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BEST TRIGONOMETRIC APPROXIMATION, 
FRACTIONAL ORDER DERIVATIVES AND 

LIPSCHITZ CLASSES 

P. L. BUTZER, H. DYCKHOFF, E. GORLICH, AND R. L. STENS 

1. Introduction. Let C27r denote the space of 27r-periodic continuous func­
tions and Un the set of trigonometric polynomials of degree ^ n, where 
n £ P = {0, 1, . . . } . Given 6 > 0, the well-known theorem of Steckin and its 
converse state that the best approximation of an / £ C27r with respect to the 
max-norm satisfies 

(1) En(f;C^) = inf \\f - t*\\cu = 0(tr') (n^co) 
«n€nn 

if and only if, for some r < 6, r £ N (= naturals), 

(2) | | / e > _ ( O ^ l l e , , = 0(n'-') (n -»oo) , 

where t* = tn*(f) £ Un denotes the polynomial of best approximation to / . 
Moreover, assertion (1) is, by Zamansky's theorem and its converse (due to 
P. L. Butzer, S. Pawelke and G. Sunouchi), equivalent to 

(3) | | (C( / ) ) ( s ) | | c 2 . = 0(«s-») ( » - « > ) , 

for every s G N, s > 6. 
One purpose of this paper is to extend these results to derivatives of frac­

tional order (see Section 3). Furthermore, the classical Jackson and Bernstein 
theorems, stating that (1) is equivalent to the smoothness condition 

(4) co,(/;ô;C2,r) = 0(ô*), ( ô - > 0 + ) , 

for every s £ N, s > d, can be extended to moduli of continuity of fractional 
index s. The resulting characterization has the advantage that the continuous 
scale of 6 now has as its counterpart a continuous scale of s, which can be used 
to extend to the fractional situation several results on Lipschitz classes, such 
as identity theorems for different indices and a reduction theorem (Theorem 3 
and Remark 7). For example, denoting by D&f the fractional derivative of 
order (3 > 0 of/ (see Definition 1), the reduction theorem implies that 

coa(/;ô;C2r) = 0(ô*), (ô->0 + ) 

for a > 6, if and only if 

rff r /Lipi(0 - 0; C2x), 0 < 0 - /3 < 1 
J ^ {Lip2(d - 0; £W), 0 < 6 - $ < 2. 
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Basic properties of moduli of cont inui ty of fractional index, including their 
relation to the ^- funct ional (Proposition 2) and Marchaud ' s inequali ty 
(Corollary 2) , will be studied in Section 4. 

For the proofs, we employ the results of Butzer-Scherer [3; 4] on the equiva­
lence of the fundamental theorems ( i ) - ( iv) of best approximation (Lemma 5 
in Section 3), extend the results of Westphal [16] and Butzer -Wes tpha l [5] on 
the fractional difference approach to fractional derivatives, as well as use 
recent inequalities of Taberski (see [14]) and Nessel-Wilmes [13]. Basic in 
our approach is Proposition 2 connecting the moduli of cont inui ty of fractional 
index with the ^-funct ional . In our proofs we do not make use of the cor­
responding results in the classical integral case; in part icular, we supply a 
self-contained proof of the fractional analog of Jackson 's inequali ty (Proposi­
tion 1 in Section 3). 

2. Pre l iminar i e s . Let X 2 T be one of the spaces C2T, L2V
P, 1 ^ p < oo, with 

norms 

\\fWc2, = sup \f(x)\, ||/||L2T = {(1/2*) J j / ( * ) I ' d * } ' ' 

The finite Fourier transform of / £ X2lv is denoted by 

r(k) = (l/2ir)fT f(u)e-ikudu, K Z 

and the convolution of / Ç L2ir
l, g £ X2ir by 

(f*g)(x) = ( 1 / 2 T T ) £ / ( X - u)g(u)du. 

As in [5], we define the (right) difference of / £ X2ir of fractional order 
a > 0 with respect to the increment h £ R by 

(2.1) (A*7)(*) = Ë ( - ! ) ' ( ". W - hj) (x 6 R). 

For convenience we assemble some basic properties of the fractional difference. 

L E M M A 1. Let f, g G X2ir, a, /3 > 0, x, h £ R. Then 

(i) \M\\xu £ M(a)\\f\\XST, M (a) = £ 

where {a} = inf ( K P ; ^ ^ « 1 , 

(ii) [A»«/r(£) = (i - e-«*)«r(*) (k e z), 
(iii) (AhHf*g))(x) = ((A»«/) * g ) ( x ) (a.e.), 

(iv) (A„" (A/ / ) ) (x ) = (A»«+*/)(x) (a.e.), 

(v) HA^/II ^2""||A»«/II, 
( v i ) l i m | | A » 7 | | r i T = 0. 

ft-»0 

( " ) 
< 9 { a } 
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The proof is essentially contained in [5]: Proper ty (i), which is simple, 
yields (ii) (see [5, p. 126]), which in turn gives (iii) and (iv). Pa r t (v) follows 
by (iv) and (i). Concerning (vi), since the operator Ah

a is uniformly bounded 
in h by (i), it suffices to establish (vi) for the fundamental set {eikx}k^z which 
is trivial in view of (ii). 

