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Abstract
Given a group G and an integer n ≥ 0, we consider the family Fn of all virtually abelian subgroups of G of rank
at most n. In this article, we prove that for each n ≥ 2 the Bredon cohomology, with respect to the family Fn,
of a free abelian group with rank k> n is nontrivial in dimension k + n; this answers a question of Corob Cook
et al. (Homology Homotopy Appl. 19(2) (2017), 83–87, Question 2.7). As an application, we compute the min-
imal dimension of a classifying space for the family Fn for braid groups, right-angled Artin groups, and graphs
of groups whose vertex groups are infinite finitely generated virtually abelian groups, for all n ≥ 2. The main tools
that we use are the Mayer–Vietoris sequence for Bredon cohomology, Bass–Serre theory, and the Lück–Weiermann
construction.

1. Introduction

Given a group G, we say that a collection F of subgroups of G is a family if it is nonempty and closed
under conjugation and taking subgroups. We fix a group G and a family F of subgroups of G. We say
that a G-CW-complex X is a model for the classifying space EFG if all of its isotropy groups belong
to F and if Y is a G-CW-complex with isotropy groups belonging to F , there is precisely one G-map
Y → X up to G-homotopy. It can be shown that a model for the classifying space EFG always exists and
it is unique up to G-homotopy equivalence. We define the F-geometric dimension of G as

gdF (G) = min{n ∈N| there is a model for EFG of dimension n}.
The F-geometric dimension has its algebraic counterpart, the F-cohomological dimension cdF (G),

which can be defined in terms of Bredon cohomology (see Section 2). The F-geometric dimension and
the F-cohomological dimension satisfy the following inequality (see [17, Theorem 0.1]):

cdF (G) ≤ gdF (G) ≤ max{cdF (G), 3}.
It follows that if cdF (G) ≥ 3 then cdF (G) = gdF (G). It is not generally true that cdF (G) = gdF (G). For
example, for the family of finite subgroups F0, in [3] it was proved that there is a right-angled Coxeter
group W such that cdF0 (W) = 2 and gdF0

(W) = 3. For other examples see [25].
Let n ≥ 0 be an integer. A group is said to be virtually Z

n if it contains a subgroup of finite index
isomorphic to Z

n. Define the family

Fn = {H ≤ G|H is virtually Z
r for some 0 ≤ r ≤ n}.
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The families F0 and F1 are relevant due to their connection with the Farrell–Jones and Baum-Connes
isomorphism conjectures; see for example [18]. The Farrell–Jones conjecture has been proved for braid
groups in [1, 12, 15] and for some even Artin groups in [27].

For n ≥ 2, the families Fn have been recently studied by several people; see for example [13, 14, 16,
23, 25]. For a virtually Z

n group G, it was proved in [23] that gdFk
(G) ≤ n + k for all 0 ≤ k< n. For a

free abelian group, this upper bound was also obtained by Corob Cook, Moreno, Nucinkis, and Pasini
in [4], and they asked whether this upper bound was sharp:

Question 1 ([4], Question 2.7). For 0 ≤ k< n, is gdFk
(Zn) = n + k?

We answer this question affirmatively in Theorem 1.1. For k = 1, this was proved in [20, Theorem
5.13] and for k = 2 in [22, Proposition A.]. As an application, we provide lower bounds for the Fk-
geometric dimension of virtually abelian groups, braid groups, and right-angled Artin groups (RAAGs).
Combining these lower bounds with previously known results in the literature, we show that they are
sharp. We also prove that the Fk-geometric dimension is equal to the Fk-cohomological dimension in
all these cases. On the other hand, inspired by [16], we use Bass–Serre theory to explicitly calculate,
for all k ≥ 1, the Fk-geometric dimension of graphs of groups whose vertex groups are infinite finitely
generated virtually abelian groups.

There are few explicit calculations of the Fn-geometric dimension for n ≥ 2. For example, the Fn-
geometric dimension for orientable 3-manifold groups was explicitly calculated in [16] for all n ≥ 2. In
[22, Proposition A.], it was shown that gdF2

(Zk) = k + 2 for all k ≥ 3. With our results we add braid
groups, RAAGs, and graphs of groups whose vertex groups are infinite finitely generated virtually
abelian groups to this list. In what follows, we present more precisely these results.

The Fn-dimension of virtually abelian groups.

Let G be a virtually Z
n group. In [23, Proposition 1.3], it was proved that gdFk

(G) ≤ n + k for 0 ≤ k< n.
For a free abelian group, this upper bound has also been proved in [4]. In this article, we prove that this
upper bound is sharp.

Theorem 1.1. Let k, n ∈N such that 0 ≤ k< n. Let G be a virtuallyZn group. Then gdFk
(G) = cdFk (G) =

n + k.

For k = 1, the Theorem 1.1 was proved in [20, Theorem 5.13]. For k = 2, a particular case was proved
in [22, Proposition A.], specifically gdF2

(Zk) = k + 2 for all k ≥ 3. As a corollary of Theorem 1.1, we
have

Corollary 1.2. Let n ≥ 1 and let G be a group that has a virtually Z
n subgroup. Then for 0 ≤ k< n we

have gdFk
(G) ≥ n + k and cdFk (G) ≥ n + k.

The Fn-dimension of braid groups.

There are various ways to define the (full) braid group Bn on n strands. For our purposes, the following
definition is convenient. Let Dn be the closed disc with n punctures. We define the braid group Bn on
n strands as the isotopy classes of orientation preserving diffeomorphisms of Dn that restrict to the
identity on the boundary ∂Dn. In the literature, this group is known as the mapping class group of Dn. It
is well known that gdF0

(Bn) = n − 1 see for example [2, Section 3]. In [14, Theorem 1.4], it was proved
that gdFk

(Bn) ≤ n + k − 1 for all k ∈N. Using Corollary 1.2 and [11, Proposition 3.7] we prove that this
upper bound is sharp.

Theorem 1.3. Let k, n ∈N such that 0 ≤ k< n − 1 and G be either the full braid group Bn or the pure
braid group Pn. Then gdFk

(G) = cdFk (G) = vcd(G) + k = n + k − 1.
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The Fn-dimension of right-angled Artin groups.

Let � be a finite simple graph, that is, a finite graph without loops or multiple edges between vertices.
We define the right-angled Artin group (RAAG) A� as the group generated by the vertices of � with all
the relations of the form vw = wv whenever v and w are joined by an edge.

Let A� be a RAAG. It is well-known A� is a CAT(0) group, in fact A� acts on the universal cover S̃�
of its Salvetti CW-complex S�, see Section 4.2. In [23], it was proved that cdFk (A�) ≤ dim (S�) + k + 1.
Following the proof of [23], Proof of Theorem 3.1] and using [13, Proposition 7.3], we can actually
show that cdFk (A�) ≤ dim (S�) + k in Theorem 4.6. Moreover, by using Corollary 1.2 and Remark 4.2,
we can prove that this upper bound is sharp.

