic subgroups and factor groups by
characteristic subgroups. In this section we prove the following stronger version of
Theorem 2.

THEOREM 2'. For an <5\-group G the following conditions are equivalent:

(i) G e Wx.
(ii) G e W*.

(iii) G w (nilpotent divisible)-by-(nilpotent torsion-free)-by-finite.

We begin with some preliminary easy lemmas about nilpotent groups.

LEMMA 3. Let G be a group and let H be a subgroup of G. Letx, y € G, n 6 N,
and suppose that [x, y] e H. If[H,y] < Hn, then [x, y]q[x, y"]~l € H" for each
integer q > 0.

From the Hall-Petresco identity (see [8]), it follows that if G is a nilpotent group
of nilpotency class c and q is an integer greater than c, then G* = {gq | g € G]
(see [1, Corollary 2.31]). In particular, we have that Gq" = [gq" | g e G] and
(Gi")im = G«"+", for each q > c, n, m > 0.

LEMMA 4. Let G be a group, and let F be a nilpotent subgroup of G of nilpotency
class c. Let x,y e G be such that [x, y] e F and [F, y] < Fq°, where q > c and
n > 1. Then for each k > 0, / > 0 we have

(i) [ j , / ]6^;

(ii) \ / +m

PROOF. First, we show that [Fq\ y] < Fq"*\ for each k > 0. Let a be an element
of F. Then ay = abq\ for some be F. Thus by the Hall-Petresco identity, we have

( a « V = (ay)qt = (abq")qk = a"' bq"+>e( • • • ef

with e, e (a, £*")' < F*" , i = 2, . . . , c. Therefore, each e, is a g"-th power and
[Fq\y]<Fq"+t.

Then we prove (i) by induction on /. If / = 0, this is the hypothesis. Let
I > 1 and assume that [x,yq' '] e Fq'"'. Then by the previous considerations
[Fq''\ v"'"'] < F«"+'"', and hence Lemma 3 yields that [x, yq'~']q[x, yq']~l e F""+'~l.
Therefore, [x, yq'] € Fq' and we are done.
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Finally, since [a, y] € F9"+' when a e F 9 \ and [F9"+\ y] < Fq2"+k, we can apply
(i) to F9"+< and a in the place of F and or, and we get (ii). •

We now state a first result about the action of some elements of ux(G) on the
group G, which play an important role in the sequel.

PROPOSITION 5. Let A and F be characteristic subgroups of G, such that F is
nilpotent torsion-free with class c and A' < F. Assume that A < Ca(F/Fq"), where
n>2,q>c. Then [x, y] € p)*>o Fqt>f°r e^ch y eA such that (y) n F — 1 and for
eachx e ux(G)r\F.

PROOF. First note that (A9*)' < Fql\ for each integer h > 0. In fact, by Lemma 4.i,
we have [aq\ bqh] e FqU, for each a, be A.

Now let y e A be such that (y) n F = 1. By definition, if x e ux(G) n F, thenx
normalizes the subgroup (y9*)(A9*)' and thus

[x,y9*] e F H (y'h)(Aqhy < F D < y 9 V * 2 * = F 9 " .

Suppose now that [x, y] e F9*"' for some jfc > 1. Then by Lemma 4, [x, yqt"] G
Fqlk'"\ for each 0 < s < k. Let us show, by a recursive argument, that [*, yqk~'] e
F" '. If s = 0, by the previous considerations, there is nothing left to prove.
So let s > 1 and assume that [x, yqk~'*' ] e Fq2k"+'. Then, since by Lemma 4-.il,
[Fq"~"\yqk"] < f«*- l + -*- - F^31"21"', Lemma 3 applied to F ' a "" ' and y^" yields
that[x,y«^]'[jc,y«'"WI]-1 e F?"+3121"'. Therefore,sincen+3k-2s-\ > 2k-s + l,
we have that [x, yqk"]q e Fq2k"*'. F is a nilpotent torsion-free group and thus ar = br

implies a = b, for each a,b e F,r eZ. Hence [*, y9*"'] 6 F*2*"', as claimed.
To prove now the statement we proceed by induction on it. If k = 0, trivially

[x, y] e F. Let k > 1 and suppose that [x, y] e F«*~'. Then the previous considera-
tions with s = k show that [x, y] e F9 ' and we are done. •

COROLLARY 6. Let G be an &i-group, and let F < A be characteristic subgroups
ofG. Assume that F is nilpotent torsion-free, Z(F) is reduced and A / F is an abelian
torsion-free group. Then CA(ux(G) D Z(F)) has finite index in A.

