GROUP ALGEBRAS WHOSE UNIT GROUP IS LOCALLY NILPOTENT

V. BOVDI®

(Received 22 September 2017; accepted 12 September 2019; first published online 7 May 2020)

Communicated by B. Martin

Dedicated to the memory of Professor L. G. Kovács

Abstract

We present a complete list of groups G and fields F for which: (i) the group of normalized units V(FG) of the group algebra FG is locally nilpotent; (ii) the set of nontrivial nilpotent elements of FG is finite and nonempty, and V(FG) is an Engel group.

2010 *Mathematics subject classification*: primary 20C05; secondary 16S34, 20F45, 20F19. *Keywords and phrases*: unit group, group algebra, locally nilpotent group, Engel group.

1. Introduction and results

Let V(FG) be the normalized subgroup of the group of units U(FG) of the group algebra FG of a group G over a field F of characteristic $\operatorname{char}(F) = p \ge 0$. It is well known that $U(FG) = V(FG) \times U(F)$, where $U(F) = F \setminus \{0\}$. The group of normalized units V(FG) of a modular group algebra FG has a complicated structure and has been studied in several papers. For an overview we recommend the survey paper [3].

A group *G* is said to be *Engel* if for any $x, y \in G$ the equation (x, y, y, ..., y) = 1 holds, where *y* is repeated in the commutator sufficiently many times depending on *x* and *y*. We use the right-normed simple commutator notation $(x_1, x_2) = x_1^{-1} x_2^{-1} x_1 x_2$ and

$$(x_1,\ldots,x_n) = ((x_1,\ldots,x_{n-1}),x_n) \quad (x_1,\ldots,x_n \in G).$$

A group is called *locally nilpotent* if all its finitely generated subgroups are nilpotent. Such a group is always Engel (see [25, Introduction, page 520]). The set of elements of finite orders of a group G (which is not necessarily a subgroup) is called *the torsion part* of G and is denoted by t(G). We use the notion and results from the book [2] and the survey papers [3, 25].

This work was supported by the UAEU UPAR Grant G00002160.

© 2020 Australian Mathematical Publishing Association Inc.

18 V. Bovdi [2]

An explicit list of groups G and rings K for which V(KG) are nilpotent was obtained by Khripta (see [15] for the modular case and [16] for the nonmodular case). In [4] it was completely determined when V(FG) is solvable. It is still a challenging problem whether V(FG) is an Engel group. This question has a long history (see [5–9, 23]). The nonmodular case was solved by Bovdi (see [5, Theorem 1.1, page 174]). For the modular case there is no complete solution (see [5, Theorem 3.2, page 175]), but there is a full description of FG when V(FG) is a bounded Engel group (see [5, Theorem 3.3, page 176]).

It is well known (for example, see [25, Chs. 1–2]) that the Engel property of a group is close to its local nilpotency. However these classes of groups do not coincide (see Golod's counterexample in [10]). The following results are classical (see [25, Ch. 2, pages 522–525, Ch. 3, page 528]): each profinite Engel group (see [26]), each compact Engel group (see [17]), each linear Engel group (see [24]), each 3-Engel and 4-Engel group (see [14] and [13]) and all Engel groups satisfying max (see [1]) are locally nilpotent.

In several articles, Ramezan-Nassab attempted to describe the structure of groups G for which V(FG) are Engel (locally nilpotent) groups in the case when FG have only a finite number of nilpotent elements (see [20, Theorem 1.5], [19, Theorems 1.2 and 1.3] and [21, Theorem 1.3]). The following theorem gives a complete answer.

THEOREM 1.1. Let FG be the group algebra of a group G such that the set of nonzero nilpotent elements of FG is nontrivial and finite. Then F is a finite field of $\operatorname{char}(F) = p$. Additionally, V(FG) is an Engel group if and only if G is a finite group such that $G = S_p \times A$, where $S_p \neq \langle 1 \rangle$ is the Sylow p-subgroup of G and A is a central subgroup of G.

The next two theorems completely describe groups G with V(FG) locally nilpotent. Some special cases of Theorem 1.2 were proved by Khripta (see [16]) and Ramezan-Nassab (see [19, Theorem 1.2] and [20, Corollary 1.3 and Theorem 1.4]).