Theorem 1.4. Let A� be a right-angled Artin group. Then for 0 ≤ k< cd(A�) we have gdFk
(A�) =

cdFk (A�) = dim (S�) + k = cd(A�) + k.

This calculation of the Fk-geometric dimension of a RAAG A� is explicit because the dimension of the
Salvetti CW-complex S� is the maximum of all natural numbers n such that there is a complete subgraph
�′ of � with |V(�′)| = n (see Lemma 4.5).

Using Corollary 1.2, we can give a lower bound for the Fk-geometric dimension of the outer
automorphism group Out(A�) of some RAAGs A�.

Proposition 1.5. Let n ≥ 2. Let Fn be the free group in n generators. Then for all 0 ≤ k< 2n − 3 we
have

gdFk
(Out(Fn)) ≥ vcd(Out(Fn)) + k ≥ 2n + k − 3.

Proposition 1.6. Let Ad be the right-angled Artin group given by a string of d diamonds. Then
gdFk

(Out(Ad)) ≥ vcd(Out(Ad)) + k ≥ 4d + k − 1 for all 0 ≤ k< 4d − 1.

Question 2. Given Theorems 1.3 and 4.7, it is natural to ask whether it is true that in Proposition 1.5
we can have gdFk

(Out(Fn)) ≤ vcd(Out(Fn)) + k ≤ 2n + k − 3 for all 0 ≤ k< 2n − 3. Similarly, if it is
true that in Proposition 1.6, we can have gdFk

(Out(Ad)) ≤ vcd(Out(Ad)) + k ≤ 4d + k − 1 for all 0 ≤
k< 4d − 1.

The Fn-geometric dimension for graphs of groups of finitely generated virtually abelian groups.

Inspired by [16], we use Bass–Serre theory, Theorem 1.1 and Corollary 1.2 to compute theFn-geometric
dimension of graphs of groups whose vertex groups are finitely generated virtually abelian groups.

Theorem 1.7. Let Y be a finite graph of groups such that for each v ∈ V(Y) the group Gv is infinite
finitely generated virtually abelian, with rank(Ge)< rank(Gv). Suppose that the splitting of G = π1(Y) is
acylindrical. Let m = max{rank(Gv)|v ∈ V(Y)}. Then for 1 ≤ k<m we have gdFk

(G) = m + k.

Corollary 1.8. Let Y be a finite graph of groups such that for each v ∈ V(Y) the group Gv is infi-
nite finitely generated virtually abelian and for each e ∈ E(Y) the group Ge is a finite group. Let
m = max{rank(Gv)|v ∈ V(Y)}. Then for 1 ≤ k<m we have gdFk

(G) = m + k.

Outline of the paper.

In Section 2, we introduce the Lück–Weiermann construction, which enables us to build models induc-
tively for the classifying space of EFn∩HZ

n. Later in the same section, we define Bredon cohomology and
present the Mayer–Vietoris sequence, which is as a crucial tool in proving Theorem 3.6. In Section 3,
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we prove Theorem 1.1. In Section 4, we present some applications of Corollary 1.2, for instance, we
explicitly calculate the Fk-geometric dimension of braid groups and RAAGs. Furthermore, we provide
a lower bound for the Fk-geometric dimension of the outer automorphism group of certain RAAGs.
Finally, we use Bass–Serre theory to prove Theorem 1.7.

2. Preliminaries
The Lück–Weiermann construction.

In this subsection, we give a particular construction of Lück–Weiermann [20, Theorem 2.3] that we will
use later.

Definition 2.1. LetF ⊂ G be two families of subgroups of G. Let ∼ be an equivalence relation in G −F .
We say that ∼ is strong if the following is satisfied

(a) If H, K ∈ G −F with H ⊆ K, then H ∼ K;
(b) If H, K ∈ G −F and g ∈ G, then H ∼ K if and only if gHg−1 ∼ gKg−1.

Definition 2.2. Let G be a group and L, K be subgroups of G. We say that L and K are commensurable
if L ∩ K has finite index in both L and K.

Definition 2.3. Let G be a group and let H be a subgroup of G. We define the commensurator of H in
G as

NG[H] := {g ∈ G|gHg−1 is commensurable with H}.

Definition 2.4. Let G be a group, let H be a subgroup of G, and F a family of subgroups of G. We define
the family F ∩ H of H as all the subgroups of H that belong to F . We can complete the family F ∩ H in
order to get a family F ∩ H of G.

Remark 2.5. Following the notation of Definition 2.4 note that:

• If H = G then F ∩ H =F .
• If H is normal subgroup of G, then F ∩ H =F ∩ H.

Let G be a group, H a subgroup of G and n ≥ 0. Consider the following nested families of G,Fn ∩ H ⊆
Fn+1 ∩ H, let ∼ the equivalence relation in Fn+1 ∩ H −Fn ∩ H given by commensurability. It is easy to
check that this is a strong equivalence relation.

We introduce the following notation:

• We denote by (Fn+1 ∩ H −Fn ∩ H)/∼ the equivalence classes in Fn+1 ∩ H −Fn ∩ H. Given
L ∈ (Fn+1 ∩ H −Fn ∩ H) we denote by [L] its equivalence class.

• Given [L] ∈ (Fn+1 ∩ H −Fn ∩ H)/∼, we define the next family of subgroups of NG[L]

(Fn+1 ∩ H)[L] := {K ≤ NG[L]|K ∈ (Fn+1 ∩ H −Fn ∩ H), [K] = [L]} ∪ (Fn ∩ H ∩ NG[L]).

Theorem 2.6 ([20], Theorem 2.3). Let G be a group, let H be a subgroup of G and n ≥ 0. Consider
the following nested families of G, Fn ∩ H ⊆Fn+1 ∩ H, let ∼ be the equivalence relation given by
commensurability in Fn+1 ∩ H −Fn ∩ H. Let I be a complete set of representatives of conjugation
classes in (Fn+1 ∩ H −Fn ∩ H)/∼. Choose arbitrary NG[L]-CW-models for E(Fn∩H)∩NG[L]NG[L] and
E(Fn+1∩H)[L]NG[L] and an arbitrary model for EFn∩HG. Consider the following G-push-out
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[L]∈I

G ×NG[L] E(Fn∩H)∩NG[L]NG[L] EFn∩HG

[L]∈I

G ×NG[L] E(Fn+1∩H)[L]NG[L] X

[L]∈I

idG ×NG[L] f[L]

i

such that f[L] is a cellular G-map for every [L] ∈ I and either (1) i is an inclusion of G-CW-complexes
or (2) such that every map f[L] is an inclusion of G-CW-complexes for every [L] ∈ I and i is a cellular
G-map. Then X is a model for EFn+1∩HG.

Remark 2.7. The conditions in Theorem 2.6 are not restrictive. For instance, to satisfy the condition
(2), we can use the equivariant cellular approximation theorem to assume that the maps i and f[L] are
cellular maps for all [L] ∈ I and to make the function f[L] an inclusion for every [L] ∈ I, we can replace
the spaces by the mapping cylinders. See [20, Remark 2.5].