PROOF. Let c be the nilpotency class of F. Since F e &i and Z(F) is reduced,
by a theorem of Robinson ([14, Theorem E]), F is residually a finite 7r-group, for a
suitable finite set of primes n = {p\,... , pt). Therefore, if q = (pi • • • p,)c, then

0 * 0 ^ = 1-
Now F/Fql is finite since it is an @i-group with finite exponent, and thus C =

CA {F/Fq ) is a characteristic subgroup of G with finite index in A. Moreover C/ CC\ F
is an abelian torsion-free group. Then by applying Proposition 5 to subgroups C and
F of G, we get that [x, y] € ( \> 0 F9 ' = 1, for each x € ux(G) D F and y e C \ F.
Therefore, K, (G)DZ(F) is centralized by C and | A : Q(Mx(G)nZ(F))| is finite. •
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Note that if in Proposition 5 and Corollary 6 we replace ux(G) by u2(G), the
corresponding statements can be proved under the weakened hypothesis that A and F
are normal subgroups of G.

We give now an example of a poly cyclic group G in which ux(G) = 1. Let
G = F * (y), where F = (a, b) is a free abelian group of rank 2 and y is an element
of infinite order such that ay — ab4 and by = a4b17. Then F is the Fitting subgroup
of G (since for each integer r, yr induces on F a fixed-point-free automorphism),
G' < F and F/F4 is a central section of G. Thus, by Proposition 5, [x, y] = I for
each x € ux(G) n F, that is to say ux(G) D F < Z(G). Since Z(G) — 1, we have
that w*(G) n F = 1 and hence ux(G) — 1.

The next lemma contains probably well-known properties of @i-groups.

LEMMA 7. Let G be an <8x-group.

(i) If G is residually finite and H is a normal subgroup of G of finite index, then
G/Z(H) is a residually finite &\-group.

(ii) If G has no quasicyclic subgroups and H is a nilpotent divisible normal
subgroup of G, then G/H is an &i-group with no quasicyclic subgroups.

PROOF. Let G and H be as in (i). Then, since H is residually finite, the centre
of the Baer radical of H is reduced by [15, Theorem 9.37]. So Aut H has a normal
torsion-free subgroup K of finite index by the remark after Corollary on page 139
in [15, Part 2]. Then Inn H D K is a torsion-free subgroup of finite index of Inn H,
and it is normal in Aut//. Let N be the set of all elements of H which induce
inner automorphisms belonging to K. Then N contains Z(H) and N/Z(H) is the
image of Inn H C\ K with respect to the isomorphism Inn ^/~A u t W// /Z(/ /) . Hence
N is a characteristic subgroup of H of finite index and N/Z(H) is torsion-free. It
follows that N is a normal subgroup of finite index in G, and G/Z(H) is an ©i-group.
Moreover, by Corollary to Theorem 9.37 in [15], the holomorph of H is residually
finite, and so also H/Z(H) is residually finite. Then G/Z(H) is residually finite.

Let G and H be as in (ii). Then by Theorem 10.33 and Theorem 9.39.3 in [15], H
is contained in a nilpotent torsion-free characteristic subgroup N of G, such that G/N
is polycyclic. Hence we may assume without loss of generality that G is a nilpotent
torsion-free group.