THEOREM 1.2. Let FG be a modular group algebra of a group G over the field F of positive characteristic p. The group V(FG) is locally nilpotent if and only if G is locally nilpotent and G' is a p-group.

THEOREM 1.3. Let FG be a nonmodular group algebra of characteristic $p \ge 0$. The group V(FG) is locally nilpotent if and only if G is a locally nilpotent group, the set t(G) of elements of finite order of the group G is an abelian group and one of the following conditions holds:

- (i) t(G) is a central subgroup;
- (ii) *F* is a prime field of characteristic $p = 2^t 1$, the exponent of t(G) divides $p^2 1$ and $g^{-1}ag = a^p$ for all $a \in t(G)$ and $g \in G \setminus C_G(t(G))$.

2. Proofs

Note that in a group G the subset t(G) of elements of finite order of G is not a group in the general case. A subgroup $H \le G$ such that $H \subseteq t(G)$ is called a torsion subgroup of G.

We start our proof with the following important result.

LEMMA 2.1. Let FG be the group algebra of a group G such that V(FG) is an Engel group. If H is a torsion subgroup of G and H does not contain an element of order char(F), then H is abelian, each subgroup of H is normal in G and each idempotent of FH is central in FG.

PROOF. If $a \in t(G)$ and $g \in G \setminus N_G(\langle a \rangle)$, then $x = \widehat{a}g(a-1) \neq 0$ and $1 + x \in V(FG)$, where $\widehat{a} = 1 + a + \cdots + a^{|a|-1}$. A straightforward calculation shows that the triple commutator

$$(1 + x, a, m) = 1 + x(a - 1)^m \quad (m \ge 1).$$

Since V(FG) is an Engel group, $x(a-1)^s \neq 0$ and $x(a-1)^{s+1} = 0$ for a suitable $s \in \mathbb{N}$. It follows that $x(a-1)^s a^i = x(a-1)^s$ for each $i \geq 0$ and

$$x(a-1)^{s} \cdot |a| = x(a-1)^{s}(1+a+a^{2}+\cdots+a^{|a|-1}) = 0.$$

Since char(F) does not divide |a|, we have that $x(a-1)^s = 0$, which is a contradiction. Hence, every finite cyclic subgroup of H is normal in G, so H is either abelian or hamiltonian.

If H is a hamiltonian group, then, using the same proof as in the second part of [9, Lemma 1.1, page 122], we obtain a contradiction.

Hence, H is abelian and each of its subgroups is normal in G.

We claim that all idempotents of LT are central in $L\langle T, g \rangle$, where T is a finite abelian subgroup of H, $g \in G$ and L is a prime subfield of the field F.

Assume on the contrary that there exist a primitive idempotent $e \in LT$ and $g \in G$ such that $geg^{-1} \neq e$. The element $b = g^{-1}a^{-1}ga \neq 1$ for some $a \in T$ and

$$W = \langle c^{-1}(g^{-1}cg) \mid c \in T \rangle = \langle T, g \rangle' \triangleleft \langle T, g \rangle$$

is a nontrivial finite abelian subgroup of T.

Obviously each subgroup of $T \le H$ is normal in $\langle T, g \rangle$, so the idempotent $f = (1/|W|)\widehat{\langle W \rangle} \in L[T]$ is central in $L\langle T, g \rangle$ and can be expressed as $f = f_1 + \cdots + f_s$ in which f_1, \ldots, f_s are primitive and mutually orthogonal idempotents of the finite-dimensional semisimple algebra L[T].

The idempotent e does not appear in the decomposition of f. Indeed, otherwise we have ef = e. If $e = \sum_i \alpha_i t_i$, where $\alpha_i \in L$ and $t_i \in T$, then

$$g^{-1}(ef)g = g^{-1}egf = \sum_{i} \alpha_{i}g^{-1}t_{i}gf = \sum_{i} \alpha_{i}t_{i}(t_{i},g)f = ef,$$

so e = fe is central, which is a contradiction.

If $ef \neq 0$, then ef = e, which again is a contradiction. Thus, ef = 0.