Following the notation from Theorem 2.6 we have

Corollary 2.8. gdFn+1∩H(G) ≤ max{gdFn∩H(G) + 1, gd(Fn+1∩H)[L](NG[L])|L ∈ I}.

The push-out of a union of families.

The following lemma will be also useful.

Lemma 2.9 ([8], Lemma 4.4). Let G be a group and F , G be two families of subgroups of G. Choose
arbitrary G-CW-models for EFG, EGG and EF∩GG. Then, the G-CW-complex X given by the cellular
homotopy G-push-out

EF∩GG EFG

EGG X

is a model for EF∪GG.

With the notation Lemma 2.9 we have the following

Corollary 2.10. gdG∪F (G) ≤ max{gdF (G), gdG(G), gdG∩F (G) + 1}.

Nested families.

Given a group G and two nested families F ⊆ G of G, we will use the following propositions to bound
the geometric dimension gdF (G) using the geometric dimension gdG(G).

Proposition 2.11 ([20], Proposition 5.1 (i)). Let G be a group and let F and G be two fam-
ilies of subgroups such that F ⊆ G. Suppose for every H ∈ G we have gdF∩H(H) ≤ d. Then
gdF (G) ≤ gdG(G) + d.

The proof of the following proposition is implicit in [19, Proof of Theorem 3.1] and [20,
Proposition 5.1].
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Proposition 2.12. Let G be a group. Let F and G be families of subgroups of G such that F ⊆ G. If X
is a model for EGG, then

gdF (G) ≤ max{gdF∩Gσ
(Gσ ) + dim (σ )| σ is a cell of X}.

Bredon cohomology.

In this subsection, we recall the definition of Bredon cohomology, the cohomological dimension for
families and its connection with the geometric dimension for families. For further details see [21].

Fix a group G and F a family of subgroups of G. The orbit category OFG is the category whose
objects are G-homogeneous spaces G/H with H ∈F and morphisms are G-functions. The category
of Bredon modules is the category whose objects are contravariant functors M : OFG → Ab from the
orbit category to the category of abelian groups, and morphisms are natural transformations f : M → N.
This is an abelian category with enough projectives. The constant Bredon module Z : OFG → Ab is
defined in objects by Z(G/H) =Z and in morphisms by Z(ϕ) = idZ. Let P• be a projective resolution
of the Bredon module Z, and M be a Bredon module. We define the Bredon cohomology of G with
coefficients in M as

H∗
F (G; M) = H∗(mor(P•, M)).

We define the F-cohomological dimension of G as

cdF (G) = max{n ∈N| there is a Bredon module M, H∗
F (G; M) �= 0}.

We have the following Eilenberg–Ganea type theorem that relates the F-cohomological dimension
and the F-geometric dimension.

Theorem 2.13 ([17], Theorem 0.1). Let G be a group and F be a family of subgroups of G. Then

cdF (G) ≤ gdF (G) ≤ max{cdF (G), 3}.
This Theorem 2.13 together with the following Mayer–Vietoris sequence will be used to give lower
bounds for the F-geometric dimension gdF (G).

Mayer–Vietoris sequence.

Following the notation of Theorem 2.6, by [7, Proposition 7.1] [20] we have the next long exact sequence

· · · → Hn(X/G) →
(∏

L∈I

Hn(E(Fn+1∩H)[L]NG[L]/NG[H])

)
⊕ Hn(EFn∩HG/G) →∏

L∈I

Hn(E(Fn∩H)∩NG[L]NG[L]/NG[L]) → Hn+1(X/G) → · · ·

Remark 2.14. The results presented in Corollaries 2.8, 2.10, and Proposition 2.11 have cohomological
counterparts. Specifically, if we replace gdF with cdF , all the results hold true, see for instance [23,
Remark 2.9].

3. The Fk-dimension of a virtually Z
n group

The objective of this section is to prove Theorem 1.1. Let G be a virtually Z
n group. By [23, Proposition

1.3], Theorem 2.13 and since the F-cohomological dimension is monotone, we have for all 0 ≤ k< n
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the following inequalities

n + k ≥ gdFk
(G) ≥ cdFk (G) ≥ cdFk∩Zn (Zn).

Therefore, to prove Theorem 1.1, it is enough to show that cdFk∩Zn (Zn) ≥ n + k for 0 ≤ k< n. In
Theorem 3.6, we prove this inequality. In order to prove Theorem 3.6 we need Lemma 3.1, Mayer–
Vietoris sequence, Lemma 3.5, and Corollary 3.3.

Lemma 3.1. Let k, t, n ∈N such that 0 ≤ k< t ≤ n. Let H be a subgroup of Z
n of rank t, then

gdFk∩H(Zn) ≤ n + k.

Proof. The proof is by induction on k. Let G =Z
n. For k = 0, we have gdF0∩H(G) = gd(G) = n.

Suppose that the inequality is true for all k<m. We prove that the inequality is true for k = m. Let
∼ be the equivalence relation on Fm ∩ H −Fm−1 ∩ H defined by commensurability, and let I a complete
set of representatives classes in (Fm ∩ H −Fm−1 ∩ H)/∼. By Corollary 2.8 and Remark 2.5, we have

gdFm∩H(G) ≤ max{gdFm−1∩H(G) + 1, gd(Fm∩H)[L](G)|L ∈ I} ≤ max{n + m, gd(Fm∩H)[L](G)|L ∈ I}
then to prove that gdFm∩H(G) ≤ n + m it is enough to prove that gd(Fm∩H)[L](G) ≤ n + m for all L ∈ I. Let
L ∈ I. We can write the family

(Fm ∩ H)[L] = {K ≤ G|K ∈Fm ∩ H −Fm−1 ∩ H, K ∼ L} ∪ (Fm−1 ∩ H)

as the union of two families (Fm ∩ H)[L] = G ∪ (Fm−1 ∩ H) where G is the family generated by {K ≤
G|K ∈Fm ∩ H −Fm−1 ∩ H, [K] = [L]}. By Corollary 2.10, we have

gd(Fm∩H)[L](G) ≤ max{gdFm−1∩H(G), gdG∩(Fm−1∩H)(G) + 1, gdG(G)}
≤ max{n + m − 1, gdG∩(Fm−1∩H)(G) + 1, gdG(G)}, by induction hypothesis.

We prove the following inequalities

(i) gdG(G) ≤ n − m,
(ii) gdG∩(Fm−1∩H)(G) ≤ n + m − 1

and as a consequence we will have gdFm∩H[L](G) ≤ n + m. First, we prove item (i). Note that a model for
EF0 (G/L) is a model for EGG via the action given by the projection G → G/L. Since G/L is virtually
Z

n−m by [23, Proposition 1.3] we have gdF0
(G/L) ≤ n − m.

Now we prove item (ii). Applying Proposition 2.11 to the inclusion of families G ∩ (Fm−1 ∩ H) ⊂ G,
we get

gdG∩(Fm−1∩H)(G) ≤ gdG(G) + d

for some d such that for any K ∈ G we have gdG∩(Fm−1∩H)∩K(K) ≤ d. Since we already proved gdG(G) ≤
n − m, our next task is to show that d can be chosen to be equal to 2m − 1.