Let T/Z(H) denote the torsion-subgroup of G/Z(H), and set C — CT(Z(H)).
Then, since by [15, Theorem 9.23], Z(H) is an abelian divisible group of finite rank,
T/ C is isomorphic with a periodic group of matrices over the field of rational numbers;
so it is finite by a classical theorem of Schur (see [15, Part 1 page 85]). Since clearly
Z(//) < Z(C), C/Z(C) is periodic and consequently locally finite. The corollary to
Theorem 4.12 in [15] implies that C is locally finite. Hence C = 1 and C is abelian.
Then C splits over Z(H) and therefore C — Z(H), since G is torsion-free. Thus

https://doi.org/10.1017/S1446788700002299 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002299


84 Clara Franchi [9]

G/Z(H) is an 6i-group with no quasicyclic subgroups. Now if H is abelian, we are
done. If H is not abelian, then H/Z(H) is a nilpotent divisible normal subgroup of
G/Z(H) and so by induction on the class of H we can complete the proof. •

For the proof of Theorem 2' we need the following lemma of Casolo. I am grateful
to him for allowing me to include it here.

LEMMA 8 (C. Casolo). Let A be a normal abelian divisible subgroup of a group G.
If A has finite rank n, then A < wn(G).

PROOF. Let us show first that if D is a normal abelian divisible subgroup of finite
rank of a group G such that no non-trivial proper divisible subgroup of D is normal
in G, then D < w(G). Let H be a subnormal subgroup of G. To prove that
D < NG(H) we proceed by induction on the defect d of H in G. If d = 1, then H is
normal in G and there is nothing to prove. Let d > 1 and set K = HG. If [K, D] = 1,
then D centralizes H. Otherwise, [AT, D] is a non-trivial normal divisible subgroup
of G contained in D, whence by our assumption K > [K, D] = D. Now D has
no non-trivial proper characteristic divisible subgroups and so it is the direct product
of finitely many copies either of Q or of the Priifer group Cp°°, for some prime p.
Hence there exists a divisible subgroup D{ of D, minimal with the property of being
non-trivial and normal in K. The defect of H in K is d - 1, and so by inductive
hypothesis D\ as well as all its conjugates in G normalizes H. Hence Df normalizes
H and Df = D, since it is a non-trivial divisible normal subgroup of G contained
inD.

Now let us assume that A is the direct product of finitely many copies either of Q
or of Cpoo for some prime p, and proceed by induction on the rank n of A. If n = 0,
then A — 1 and we are done. Let n > 1 and take D < A to be a minimal non-trivial
divisible normal subgroup of G. Then by the previous case D < w(G). Moreover,
A/D has rank at most n — 1, hence A/D < wn_i(G/D) by the inductive hypothesis.
Therefore, A < wn(G).

To consider the general case write A = R x Drp€7r Tp, where n is the set of all
prime divisors of the orders of the elements of A, Tp is the direct product of np copies
of Cpoo, R is the direct product of n0 copies of Q, and n = n0 + max{np \ p € n}.
Now Tp is normal in G for each pen. Thus Tp < wnp(G) by the above and
T = Drp€^ Tp < wk{G), where k = max{np | p e n). Similarly, A/T < wno(G/T).
Hence A < wk+no(G) = wn(G) as wanted. •

PROOF OF THEOREM 2'. Let G be an 61-group and let D be its finite residual.
By [15, Theorem 9.31], D is the maximal nilpotent divisible subgroup of G. Suppose
first that G is (nilpotent divisible)-by-nilpotent-by-finite. Then G/D is nilpotent-
by-finite. By [15, Theorem 9.23], each factor of the upper central series of D is
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abelian divisible of finite rank; thus by Lemma 8, D < wk(G), for some k > 1, and
G/wk(G) e W* by Theorem 1. Hence G € W* c Wx. This shows that (iii) implies
(ii) and (i).

