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Abstract

We present a complete list of groups G and fields F for which: (i) the group of normalized units V(FG)
of the group algebra FG is locally nilpotent; (ii) the set of nontrivial nilpotent elements of FG is finite
and nonempty, and V(FG) is an Engel group.
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1. Introduction and results

Let V(FG) be the normalized subgroup of the group of units U(FG) of the group
algebra F'G of a group G over a field F of characteristic char(F) = p > 0. It is well
known that U(FG) = V(FG) X U(F), where U(F) = F \ {0}. The group of normalized
units V(FG) of a modular group algebra F'G has a complicated structure and has been
studied in several papers. For an overview we recommend the survey paper [3].

A group G is said to be Engel if for any x,y € G the equation (x,y,y,...,y) =1
holds, where y is repeated in the commutator sufficiently many times depending on x
and y. We use the right-normed simple commutator notation (x1, x2) = x7'x,xx; and

(X],. .. ,xn) = ((xla‘ .. ,xn—l), xn) (xla B G)

A group is called locally nilpotent if all its finitely generated subgroups are nilpotent.
Such a group is always Engel (see [25, Introduction, page 520]). The set of elements
of finite orders of a group G (which is not necessarily a subgroup) is called the torsion
part of G and is denoted by t(G). We use the notion and results from the book [2] and
the survey papers [3, 25].
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An explicit list of groups G and rings K for which V(KG) are nilpotent was obtained
by Khripta (see [15] for the modular case and [16] for the nonmodular case). In [4] it
was completely determined when V(FG) is solvable. It is still a challenging problem
whether V(FG) is an Engel group. This question has a long history (see [5-9, 23]).
The nonmodular case was solved by Bovdi (see [5, Theorem 1.1, page 174]). For the
modular case there is no complete solution (see [5, Theorem 3.2, page 175]), but there
is a full description of FG when V(FG) is a bounded Engel group (see [5, Theorem 3.3,
page 176]).

It is well known (for example, see [25, Chs. 1-2]) that the Engel property of a group
is close to its local nilpotency. However these classes of groups do not coincide (see
Golod’s counterexample in [10]). The following results are classical (see [25, Ch. 2,
pages 522-525, Ch. 3, page 528]): each profinite Engel group (see [26]), each compact
Engel group (see [17]), each linear Engel group (see [24]), each 3-Engel and 4-Engel
group (see [14] and [13]) and all Engel groups satisfying max (see [1]) are locally
nilpotent.

In several articles, Ramezan-Nassab attempted to describe the structure of groups
G for which V(FG) are Engel (locally nilpotent) groups in the case when FG have
only a finite number of nilpotent elements (see [20, Theorem 1.5], [19, Theorems 1.2
and 1.3] and [21, Theorem 1.3]). The following theorem gives a complete answer.

TueoreM 1.1. Let FG be the group algebra of a group G such that the set of nonzero
nilpotent elements of FG is nontrivial and finite. Then F is a finite field of char(F) = p.
Additionally, V(FG) is an Engel group if and only if G is a finite group such that
G=S,%XA, whereS , # (1) is the Sylow p-subgroup of G and A is a central subgroup
of G.

The next two theorems completely describe groups G with V(FG) locally nilpotent.
Some special cases of Theorem 1.2 were proved by Khripta (see [16]) and Ramezan-
Nassab (see [19, Theorem 1.2] and [20, Corollary 1.3 and Theorem 1.4]).

TueorEM 1.2. Let FG be a modular group algebra of a group G over the field F of
positive characteristic p. The group V(FG) is locally nilpotent if and only if G is
locally nilpotent and G’ is a p-group.

TueoreM 1.3. Let FG be a nonmodular group algebra of characteristic p > 0. The
group V(FG) is locally nilpotent if and only if G is a locally nilpotent group, the set
t(G) of elements of finite order of the group G is an abelian group and one of the
following conditions holds:

(1) YG) is a central subgroup;
(ii) F is a prime field of characteristic p = 2' — 1, the exponent of {(G) divides p* — 1
and g~'ag = a” for all a € H(G) and g € G \ Cc(+(G)).
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2. Proofs

Note that in a group G the subset #(G) of elements of finite order of G is not a group
in the general case. A subgroup H < G such that H C #(G) is called a torsion subgroup
of G.

We start our proof with the following important result.