Recall that any K ∈ G is virtuallyZt for some 0 ≤ t ≤ m. We split our proof into two cases. First assume
that K ∈ G is virtuallyZt for some 0 ≤ t ≤ m − 1. Hence, K belongs toFm−1 ∩ H, it follows that K belongs
toG ∩ (Fm−1 ∩ H) and we conclude gd(G∩(Fm−1∩H))∩K(K) = 0. Now assume K ∈ G is virtuallyZm. We claim
that (G ∩ (Fm−1 ∩ H)) ∩ K =Fm−1 ∩ K. The inclusion (G ∩ (Fm−1 ∩ H)) ∩ K ⊂Fm−1 ∩ K is clear since
Fm−1 ∩ H ⊂Fm−1. For the other inclusion let M ∈Fm−1 ∩ K. Since K ≤ H we get Fm−1 ∩ K ⊆Fm−1 ∩ H
and as a consequence M ∈Fm−1 ∩ H, on the other hand M ≤ K ∈ G, therefore M ∈ (G ∩ (Fm−1 ∩ H)) ∩ K.
This establishes the claim. We conclude that

gd(G∩(Fm−1∩H))∩K(K) = gdFm−1∩K(K) ≤ m + m − 1 = 2m − 1

where the inequality follows from [23, Proposition 1.3].

The following proposition is a mild generalization of [4, Lemma 2.3].
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Proposition 3.2. Let H be a subgroup ofZn that is maximal inFt −Ft−1. Then, for all 0 ≤ k ≤ t, each L ∈
(Fk ∩ H −Fk−1 ∩ H) is contained in a unique maximal element M ∈ (Fk −Fk−1) and M is a subgroup
of H.

Proof. We have two cases rank(H) = n or rank(H)< n. In the first case, by the maximality of H
we have that H =Z

n and Fk ∩ H =Fk. Let L ∈ (Fk −Fk−1), we consider the following short exact
sequence:

1 → L →Z
n p−→Z

n/L → 1.

Since rank (Zn) = rank (L) + rank (Zn/L) and by the classification theorem of finitely generated abelian
groups, we have that Zn/L is isomorphic to Z

n−k ⊕ F where F is the torsion part. Therefore, it is clear
that p−1(F) is the unique maximal subgroup of Zn of rank k that contains L.

Suppose that rank(H) = t< n. Let L ∈Fk ∩ H −Fk−1 ∩ H, in particular L ∈Fk then by the first case
L is contained in a unique maximal M ∈Fk −Fk−1. We claim that M ≤ H. Note that MH is virtually Z

t

because

[HM : H] = [M : M ∩ H] ≤ [M : L]<∞,

it follows that MH ∈Ft, and then the maximality of H implies H = MH. This finishes the proof of
claim. Now it is easy to see that M ∈Fk ∩ H −Fk−1 ∩ H is the unique maximal in Fk ∩ H −Fk−1 ∩ H
containing L. In fact, suppose that there is another N ∈Fk ∩ H −Fk−1 ∩ H that is maximal and contains
L. Then we have

[NM : N] = [M : M ∩ N] ≤ [M : L]<∞,

which implies NM ∈Fk ∩ H. This contradicts the maximality of N.

Corollary 3.3. Let H be a subgroup of Zn that is maximal in Ft −Ft−1. Then, for all 0 ≤ k ≤ t the
following statements hold

(a) Each L ∈ (Fk ∩ H −Fk−1 ∩ H) is contained in a unique maximal element M ∈ (Fk ∩ H −
Fk−1 ∩ H).

(b) Let S ∈ (Fk ∩ H −Fk−1 ∩ H) be a maximal element, then S is maximal in Fk −Fk−1.

Lemma 3.4. Let n, t ∈N such that 0 ≤ t< n. Let L be a subgroup of Zn that is maximal in Ft −Ft−1.
Let SUB(L) be the family of all the subgroups of L. Then gdSUB(L)(Z

n) ≤ n − t.

Proof. A model for EF0 (Zn/L) is a model for ESUB(L)Z
n via the action given by the projection Z

n →
Z

n/L. Since Z
n/L =Z

n−t, a model for EF0 (Zn/L) is Rn−t with the action given by translation.

Lemma 3.5. Let p, t, n ∈N such that 0 ≤ k ≤ p< t ≤ n. Let H be a subgroup of Zn that is maximal in
Ft −Ft−1, and let S be maximal in Fp ∩ H −Fp−1 ∩ H (note that S is a subgroup of H). Then, we can
choose a model X of EFk∩SZ

n with dim (X) ≤ n + k, and a model Y of EFk∩HZ
n with dim (Y) ≤ n + k such

that we have an inclusion X ↪→ Y .

Proof. The proof is by induction on k. Let G =Z
n. For k = 0, we have EF0∩SG = EG and EF0∩HG =

EG. A model for EG is R
n and the claim follows. Assuming the claim holds for all k<m, we prove

that it holds for k = m, that is, we show that there is a model X of EFm∩SG with dim (X) ≤ n + m, and a
model Y of EFm∩HG with dim (Y) ≤ n + m such that we have a inclusion X ↪→ Y . Let ∼ be the equivalence
relation on Fm ∩ H −Fm−1 ∩ H defined by commensurability. Let I1 be a complete set of representatives
of classes of subgroups in (Fm ∩ H −Fm−1 ∩ H)/∼. By Corollary 3.3, these representatives can be
chosen to be maximal within their class. Applying Theorem 2.6 and Remark 2.5, the following homotopy
G-push-out gives us a model X1 for EFm∩HG
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L∈I1

EFm−1∩HG EFm−1∩HG

L∈I1

E(Fm∩H)[L]G X1

L∈I1

fL

L∈I1

id

(3.1)

For L ∈ I1, by maximality of L in its commensuration class we can write the family

(Fm ∩ H)[L] = {K ≤ G|K ∈Fm ∩ H −Fm−1 ∩ H, K ∼ L} ∪ (Fm−1 ∩ H)

as the union of two families

(Fm ∩ H)[L] = SUB(L) ∪ (Fm−1 ∩ H),

where SUB(L) is the family of all the subgroups of L.
On the other hand, let ∼ be the equivalence relation on Fm ∩ S −Fm−1 ∩ S defined by commensura-

bility. Let I2 be a complete set of representatives of classes of subgroups in (Fm ∩ S −Fm−1 ∩ S)/∼.
By Corollary 3.3, these representatives can be chosen to be maximal within their class. Applying
Theorem 2.6, we obtain a homotopy G-push-out that gives us a model X2 for EFm∩SG

L∈I2

EFm−1∩SG EFm−1∩SG

L∈I2

ESUB(L)∪(Fm−1∩S)G X2

(3.2)

Let T ∈ I2. We claim that a model for ESUB(T)∪(Fm−1∩H)G is also a model for ESUB(L)∪(Fm−1∩H)G for every
L ∈ I1. Let L ∈ I1. Note that T and L are maximal subgroups of H, thus H = L ⊕ N1 and H = T ⊕ N2.
We can construct an automorphism of H, σ : L ⊕ N1 → T ⊕ N2, that maps L to T isomorphically. Since
H is maximal in G, we can split G as G = H ⊕ R. Therefore, we can extend the automorphism σ to an
automorphism of G, σ̂ : L ⊕ N1 ⊕ R → T ⊕ N2 ⊕ R, that maps L to T isomorphically and preserves the
subgroup H. It follows that ESUB(T)∪(Fm−1∩H)G is a model for ESUB(L)∪(Fm−1∩H)G via the action given by the
automorphism σ̂ . From Corollary 3.3 it follows that I1 = I2 � (I1 − I2). Therefore, we can replace the
homotopy G-push-outs in equations (3.1) and (3.2) with the following homotopy G-push-outs.