Definition 1. (a) If f o r / G X2ir there exists g G X2ir such tha t 

(2.2) lim | | A - A f t « / - g | | X 2 i r = 0, 

then g is called the Liouville-Griinwald derivative of order a > 0 of f in the 
X2ir-norm, denoted by g = Daf. 

(b) The integral of / G X2lT of order a > 0 is defined by 

(2.3) (laf)(x) = (f**a)(x) = ~- f f(x - u)*a(u)du, 

\pa being the Z^^-function given by 

{iky , K Z , ^ 0 
(2.4) [*,]*(*) = l 0 i k = Q 

From [5, p. 129, 130] we cite: 

LEMMA 2. (a) The following assertions are equivalent for f G X27r, and a > 0: 
(i) Daf exists as an element in X2r. 

(ii) There exists gx G X2ir: (ik)ap(k) = gf(k),k G Z, k ^ 0. 
(iii) There exists g2 G X2T:f(x) = (Iag2)(x) + / A (0 ) (a.e.). 

2w //m e^ew/, the functions gi} i = 1,2, are uniquely determined (a.e.) apart from 
an additive constant, and 

(D«f)(x) = gi(x) - gf(0) (a.e.). 

(b) Set WX2TT = {/ G X2ir; Daf exists as element in X2ir}. 
(iv) The operator Da: WX2lT

a —> X 2 T is closed. 
(v) Iff G X2T, g G WXiv°, thenf * g G WXtT° and 

(2.5) D"(f*g)(x) = (f*D"g)(x) (a.e.). 

(vi) DaD$f = Da+Pf, whenever one of the two sides is meaningful. 
(vii) D«(I«f)(x) =f(x) -T(0) = (I«(D«f))(x) (a.e.), 

the latter equality holding provided f G WX2lT
a. 

For the proof, one makes use of the existence of a function Xa(x; h) G L2lv
l, 

h > 0 having the properties 

(2.6) | |x«(- ; A ) | | w S C(a) ( f c > 0 ) , 

(2.7) lim I | x « ( w ; A ) | ^ = 0 (0 < Ô < T ) , 

(2.8) M-;*)r« = {(*"r(1re"")" • \tl <">»)• 
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This function will also play an essential role in this paper. Throughout, C(a) 
denotes the same constant at each occurrence, depending only on a. The same 
applies to the constants B(a), J (a), J' (a), F (a). 

Lemma 2 (ii) shows, in view of [2, p. 172], that Daf coincides with the 
classical derivative f(a), provided a is integral. 

Definition 2. The integral or Steklov means of / £ X^ of order a > 0 are 
given by 

(2.9) (Ah"f)(x) = ( / **« ( • ;*))(*) (&> 0;x £ R). 

The Ah
a define a family of operators on X27r, coinciding in case a = r Ç N 

with the classical integral means 

(2.10) (Ah
rf)(x) =h~r I . . . I f(x - (wi + . • • + ur))dUl. . . durt 

J 0 J 0 

and having the following properties. 

LEMMA 3. Letf Ç X2iranda > 0. 
(i) p»«/IUSir ^ C(«)||/|U2I (h > o), 

(ii) lim \\Af?f - f\\X2r = 0, 

(iii) .4,"/ 6 T/^Y2/ for allO < 0 èa,h> 0,and 

(2.11) D»(Ah°f)(x) = h-e(Ah"-?(A/f))(x) (a.e.) (0 < /3 < a) , 

(2.12) (D«(.4„«/))(x) = A-(A»«/)(*) (a.c). 

Proof. Part (i) follows by | | / * x*( • ; h)\\Xix ^ \\Xa( • ; A)||,i -II/IU,,, and 
L 2 T T 

(2.6). Part (ii) is a consequence of (2.6)-(2.8) (see [5, Proposition 3.2]). 
Concerning (iii), one has for 0 < /3 < a 

V vJ , rv — U 

By Lemma 2, this implies t h a t / G WX2/ together with (2.11). The case a = (3 
follows analogously. 

3. The fundamental theorem: First half. In the proof of the funda­
mental theorem of best approximation, Jackson and Bernstein inequalities 
play the basic role. Bernstein's inequality, in the fractional case due to P. Civin 
[6] (see the review paper [8], also [9; 12]), reads 

LEMMA 4. One has, for tn Ç n„, n £ P, cc > 0 

(3.1) \\D«tn\\X2„ ^B(a)n°\\tn\\xtv. 
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The Jackson inequality for fractional a may derived from the integral case 
(cf. Remark 1). A self-contained proof, extending that in [2, p. 97], is given 
below. 

PROPOSITION 1. / / / 6 WX2w
a, then 

(3.2) En(f;X2T) g J(a)n-"\\D*f\\Xir (n G N). 