Lemma 2.1. Let FG be the group algebra of a group G such that V(FG) is an Engel
group. If H is a torsion subgroup of G and H does not contain an element of order
char(F), then H is abelian, each subgroup of H is normal in G and each idempotent of
FH is central in FG.

Proor. If a € t(G) and g € G \ Ng({a)), then x =ag(a—1) #0 and 1 + x € V(FG),
where @=1+a+---+d'. A straightforward calculation shows that the triple
commutator

A+x,am=1+x(a-1)" m=>1).

Since V(FG) is an Engel group, x(a — 1)* # 0 and x(a — 1)**! = 0 for a suitable s € N.
It follows that x(a — 1)*a’ = x(a — 1)* for each i > 0 and

x@—1°lad=x@@- 1A +a+d*+---+d" ") =0.

Since char(F) does not divide |a|, we have that x(a — 1)* = 0, which is a contradiction.
Hence, every finite cyclic subgroup of H is normal in G, so H is either abelian or
hamiltonian.

If H is a hamiltonian group, then, using the same proof as in the second part of
[9, Lemma 1.1, page 122], we obtain a contradiction.

Hence, H is abelian and each of its subgroups is normal in G.

We claim that all idempotents of LT are central in L(T, g), where T is a finite abelian
subgroup of H, g € G and L is a prime subfield of the field F.

Assume on the contrary that there exist a primitive idempotent e € LT and g € G
such that geg™' # e. The element b = g"'a'ga # 1 for some a € T and

W=("(g " cg)lceTy=(T,g) <(T,g)

is a nontrivial finite abelian subgroup of 7.

Obviously each subgroup of 7 < H is normal in (7, g), so the idempotent f =
(1/|W|)<’V—V\> € L[T] is central in I(T, g) and can be expressed as f = f; +:-- + f§
in which fj, ..., f; are primitive and mutually orthogonal idempotents of the finite-
dimensional semisimple algebra L[T].

The idempotent e does not appear in the decomposition of f. Indeed, otherwise we
haveef =e.If e = }; a;t;, where @; € Land t; € T, then

g 'efg=g"esf = Z wig™'igf = Z aiti(ti, 9)f = ef,

so e = fe is central, which is a contradiction.
Ifef # 0, then ef = e, which again is a contradiction. Thus, ef = 0.
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Consider f. = (l/Ibl)@ € L[T]. Since (b) € W, the idempotent f. appears in
the decomposition of f, so ef, = 0. Furthermore, geg~' € L[T] is primitive as an
automorphic image of the primitive idempotent e, so ege = e(geg™')g = 0. Evidently
(1+eg)'=1-egand

(1+eg,a)=(-eg)( + ea_lga)
=(l—-eg)1+eghb)=1+egb-1).

Now an easy induction on n > 1 shows that (1 + eg,a,n) = 1 + eg(b — 1)". However,
V(FG) is Engel, so there exists m such that

egb—1)"#0 and eg(b-1)""=0.
Thus, eg(b — 1)"b' = eg(b — 1)™ for any i > 0, which leads to the contradiction
eg(b—1)" =eg(b— 1)"f, = eg(b— )" '((b - 1)f.) = 0.

Therefore, all idempotents of F'H are central in FG. O

Proor or THEOREM 1.1. Assume that the set N, of all nilpotent elements FG \ 0 is finite
and nonempty. If x € N, then the subset of nilpotent elements {Ax | A € F} is finite, so
F is a finite field of char(F) = p.

Assume that there exist u € N, and g € G such that gu = ug. Let us show that g has
finite order. First notice that we cannot have ug’ # ug/ whenever i # j as this would
imply that {ug'|i € Z} is an infinite subset of N,, contradicting the assumptions of our
theorem. Thus, we must have ug’ = ug’ for some i < j. Let b = g/~ so ub = u. Let

u=A181+ g+ -+ Lg

where g; € G form a group basis of a vector space. We must have that the multiplication
from the right by b permutes g;, g2, ..., gk and thus b*' acts trivially on g; and thus
1 = ¥ = g% and g is of finite order.

Let0 # u € N, and g*u # ug* forany g € G\ t(G) and k € Z \ {0}. Clearly g~'ug' # 0
and g~'ug' € N, for any g € G\ #(G) and i € Z. Since N, is a finite set, at least for one
i € Z there exists j € Z (j # i) such that g7'ug’ = g7 /ug’, so g/~'u = ug/~!, which is a
contradiction. Consequently G = {(G), that is, G is a torsion group.