L∈I2

EFm−1∩HG
L∈I1−I2

EFm−1∩HG EFm−1∩HG

L∈I2

ESUB(T )∪(Fm−1∩H)G
L∈I1−I2

ESUB(T )∪(Fm−1∩H)G X1

L∈I2�(I1−I2)

fT

L∈I2�(I1−I2)

id

(3.3)

L∈I2

EFm−1∩SG EFm−1∩SG

L∈I2

ESUB(T )∪(Fm−1∩S)G X2

(3.4)
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By induction hypothesis there is a model X of EFm−1∩SG with dim (X) ≤ n + m − 1, and a model Y
of EFm−1∩HG with dim (Y) ≤ n + m − 1, such that we have a inclusion X ↪→ Y . By the G-push-outs in
equations (3.3) and (3.4), to prove that there is a inclusion EFm∩S ↪→ EFm∩H it is enough to prove that there
is a inclusion ESUB(T)∪(Fm−1∩S)G ↪→ ESUB(T)∪(Fm−1∩H)G. By Lemma 2.9, the following G-push-outs gives us
a model for ESUB(T)∪(Fm−1∩S)G and ESUB(T)∪(Fm−1∩H)G, respectively.

ESUB(T )∩(Fm−1∩S)G EFm−1∩SG

ESUB(T )G Y2

ESUB(T )∩(Fm−1∩H)G EFm−1∩HG

ESUB(T )G Y1

(3.5)

Note that SUB(T) ∩ (Fm−1 ∩ S) =Fm−1 ∩ T = SUB(T) ∩ (Fm−1 ∩ H). It follows from these G-push-
outs that we have a inclusion ESUB(T)∪(Fm−1∩S)G ↪→ ESUB(T)∪(Fm−1∩H)G.

Finally, we prove that dim (X1) ≤ n + m and dim (X2) ≤ n + m. From equation (3.3) it follows

dim (X1) ≤ max{gdFm−1∩H(G), gdFm−1∩H(G) + 1, gdSUB(T)∪(Fm−1∩H)(G)}
≤ max{n + m, gdSUB(T)∪(Fm−1∩H)(G)}, by induction hypothesis

Then to prove that dim (X1) ≤ n + m it is enough to prove gdSUB(T)∪(Fm−1∩H)(G) ≤ n + m. By equation (3.5)
and since SUB(T) ∩ (Fm−1 ∩ H) =Fm−1 ∩ T we have

gdSUB(T)∪(Fm−1∩H)(G) ≤ dim (Y1)

≤ max{gdFm−1∩H(G), gdSUB(T)∩(Fm−1∩H)(G) + 1, gdSUB(T)(G)}
= max{gdFm−1∩H(G), gdFm−1∩T(G) + 1, gdSUB(T)(G)}
≤ max{n + m − 1, n + m, n − m}, By Lemma 3.1 and Lemma 3.4
= n + m.

Theorem 3.6 (The lower bound). Let m, t, n ∈N such that 0 ≤ m< t ≤ n. Let H be a subgroup of Zn

that is maximal in Ft −Ft−1, then Hn+m
Fm∩H(Zn; Z) �= 0.

Proof. Let G =Z
n. The proof is by double induction on (t, m). The claim is true for all (t, 0) ∈N× {0}.

Let H be a subgroup of G that is maximal in Ft −Ft−1, then

Hn+0
F0∩H(G; Z) = Hn

F0
(G; Z) = Hn(G; Z) =Z.

Suppose that the claim is true for all (t, s) ∈N× {0, 1, . . . , m − 1}, we prove that the claim is true for
(t, m), i.e. Hn+m

Fm∩H(G; Z) �= 0.
Applying Mayer–Vietoris to the G-push-out in equation (3.3) and Lemma 3.1, we have the following

long exact sequence

· · · →
(∏

L∈I1

Hn+m−1(ESUB(T)∪(Fm−1∩H)G/G)

)
⊕ Hn+m−1(EFm−1∩HG/G)

ϕ−→∏
L∈I1

Hn+m−1(EFm−1∩HG/G) → Hn+m(X1/G) →
∏
L∈I1

Hn+m(ESUB(T)∪(Fm−1∩H)G/G) → 0 (3.6)

We now show that
∏

L∈I1
Hn+m(ESUB(T)∪(Fm−1∩H)G/G) = 0. It is enough to show that

gdSUB(T)∪(Fm−1∩H)(G) ≤ n + m − 1. By Lemma 2.9 the following homotopy G-push-out gives us a
model Y for ESUB(T)∪(Fm−1∩H)G.
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ESUB(T )∩(Fm−1∩H)G EFm−1∩HG

ESUB(T )G Y

g

h

ψ (3.7)

Note that SUB(T) ∩ (Fm−1 ∩ H) =Fm−1 ∩ T . By Lemma 3.5, the map g can be taken as an inclusion,
then by [26, Theorem 1.1] the homotopy G-push-out can be taken as a G-push-out. It follows that

gdSUB(T)∪(Fm−1∩H)(G) ≤ dim (Y)

= max{gdSUB(T)(G), gdFm−1∩T(G), gdFm−1∩H(G)}
≤ max{n − m, n + m − 1, n + m − 1}, by Lemma 3.1 and Lemma 3.4
= n + m − 1 (3.8)

Then the sequence equation (3.6) reduce to

· · · →
(∏

L∈I1

Hn+m−1(ESUB(T)∪(Fm−1∩H)G/G)

)
⊕ Hn+m−1(EFm−1∩HG/G)

ϕ−→∏
L∈I1

Hn+m−1(EFm−1∩HG/G) → Hn+m(X1/G) →0

Then to prove that Hn+m
Fk∩H(G; Z) = Hn+m(X1/G) �= 0 is enough to prove that ϕ is not surjective. By

equation (3.3) we have ϕ = (
∏

L∈I1
f ∗
T ) −�, where � is the diagonal embedding. First, we prove that f ∗

T

is not surjective.
Applying Mayer–Vietoris to the G-push-out in equation (3.7) we have the following long exact

sequence

· · · → Hn+m−1(ESUB(T)∪(Fm−1∩H)G/G)
h∗⊕ψ∗−−−→ Hn+m−1(ESUB(T)G/G) ⊕ Hn+m−1(EFm−1∩HG/G) →