20 V. Bovdi [4]

Consider $f_* = (1/|b|)\widehat{\langle b \rangle} \in L[T]$. Since $\langle b \rangle \subseteq W$, the idempotent f_* appears in the decomposition of f, so $ef_* = 0$. Furthermore, $geg^{-1} \in L[T]$ is primitive as an automorphic image of the primitive idempotent e, so $ege = e(geg^{-1})g = 0$. Evidently $(1 + eg)^{-1} = 1 - eg$ and

$$(1 + eg, a) = (1 - eg)(1 + ea^{-1}ga)$$
$$= (1 - eg)(1 + egb) = 1 + eg(b - 1).$$

Now an easy induction on $n \ge 1$ shows that $(1 + eg, a, n) = 1 + eg(b - 1)^n$. However, V(FG) is Engel, so there exists m such that

$$eg(b-1)^m \neq 0$$
 and $eg(b-1)^{m+1} = 0$.

Thus, $eg(b-1)^m b^i = eg(b-1)^m$ for any $i \ge 0$, which leads to the contradiction

$$eg(b-1)^m = eg(b-1)^m f_* = eg(b-1)^{m-1} ((b-1)f_*) = 0.$$

Therefore, all idempotents of FH are central in FG.

PROOF OF THEOREM 1.1. Assume that the set N_* of all nilpotent elements $FG \setminus 0$ is finite and nonempty. If $x \in N_*$, then the subset of nilpotent elements $\{\lambda x \mid \lambda \in F\}$ is finite, so F is a finite field of $\operatorname{char}(F) = p$.

Assume that there exist $u \in N_*$ and $g \in G$ such that gu = ug. Let us show that g has finite order. First notice that we cannot have $ug^i \neq ug^j$ whenever $i \neq j$ as this would imply that $\{ug^i|i \in \mathbb{Z}\}$ is an infinite subset of N_* , contradicting the assumptions of our theorem. Thus, we must have $ug^i = ug^j$ for some i < j. Let $b = g^{j-i}$, so ub = u. Let

$$u = \lambda_1 g_1 + \lambda_2 g_2 + \cdots + \lambda_k g_k$$

where $g_i \in G$ form a group basis of a vector space. We must have that the multiplication from the right by b permutes g_1, g_2, \ldots, g_k and thus $b^{k!}$ acts trivially on g_1 and thus $1 = b^{k!} = g^{(i-j)\cdot k!}$ and g is of finite order.

Let $0 \neq u \in N_*$ and $g^k u \neq ug^k$ for any $g \in G \setminus t(G)$ and $k \in \mathbb{Z} \setminus \{0\}$. Clearly $g^{-i}ug^i \neq 0$ and $g^{-i}ug^i \in N_*$ for any $g \in G \setminus t(G)$ and $i \in \mathbb{Z}$. Since N_* is a finite set, at least for one $i \in \mathbb{Z}$ there exists $j \in \mathbb{Z}$ ($j \neq i$) such that $g^{-i}ug^i = g^{-j}ug^j$, so $g^{j-i}u = ug^{j-i}$, which is a contradiction. Consequently G = t(G), that is, G is a torsion group.

If t(G) does not contain a p-element, then t(G)(=G) is abelian by Lemma 2.1 and the commutative nonmodular algebra FG does not contain nonzero nilpotent elements. It follows that $N_* = \emptyset$, which is impossible.

By assumption, V(FG) is an Engel group. Let Π be the set of all p-elements of the Engel group G. As $\{g-1\mid g\in\Pi\}\subseteq N_*$ and N_* is finite, Π is also finite. Let P be a maximal p-group such that $P\subseteq\Pi$ (such P always exists because Π is finite). Assume that P is not normal in G. Then $N_G(P)\neq G$. Since P is a finite p-group, it is nilpotent. Hence, some element of P must have a conjugate $w\in N_G(P)\setminus P$ (see [18, Lemma 5.4.1.3, page 307]). Consequently $P\nsubseteq P$ and P and P we are finite P-group, which is a contradiction.