If #(G) does not contain a p-element, then t(G)(= G) is abelian by Lemma 2.1 and
the commutative nonmodular algebra FG does not contain nonzero nilpotent elements.
It follows that N, = @, which is impossible.

By assumption, V(FG) is an Engel group. Let II be the set of all p-elements of
the Engel group G. As {g— 1| g €I} C N, and N, is finite, IT is also finite. Let P
be a maximal p-group such that P C Il (such P always exists because II is finite).
Assume that P is not normal in G. Then Ng(P) # G. Since P is a finite p-group, it is
nilpotent. Hence, some element of P must have a conjugate w € Ng(P) \ P (see [18,
Lemma 5.4.1.3, page 307]). Consequently P < (P,w) and (P, w) is a finite p-group,
which is a contradiction.
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Hence, P is a normal subgroup in G and the subset of nilpotent elements
{(h—1)gd|heP geG,AeF}

is finite, so G < V(FG) is a finite Engel group as well. Since every finite Engel group is
nilpotent by Zorn’s theorem (see [22, 12.3.4, page 372]), G is a finite nilpotent group
which is a direct product of its Sylow subgroups (see [11, 10.3.4, page 176]). Each
Sylow g-subgroup S, (g # p) is abelian by Lemma 2.1. Consequently the finite group
G = P X Ain which A = {J,,, S, is a central subgroup of G and G" < P. Since FG is
a finite algebra, V(FG) is nilpotent (see [22, 12.3.4, page 372]). O

Proor oF THEOREM 1.2. Since V(FG) is a locally nilpotent group, G is also locally
nilpotent. Let S = (fi,..., fs | fi € V(FG)) be a finitely generated (f.g.) subgroup of
V(FG). Clearly

H = (supp(f1),...,supp(fs))

is an f.g. nilpotent subgroup of G and S < V(FH) < V(FG). Hence, we may restrict
our attention to the subgroup V(FH), where H is an f.g. nilpotent subgroup of G
containing a p-element; overwise we can add to H a p-element from G.

Let H be an f.g. nilpotent group containing a p-element and let g, € H such that
(g, h) # 1. Obviously t(H) is finite (see [12, 7.7, page 29]) and the Sylow p-subgroup
S, of t(H) is a direct factor of t(H) (see [11, 10.3.4, page 176]). Consequently there
exists ¢ € (H) of order p, and ¢ = f:_ol ¢’ is a square-zero central element of FH.
Since L ={g,h, 1 + gc) is an f.g. nilpotent subgroup of V(FG), L is Engel. Clearly
there exists m € N such that the nilpotency class cl(V) of V(FH) is at most p™.

Let us show that (g, #) is a p-element. Indeed, if g = p”, then

q .
1=(l+gchq) =1 +’C‘Z(_1)i(‘f)ghqr = 147" — )
i=0

because (‘l’) =0 mod p for 0 <i<g. It follows that c(g" — g) =0 and (g, h?) €
supp(¢), which yields that g" = ¢'g for some 0 < i < p. Hence,

=q... 54 ... 19 = (o =
(h h™Dgh?---h?) =(c)'g=¢
P p

and """ € Cg(g), so h”"" € (L) for all h € L and L’ is a finite p-group by a theorem
of Schur (see [22, 10.1.4, page 287]). Since each f.g. subgroup of G is a p-group, G’
is a p-group too.

Conversely, it is sufficient to prove that if H is an f.g. nilpotent subgroup of G such
that H’ is a p-group, then V(F H) is nilpotent. All subgroups and factor groups of H
are also f.g. groups [22, 5.2.17, page 137]. Moreover t(H) = P x D is finite (see [22,
12.1.1, page 356]) and the f.g. group H/t(H) is a direct product of a finite number
of infinite cyclic groups. Since H’ is a p-group, H' < P < t(H) is a finite p-group, so
V(FH) is nilpotent (see [15, Theorem 1]). O
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Proor oF TueoreMm 1.3. If V(FG) is a locally nilpotent group, then it is Engel, so, by
[5, Theorem 1.1], the locally nilpotent group G satisfies parts (i)—(ii) of our theorem.
Since a locally nilpotent group is a u.p. group, the converse of our theorem follows
from [16, Theorem 2] and [5, Theorem 1.1]. O
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