Hn+m−1(EFm−1∩TG/G) → 0

Since gdSUB(T)(G) ≤ n − m and since there is precisely one G-map EFm−1∩HG → ESUB(T)∪(Fm−1∩H)G up to
G-homotopy we can reduce the sequence to

· · · → Hn+m−1(ESUB(T)∪(Fm−1∩H)G/G)
f ∗
T−→ Hn+m−1(EFm−1∩HG/G) →
Hn+m−1(EFm−1∩TG/G) → 0

By hypothesis T is maximal in Fm ∩ H −Fm−1 ∩ H, then by Corollary 3.3 (b) we have that T is maximal
in Fm −Fm−1, by induction hypothesis we have that Hn+m−1(EFm−1∩TG/G) �= 0, thus f ∗

T is not surjective.
Finally, we see that ϕ is not surjective. In fact, let bK /∈ Im(f ∗

T ), for some K ∈ I1, then
(0, 0, · · · , bK , · · · , 0) /∈ Im(ϕ). Suppose that is not the case, that is, there is(∏

L∈I1

aL, c

)
∈
(∏

L∈I1

Hn+m−1(ESUB(T)∪(Fm−1∩H)G/G)

)
⊕ Hn+m−1(EFm−1∩HG/G)

such that (0, 0, · · · , bK , · · · , 0) = ϕ((
∏

L∈I1
aL, c)) =∏

L∈I1
f ∗
T (aL) −�(c) = (f ∗

T (aL) − c)L∈I1 . Then
f ∗
T (aL) = c for L �= K and f ∗

T (aK) − c = bK , it follows that

bK = f ∗
T (aK) − f ∗

T (aL) = f ∗
T (aK − aL),

then bK ∈ Im(f ∗
T ) and this is a contradiction.

Proposition 3.7. Let k, t, n ∈N such that 0 ≤ k< t ≤ n. Let H be a subgroup of Zn that is maximal in
Ft −Ft−1. Let Fk ∩ H be the family that consists of all the subgroups of H that belong to Fk. Then
cdFk∩H(Zn) = gdFk∩H(Zn) = n + k.
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4. Some applications of Corollary 1.2
4.1. The Fk-dimension of braid groups.

In this subsection, we compute the Fn-dimension of full and pure braid groups. For our purposes, it is
convenient to define the braid group as follows: let Dn the closed disc with n punctures, we define the
braid group Bn on n strands, as the isotopy classes of orientation preserving diffeomorphisms of Dn

that restrict to the identity on the boundary ∂Dn. We define the pure braid group, Pn, as the finite index
subgroup of Bn consisting of elements that fixe point-wise the punctures.

Theorem 4.1. Let k, n ∈N such that 0 ≤ k< n − 1 and let G be either the braid group Bn or the pure
braid group Pn. Then gdFk

(G) = cdFk (G) = n + k − 1.

Proof. It is enough to prove the following inequalities

n + k − 1 ≥ gdFk
(G) ≥ cdFk (G) ≥ n + k − 1.

In [14, Theorem 1.4] was proved that gdFk
(Bn) ≤ vcd(Bn) + k for all 0 ≤ k< n − 1. Since Pn has finite

index in Bn also we have gdFk
(Pn) ≤ vcd(Pn) + k for all 0 ≤ k< n − 1. On the other hand, it is well

known that vcd(Bn) = n − 1 see for example [2, Section 3]. This proves the first inequality. The second
inequality is by Theorem 2.13. In [11, Proposition 3.7] it is shown that Pn has a subgroup isomorphic to
Z

n−1. Therefore, by monotonicity of the Fk-geometric dimension and Corollary 1.2, we have cdFk (Bn) ≥
cdFk (Pn) ≥ n + k − 1 for all 0 ≤ k< n − 1. This proves the last inequality.

For k = 1, this theorem has been proved in [11].

4.2. The Fk-dimension of RAAGs and their outer automorphism groups.

In this subsection, we compute the Fn-dimension of RAAGs and we give a lower bound for the Fn-
geometric dimension of the outer automorphism group of some RAAGs.

We recall some basic notions about RAAGs, for further details see for instance [5]. Let � be a finite
simple graph, that is, a finite graph without loops or multiple edges between vertices. We define the
right-angled Artin group (RAAG) A� as the group generated by the vertices of � with all the relations
of the form vw = wv whenever v and w are joined by an edge.

The Salvetti complex.
For the construction of the Salvetti complex we follow [5, Subsection 3.6]. Let A� be a RAAG, its Salvetti
complex S� is a CW-complex that can be constructed as follows:

• The S(1)
� skeleton is constructed as follows: we take a point x0, and for each v ∈ V(�), we attach

a 1-cell I = [0, 1] that identifies the endpoints of I to x0. Then, the S(1)
� skeleton is a wedge of

circles.
• The S(2)

� skeleton is constructed as follows. For each edge of � we attach a 2-cell I × I to S(1)
� by

the boundary ∂(I × I) as svsws−1
v s−1

w .
• In general the S(n)

� skeleton is constructed as follows. For each complete subgraph �′ of � with
|V(�′)| = n, we attach a n-cell In to the S(n−1)

� skeleton using the generators V(�′).

Remark 4.2. Note that, by the construction of the Salvetti complex S�, its fundamental group is A�.
Additionally, S� has a dim (S�)-dimensional torus embedded in it, which follows from its construction.
Therefore, the fundamental group π1(S�, x0) = A� has a subgroup that is isomorphic to Z

dim (S� ).
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Theorem 4.3 ([5], Theorem 3.6). The universal cover of the Salvetti complex, S̃�, is a CAT(0) cube
complex. In particular, S� is a K(A�, 1) space.

Corollary 4.4. Let G be a RAAG. Then G is torsion-free.

Lemma 4.5. Let A� be a RAAG then gd(A�) = cd(A�) = dim (S�). Moreover,
cd(A�) = max{n ∈N| there a complete subgraph �′ of � with |V(�′)| = n}.

Proof. It is enough to prove the following inequalities
dim (S�) ≥ gd(A�) ≥ cd(A�) ≥ dim (S�).

The first inequality follows from Theorem 4.3. The second inequality follows from Theorem 2.13. By [5,
Subsection 3.7] Hdim (S� )(S�) = Hdim (S� )(A�) is a free abelian generated by each dim (S�)-cell. The third
inequality follows.

By construction of the Salvetti complex S�, we have that
dim (S�) = max{n ∈N| there a complete subgraph �′ of � with |V(�′)| = n}.

Since cd(A�) = dim (S�) the claim follows.

Let G be a right-angled Artin group. In [23, Corollary 1.2], it was proved that cdFk (G) ≤ cd(G) + k +
1 for all 0 ≤ k< cd(G). However, by following their proof in [23, Proof of Theorem 3.1] and using [13,
Proposition 7.3], we can actually prove that cdFk (G) ≤ cd(G) + k for all 0 ≤ k< cd(G). In [23] and [13,
Proposition 7.3], they work with the Fk-cohomological dimension instead of Fk-geometric dimension,
that is the reason the following Theorem 4.6 is stated in terms of Fk-cohomological dimension.