To prove that condition (i) implies (iii), assume that G € "Wx. If R is the subgroup
generated by the quasicyclic subgroups of G, then R < D and by [ 15, Theorem 10.33],
G/R is an 61-group with no quasicyclic subgroups. Hence by Lemma 7.ii, G/D is
a residually finite 6rgroup. Then [15, Theorem 9.39.3] yields that G/D has a
characteristic completely infinite subgroup of finite index, say T/D. Since Wx is
closed for characteristic subgroups and factor groups by characteristic subgroups, we
have that T/ D is an & i -group in Wx. Therefore to prove (iii) it is enough to show that
a residually finite completely infinite (51-group H e Wx is (nilpotent torsion-free)-
by-finite.

To this end, let r denote the torsion-free rank of H (see [16, page 407]), and let
us proceed by induction on r, the case r = 0 being trivial. Let r > 0, and let F be
the Fitting subgroup of H. By [15, Theorem 10.33], F is nilpotent (torsion-free) and
there exists a characteristic subgroup A > F of finite index in H, such that A/F is
abelian torsion-free. If A = F we are done. If A > F, set C = CA(ux(H) D Z{F))
and note that ux(H) C\ Z(F) ^ 1 since F is nilpotent and ux(H) n F is a non-
trivial normal subgroup of F. Then, by Corollary 6, C has finite index in A, and by
Lemma 7.i, C/Z(C) is a residually finite ©i-group. As above, it follows that it has a
characteristic completely infinite subgroup Ci/Z(C) of finite index. Hence C\/Z(C)
is a residually finite completely infinite 61-group in Wx, with torsion-free rank less
than r, since Z(C) is a non-trivial torsion-free group. Therefore, by induction,
Ci/Z(C) is (nilpotent torsion-free)-by-finite. Hence C\, and then H, is (nilpotent
torsion-free)-by-finite. •

PROOF OF THEOREM 3. Suppose that G is an S:-group with finite Wielandt length.
Then by Theorem 2', G is (nilpotent divisible)-by-nilpotent-by-finite. Let D and F
be as in the statement, and let S > F be a subnormal subgroup of G. Then the
defect of the subnormal subgroups of each nilpotent quotient of S/D is bounded by
the Wielandt length of G. Since, by a theorem of Roseblade [18], a group in which
each subgroup is subnormal with defect at most s is nilpotent with class bounded by
a function of s, it follows that there is a bound on the class of the nilpotent quotients
of S/D and hence (S/D)/y0O(S/D) is nilpotent.

Conversely, if G is as in the statement, then it has finite m -Wielandt length for each
m > 1, by Theorem 2'. Therefore, in order to show that G has finite Wielandt length it
is sufficient to prove that there is a bound on the defects of the subnormal subgroups of
G. Let R be a subnormal subgroup of G. As in the proof of Theorem 2', we have that
D < wk(G), for some k eN , and thus the defect of R in RD is at most k. Moreover,
RF is a subnormal subgroup of G and by Lemma 1, RD/D > Yoo(RF/D). NOW
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since by hypothesis (RF/D)/yoo(RF/D) is nilpotent and G/F is finite, there exists
h > 1 such that yodRF/D) = yh{RF/D) for each subnormal subgroup R of G.
Therefore, the defect of RD in RF is at most h. Hence, if n = \G/F\, we can deduce
that the defect of R in G is at most k + h + n. •

Note that (51-groups with finite Wielandt length need not to be (nilpotent divisible)-
by-finite-by-nilpotent, as follows from consideration of the T-group G = A x (x),
where A is the group of rational numbers with denominators powers of 2 and x is an
element of order 2 mapping each element of A into its inverse.

The following example shows that Theorem 2 and Theorem 3 cannot be extended
to soluble groups of finite rank.

By a theorem of Dirichlet [7, Theorem 15] there exists an infinite family of distinct
primes {pn,qn}n6N such that, for each n > 0, qn divides pn — l. For each n > 0, let Cn

be a cyclic group of order pn and let An be a group of automorphisms of Cn of order
qn. Set Gn = Cn x An and G = DrneN Gn. It is easy to see that G is a residually finite
soluble T-group of rank 2, but it is not nilpotent-by-finite.

I wish to thank Prof. C. Casolo for making his unpublished results about this topic
available to me, and Prof. F. Napolitani for many valuable suggestions and discussions.
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