Hence, P is a normal subgroup in G and the subset of nilpotent elements

$$\{(h-1)g\lambda \mid h \in P, g \in G, \lambda \in F\}$$

is finite, so G < V(FG) is a finite Engel group as well. Since every finite Engel group is nilpotent by Zorn's theorem (see [22, 12.3.4, page 372]), G is a finite nilpotent group which is a direct product of its Sylow subgroups (see [11, 10.3.4, page 176]). Each Sylow q-subgroup S_q ($q \ne p$) is abelian by Lemma 2.1. Consequently the finite group $G = P \times A$ in which $A = \bigcup_{q \ne p} S_q$ is a central subgroup of G and $G' \le P$. Since FG is a finite algebra, V(FG) is nilpotent (see [22, 12.3.4, page 372]).

PROOF OF THEOREM 1.2. Since V(FG) is a locally nilpotent group, G is also locally nilpotent. Let $S = \langle f_1, \ldots, f_s \mid f_i \in V(FG) \rangle$ be a finitely generated (f.g.) subgroup of V(FG). Clearly

$$H = \langle \operatorname{supp}(f_1), \dots, \operatorname{supp}(f_s) \rangle$$

is an f.g. nilpotent subgroup of G and $S \le V(FH) < V(FG)$. Hence, we may restrict our attention to the subgroup V(FH), where H is an f.g. nilpotent subgroup of G containing a p-element; overwise we can add to H a p-element from G.

Let H be an f.g. nilpotent group containing a p-element and let $g, h \in H$ such that $(g, h) \neq 1$. Obviously t(H) is finite (see [12, 7.7, page 29]) and the Sylow p-subgroup S_p of t(H) is a direct factor of t(H) (see [11, 10.3.4, page 176]). Consequently there exists $c \in \zeta(H)$ of order p, and $\widehat{c} = \sum_{i=0}^{p-1} c^i$ is a square-zero central element of FH. Since $L = \langle g, h, 1 + \widehat{gc} \rangle$ is an f.g. nilpotent subgroup of V(FG), L is Engel. Clearly there exists $m \in \mathbb{N}$ such that the nilpotency class cl(V) of V(FH) is at most p^m .

Let us show that (g, h) is a p-element. Indeed, if $q = p^m$, then

$$1 = (1 + g\widehat{c}, h, q) = 1 + \widehat{c} \sum_{i=0}^{q} (-1)^{i} {q \choose i} g^{h^{q-i}} = 1 + \widehat{c} (g^{h^{q}} - g)$$

because $\binom{q}{i} \equiv 0 \mod p$ for 0 < i < q. It follows that $\widehat{c}(g^{h^q} - g) = 0$ and $(g, h^q) \in \operatorname{supp}(\widehat{c})$, which yields that $g^{h^q} = c^i g$ for some $0 \le i < p$. Hence,

$$(\underbrace{h^{-q}\cdots h^{-q}}_{p})g(\underbrace{h^{q}\cdots h^{q}}_{p})=(c^{i})^{p}g=g$$

and $h^{p^{m+1}} \in C_G(g)$, so $h^{p^{m+1}} \in \zeta(L)$ for all $h \in L$ and L' is a finite p-group by a theorem of Schur (see [22, 10.1.4, page 287]). Since each f.g. subgroup of G is a p-group, G' is a p-group too.

Conversely, it is sufficient to prove that if H is an f.g. nilpotent subgroup of G such that H' is a p-group, then V(FH) is nilpotent. All subgroups and factor groups of H are also f.g. groups [22, 5.2.17, page 137]. Moreover $t(H) = P \times D$ is finite (see [22, 12.1.1, page 356]) and the f.g. group H/t(H) is a direct product of a finite number of infinite cyclic groups. Since H' is a p-group, $H' \le P \le t(H)$ is a finite p-group, so V(FH) is nilpotent (see [15, Theorem 1]).

PROOF OF THEOREM 1.3. If V(FG) is a locally nilpotent group, then it is Engel, so, by [5, Theorem 1.1], the locally nilpotent group G satisfies parts (i)–(ii) of our theorem. Since a locally nilpotent group is a u.p. group, the converse of our theorem follows from [16, Theorem 2] and [5, Theorem 1.1].