Theorem 4.6. Let G be a RAAG. Then cdFk (G) ≤ cd(G) + k for k ∈N.

Proof. The proof is by induction on k. For k = 0 it follows from Lemma 4.5. Suppose that the
inequality is true for all k<m. We prove the inequality for k = m. Let ∼ be the equivalence rela-
tion on Fm −Fm−1 defined by commensurability, and let I be a complete set of representatives
of conjugacy classes in (Fm −Fm−1)/∼. Then by the cohomological version of Corollary 2.8 (see
Remark 2.14) we have

cdFm (G) ≤ max{cdFm−1 (G) + 1, cdFm[L](NG[L])|L ∈ I} ≤ max{cd(G) + m, cdFm[L](NG[L])|L ∈ I}.
Then to prove that cdFm (G) ≤ cd(G) + m it is enough to prove that cdFm[L](NG[L]) ≤ cd(G) + m for all
L ∈ I. Let L ∈ I, we can write the family

Fm[L] = {K ≤ NG[L]|K ∈Fm −Fm−1, K ∼ L} ∪ (Fm−1 ∩ NG[L])

as the union of two families Fm[L] = G ∪ (Fm−1 ∩ NG[L]) where G is the family generated by {K ≤
NG[L]|K ∈Fm −Fm−1, K ∼ L}. By the cohomological version of Corollary 2.10 (see Remark 2.14) we
have

cdFm[L](NG[L]) ≤ max{cdG(NG[L]), cdFm−1∩NG[L](NG[L]), cdG∩Fm−1 (NG[L]) + 1}
≤ max{cdG(NG[L]), cd(G) + m − 1, cdG∩Fm−1 (NG[L]) + 1}

We prove that

1. cdG(NG[L]) ≤ cd(G) − m
2. cdG∩Fm−1 (NG[L]) ≤ cd(G) + m − 1

As a consequence we will have cdFm[L](NG[L]) ≤ cd(G) + m. First, we prove item (1). We define the
family F = {K ≤ NG[L] | [K : K ∩ L]<∞}. We claim that F = G. To show that G ⊆F , note that

{K ≤ NG[L] | K ∈Fm −Fm−1, K ∼ L} ⊆ {K ≤ NG[L] | [K : K ∩ L]<∞} =F
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since, by definition, G is the smallest family that contains {K ≤ NG[L] | K ∈Fm −Fm−1, K ∼ L}, it fol-
lows that G ⊆F . Now let’s prove the other inclusion F ⊆ G. Let S ∈F , then [S : S ∩ L]<∞. Note that
[LS : L] = [S : S ∩ L]<∞, it follows that LS is commensurable with L, and as a consequence S ≤ LS ∈ G,
in particular it follows that S ∈ G. This proves the claim. Since G =F we have by [13, Proposition 7.3
and Definition 7.2] that cdG(NG[L]) ≤ cd(G) − m.

We now prove the item (2). Applying the cohomological version of Proposition 2.11 (see Remark
2.14) to the inclusion of families (G ∩Fm−1) ⊂ G we get

cdG∩Fm−1 (NG[L]) ≤ cdG(NG[L]) + d

for some d such that for any K ∈ G we have cd(G∩Fm−1)∩K(K) ≤ d. Since we already proved cdG(NG[L]) ≤
cd(G) − m, our next task is to show that d can be chosen to be equal to 2m − 1.

Recall that any K ∈ G is virtually Z
t for some 0 ≤ t ≤ m. We split our proof into two cases. First

assume that K ∈ G is virtually Z
t for some 0 ≤ t ≤ m − 1. Hence K belongs to Fm−1, it follows that

K belongs to G ∩Fm−1 and we conclude cdG∩Fm−1∩K(K) = 0. Now assume K ∈ G is virtually Z
m. We

claim that (G ∩Fm−1) ∩ K =Fm−1 ∩ K. The inclusion (G ∩Fm−1) ∩ K ⊂Fm−1 ∩ K is clear. For the other
inclusion let M ∈Fm−1 ∩ K. Since M ≤ K ∈ G, therefore M ∈ (G ∩Fm−1) ∩ K. This establishes the claim.
We conclude that

cd(G∩Fm−1)∩K(K) = cdFm−1∩K(K) ≤ m + m − 1 = 2m − 1

where the inequality follows from [23, Proposition 1.3].

Theorem 4.7. Let G be a right-angled Artin group. Then for 0 ≤ k< cd(G) we have
cdFk (G) = cd(G) + k.

Proof. By Theorem 4.6, we have cdFk (G) ≤ cd(G) + k. On the other hand, by Lemma 4.5 G has a
subgroup isomorphic to Z

cd(G), then the claim it follows from Corollary 1.2.

Theorem 4.8. Let G be a right-angled Artin group. Then for 0 ≤ k< cd(G) we have gdFk
(G) = cdFk (G).

Proof. If k = 0 the claim follows from Lemma 4.5. Suppose that k ≥ 1, hence by hypothesis, cd(G) ≥
2. By Theorem 4.7, we have cdFk (G) ≥ 3, then by Theorem 2.13, gdFk

(G) = cdFk (G).

Given a fixed right-angled Artin group A�, we denote by Aut(A�) the group of automorphisms of A�

and by Inn(A�) the subgroup consisting of inner automorphisms. The outer automorphism group of A�

is defined as the quotient Out(A�) = Aut(A�)/Inn(A�). If S ⊆ V(�), then the subgroup H generated by
S is called a special subgroup of A�. It can be proven that, in fact, H is the right-angled Artin group AS

associated with the full subgraph induced by S in �.
If� is a full subgraph of �, we denote by A� the special subgroup generated by the vertices contained

in �. An outer automorphism F of A� preserves A� if there exists a representative f ∈ F that restricts
to an automorphism of A�. An outer automorphism F acts trivially on A� if there exists representative
f ∈ F that acts as the identity on A�.

Definition 4.9. Let G, H be two collections of special subgroups of A�. The relative outer automorphism
group Out(A�; G, Ht) consists of automorphisms that preserve each A� ∈ G and act trivially on each
A� ∈H.

Proposition 4.10. Let A� = A�1 ∗ A�1 ∗ · · · ∗ A�k ∗ Fn be a free factor decomposition of a right-
angled Artin group with k ≥ 1. Then gdFk

(Out(A�; {A�i}t)) ≥ vcd(Out(A�; {A�i}t)) + k for all 0 ≤ k<
vcd(Out(A�; {A�i}t)).
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Proof. By [9, Theorem A] Out(A�; {A�i}t) has a free abelian subgroup of rank equal to
vcd(Out(A�; {A�i}t)). The inequality follows from Corollary 1.2.

Let Fn be the free group in n generators. The group Fn can be seen as the RAAG associated with the
graph that has n vertices and no edges. In [6] was proved that vcd(Out(Fn)) = 2n − 3 for n ≥ 2 and that
Out(Fn) has a subgroup ismorphic to Z

vcd(Out(Fn)). From Corollary 1.2, we get the following

Proposition 4.11. Let n ≥ 2. Let Fn be the free group in n generators. Then gdFk
(Out(Fn)) ≥ 2n + k − 3

for all 0 ≤ k< 2n − 3.

Let Ad be the right-angled Artin group given by a string of d diamonds. In [10, Proposition 6.5]
was proved that vcd(Out(Ad)) = 4d − 1 and Out(Ad) has a subgroup isomorphic to Z

vcd(Out(Ad )), from
Corollary 1.2 we have

Proposition 4.12. Let Ad be the right-angled Artin group given by a string of d diamonds. Then
gdFk

(Out(Ad)) ≥ 4d + k − 1 for all 0 ≤ k< 4d − 1.

4.3. The Fk-geometric dimension for graphs of groups of finitely generated virtually abelian groups.

The objective of this section is to explicitly calculate the Fn-geometric dimension of the fundamental
group of a graph of groups whose vertex groups are finitely generated virtually abelian groups, and
whose edge groups are finite groups.

Bass–Serre theory.
We recall some basic notions about Bass–Serre theory, for further details see [24]. A graph of groups Y
consists of a graph Y , a group Yv for each v ∈ V(Y), and a group Ye for each e = {v, w} ∈ E(Y), together
with monomorphisms ϕ : Ye → Yi i = v, w.

Given a graph of groups Y, one of the classic theorems of Bass–Serre theory provides the existence
of a group G = π1(Y), called the fundamental group of the graph of groups Y and the tree T(a graph with
no cycles), called the Bass–Serre tree of Y, such that G acts on T without inversions, and the induced
graph of groups is isomorphic to Y. The identification G = π1(Y) is called a splitting of G.

Definition 4.13. Let Y be a graph of groups with fundamental group G. The splitting G = π1(Y) is
acylindrical if there is an integer k such that, for every path γ of length k in the Bass–Serre tree T of Y ,
the stabilizer of γ is finite.

Recall a geodesic line of a simplicial tree T , is a simplicial embedding of R in T , where R has as vertex
set Z and an edge joining any two consecutive integers.

Theorem 4.14 ([16], Theorem 6.3). Let Y be a graph of groups with finitely generated fundamental
group G and Bass–Serre tree T . Consider the collection A of all the geodesics of T that admit a co-
compact action of an infinite virtually cyclic subgroup of G. Then the space T̃ given by the following
homotopy G-push-out

γ∈A
γ T

γ∈A
{∗γ} T
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Figure 1. Promoting T to T̃ .

is a model T̃ for EIsoG (̃T)G where IsoG (̃T) is the family generated by the isotropy groups of T̃ , i.e., by
coning-off on T the geodesics in A we obtain a model for EIsoG (̃T)G. Moreover, if the splitting G = π1(Y)
is acylindrical, then the family IsoG (̃T) contains the family Fn of G for all n ≥ 0.

The following theorem is mild generalization of [16, Proposition 7.4]. We include a proof for the
sake of completeness.

Theorem 4.15. Let Y be a graph of groups with finitely generated fundamental group G and Bass–Serre
tree T . Suppose that the splitting of G is acylindrical. Then for all k ≥ 1 we have

max{gdFk∩Gv
(Gv), gdFk∩Ge

(Ge)|v ∈ V(Y), e ∈ E(Y)} ≤ gdFk
(G)

and

gdFk
(G) ≤ max{2, gdFk∩Gv

(Gv), gdFk∩Ge
(Ge) + 1|v ∈ V(Y), e ∈ E(Y)}

Proof. For each s ∈ V(Y) ∪ E(Y) we have that Gs is a subgroup of G, then the first inequality follows.
Now we prove the second inequality. The splitting of G is acylindrical, then we can use Theorem 4.14
to obtain a 2-dimensional space T̃ that is obtained from T coning-off some geodesics of T , see Figure 1,
the space T̃ is a model for EIsoG (̃T)G and Fk ⊆ IsoG (̃T). By Proposition 2.12, we have

gdFk
(G) ≤ max{gdFk∩Gσ

(Gσ ) + dim (σ )| σ is a cell of T̃}.

Let σ be a cell of T̃ , we compute gdFk∩Gσ
(Gσ ) + dim (σ ).

• If σ is 0-cell, we have two cases σ ∈ T or σ ∈ T̃ − T , in the first case we have Gσ = Gv for
some v ∈ V(Y), in the other case we have Gσ is virtually cyclic, then gdFk∩Gσ

(Gσ ) + dim (σ ) =
gdFk∩Gv

(Gv) or 0.
• If σ is 1-cell, we have two cases σ ∈ T or σ has a vertex in T̃ − T , in the first case we have

Gσ = Ge for some e ∈ E(Y), in the other case we have Gσ is virtually cyclic, then gdFk∩Gσ
(Gσ ) +

dim (σ ) = gdFk∩Ge
(Ge) + 1 or 1.

• If σ is 2-cell, then σ has a vertex in T̃ − T , then Gσ is virtually cyclic, it follows that
gdFk∩Gσ

(Gσ ) + dim (σ ) = 2.

The inequality follows.

Proposition 4.16. Let Y be a finite graph of groups such that for each v ∈ V(Y) the group Gv is infinite
finitely generated virtually abelian, with rank(Ge)< rank(Gv). Suppose that the splitting of G = π1(Y) is
acylindrical. Let m = max{rank(Gv)|v ∈ V(Y)}. Then for 1 ≤ k<m we have gdFk

(G) = m + k.

Proof. First, we prove that gdFk
(G) ≥ m + k. The splitting of G is acylindrical, then by Theorem 4.15

we have

https://doi.org/10.1017/S0017089523000496 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089523000496


306 Porfirio L. León Álvarez

gdFk
(G) ≥ max{gdFk∩Gv

(Gv), gdFk∩Ge
(Ge)|v ∈ V(Y), e ∈ E(Y)}

≥ max{rank(Gv) + k, rank(Ge) + k|v ∈ V(Y), e ∈ E(Y)}, from Corollary 1.2
= max{rank(Gv) + k|v ∈ V(Y)}, rank(Ge) ≤ rank(Gv)

= m + k.

Also by Theorem 4.15, we have

gdFk
(G) ≤ max{2, gdFk∩Gv

(Gv), gdFk∩Ge
(Ge) + 1|v ∈ V(Y), e ∈ E(Y)}

= max{2, rank(Gv) + k, rank(Ge) + k + 1|v ∈ V(Y), e ∈ E(Y)}, from Theorem 1.1
= max{rank(Gv) + k|v ∈ V(Y)}, rank(Ge)< rank(Gv) and k ≥ 1

= m + k.

Corollary 4.17. Let Y be a finite graph of groups such that for each v ∈ V(Y) the group Gv is infinite
finitely generated virtually abelian, and for each e ∈ E(Y) the group Ge is a finite group.

Let m = max{rank(Gv)|v ∈ V(Y)}. Then for 1 ≤ k<m we have gdFk
(G) = m + k.
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