References

- [1] R. Baer, 'Engelsche elemente Noetherscher Gruppen', Math. Ann. 133 (1957), 256–270.
- [2] A. A. Bovdi, Group Rings (UMK VO, Kiev, 1988), 155 (in Russian).
- [3] A. Bovdi, 'The group of units of a group algebra of characteristic p', Publ. Math. Debrecen 52(1-2) (1998), 193-244.
- [4] A. Bovdi, 'Group algebras with a solvable group of units', *Comm. Algebra* 33(10) (2005), 3725–3738.
- [5] A. Bovdi, 'Group algebras with an Engel group of units', J. Aust. Math. Soc. 80(2) (2006), 173–178.
- [6] A. Bovdi and I. Khripta, 'Generalized Lie nilpotent group rings', Mat. Sb. (N.S.) 129(171)(1) (1986), 154–158, 160.
- [7] A. Bovdi and I. Khripta, 'Generalized nilpotence of the multiplicative group of a group ring', Ukrain. Mat. Zh. 41(9) (1989), 1179–1183, 1293.
- [8] A. A. Bovdi and I. I. Khripta, 'The Engel property of the multiplicative group of a group algebra', Dokl. Akad. Nauk SSSR 314(1) (1990), 18–20.
- [9] A. A. Bovdi and I. I. Khripta, 'The Engel property of the multiplicative group of a group algebra', Mat. Sb. 182(1) (1991), 130–144.
- [10] E. S. Golod, 'Some problems of Burnside type', in: Proceedings of the International Congress Mathematicians (Moscow, 1966) (Izdat. 'Mir', Moscow, 1968), 284–289.
- [11] M. Hall Jr, The Theory of Groups (Macmillan, New York, 1959).
- [12] P. Hall, *The Edmonton Notes on Nilpotent Groups*, Queen Mary College Mathematics Notes (Mathematics Department, Queen Mary College, London, 1969).
- [13] G. Havas and M. R. Vaughan-Lee, '4-Engel groups are locally nilpotent', *Internat. J. Algebra Comput.* 15(4) (2005), 649–682.
- [14] H. Heineken, 'Engelsche Elemente der Länge drei', *Illinois J. Math.* 5 (1961), 681–707.
- [15] I. Khripta, 'The nilpotence of the multiplicative group of a group ring', Mat. Zametki 11 (1972), 191–200.
- [16] I. Khripta, 'The nilpotence of the multiplicative group of a group ring', *Latvian Math. Yearbook, Izdat. Zinatne, Riga* **13** (1973), 119–127 (in Russian).
- [17] Y. Medvedev, 'On compact Engel groups', Israel J. Math. 135 (2003), 147–156.
- [18] B. I. Plotkin, Groups of Automorphisms of Algebraic Systems (Wolters-Noordhoff, Groningen, 1972). Translated from the Russian by K. A. Hirsch.
- [19] M. Ramezan-Nassab, 'Group algebras with Engel unit groups', J. Aust. Math. Soc. 101(2) (2016), 244–252.
- [20] M. Ramezan-Nassab, 'Group algebras with locally nilpotent unit groups', Comm. Algebra 44(2) (2016), 604–612.
- [21] M. Ramezan-Nassab, 'Group algebras whose p-elements form a subgroup', J. Algebra Appl. 16(9) (2017), 1750170.
- [22] D. Robinson, A Course in the Theory of Groups, 2nd edn, Graduate Texts in Mathematics, 80 (Springer, New York, 1996).
- [23] A. Shalev, 'On associative algebras satisfying the Engel condition', *Israel J. Math.* 67(3) (1989), 287–290.
- [24] D. A. Suprunenko and M. S. Garashchuk, 'Linear groups with Engel's condition', Dokl. Akad. Nauk BSSR 6 (1962), 277–280.

- [25] G. Traustason, 'Engel groups', in: *Groups St Andrews 2009 in Bath, Vol. 2*, London Mathematical Society Lecture Note Series, 388 (Cambridge University Press, Cambridge, 2011), 520–550.
- [26] J. Wilson and E. Zelmanov, 'Identities for Lie algebras of pro-p groups', J. Pure Appl. Algebra 81(1) (1992), 103–109.

V. BOVDI, UAEU, Math Sciences, COS, P.O. Box 15551, Al Ain, United Arab Emirates e-mail: vbovdi@gmail.com