Proof. Let (Knf)(x) = (f*Kn)(x) be the convolution integral of Fejér-
Korovkin (see [2, p. 79]), the kernel Kn being essentially defined by Kn"(l) = 
cos (w/(n + 2)). We first show 

(3.3) \\Knf - f\\X2T ^ F(a)n-«\\D°f\\Xiir 

for 0 < a è 1. This will give (3.2) for 0 < a g 1 since 2£n/ G IIn. 
By Lemma 1 (iv), (v), 

| | V / | U „ = ||Aai-«(A^/)||X2l £ 21'-1||AM«/||J,2I1 

thus it follows by (2.12), (2.5) and Lemma 3 (i), using the fact that Kn is even, 

I \Knf - f\\Xlr £ ~ P 11 (A„7) (• ) | !*„«„(«)<*« 
7T i / o 

= — p nu«a(i?7))(-)ii^«aK»(«)d« 
7T J 0 

2{1_a}C(a) r 
^ 11^/11x2^ I uaKn(u)du. 

T J 0 

By a recent result of Taberski (cf. [14, Proposition 5]), 

\ £ u\n{u)àu ^ ( ^ ) V - ^(l)Y/2 (0 < a rg 2). 

This implies (3.3) for 0 < a S 1, since 1 - K„" (1) ^ (TT2/2)W-2. 

If a > 1 set a = r + /3, r 6 N, 0 < 0 ^ 1, and 

£/W = E (-l)m( r + 1 W/, 

where i?,,,1 = #„, KJ+1 = KJKJ). Clearly i/ r+i,„/ G n„ for each / £ X2lr> 

r Ç N. Ur+i,nf again is a convolution integral with kernel 

jloTci 
Since U,+i,nf-f= (~l)r{Kn- iy+lf, it follows by applying (3.3) to 
(K„- iyjd W W that 

(3.5) £„( / ; XtT) è \\(Ur+1.„ - I ) / | U „ = IKX, - / ) [ (#„ - J )7 ] IU„ 

^ 7<(^)«-'3l|D'J(ifB - 1)711*., = F(0)n-e\\(Kn - lYD»f\\Xlw 

(3.4) r f f - i y + 1 ( r + 1 ) ^ * " " * ; - - * ^ 
J=I v J ' 7-fold 
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in view of (2.5) and (3.4). Repeating this procedure one has 

\\(K„ - I)'D<>f\\XiT =\\(Kn- I)[(Kn - 7 ) ' - ^ / ] | U S T 

£ F{l)n^\\{Kn - iy-W^f\\XiT fL [F(l)yn-r\\D»+rf\\XtI 

which, together with (3.5), yields (3.2) with 

J (a) = FmF(l)Y rg 2 (^ /2 )^08) . 

To establish the first part of our main result, namely Theorems 1 and 3, 
we apply a general approximation theorem in a normed linear space setting 
due to Butzer-Scherer [3; 4; 11]. The necessary facts are briefly summarized in 
a form needed here. 

Let X be a normed linear space with norm || • | |x and {Mn}neP a sequence of 
linear subspaces such that Mn C Mn+U n Ç P, and limw^œ En(f; X) = 0, where 
En(f; X) = migeMn\\f — ^||x . Moreover, it is assumed that for each f f X, 
n G P there exists g* = g*(f) G Mn such that En(f; X) = \\f - g*\\x. 

The smoothness properties of functions / Ç I are expressed here by means 
of the X-functional: Given a linear subspace Y of X with seminorm | • | r , 
it is defined by 

K(t,f;X, Y) = inf { | | / - g|Ur + *|g|r} (* > OjeX). 

The orders of approximation <j> are chosen from the set $ of positive, non-
decreasing functions 0 on (0, 1] for which 0(1) < co and lim *_>(,+</>(/) = 0. 

LEMMA 5. Let X, Y, {Mn) satisfy the above assumptions as well as Mn C Y' 
n Ç P, a generalized Jackson inequality of order a > 0 with respect to Y: 

(JY) £„( / ; X) ^ JAa)n-"\f\r (f G Y, n € N) 

and a generalized Bernstein inequality of order a > 0 

(By) \g„\y é By(a)n*\\gn\\x (gn € Mn, n e P ) . 

Assume further that Z is a second subspace of X with Mn C Z and seminorm 
| • \z such that Z is a Banach space under the norm \\ • \\z = || • \\x + | • \z, and 
that corresponding Jackson- and Bernstein inequalities (Jz) and (B z) of order 
/3 ^ 0 with respect to Z are valid. 
If </> £ $ is such thai 

(3.8) I ' u~l-^(ti)du = 0{r^{t)) (t -> 0 +), 
J o 

(3.9) I u~l~act>(u)du = 0(ra<t>(t)) ( / ->0 + ) , 
^ t 

then the following are equivalent for each f £ X: 
(i)En(f;X) = O(0(»->)) ( « - > » ) . 

(H) |g„*(/)|r = 0(»«*(»- ')) (» -><») . 
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( i i i ) / 6 Z and | / - g » * ( / ) U = 0(n"*(»-») ) ( » - » « > ) . 
(iv)K(t?,f;X,Y) = 0(<l>(t)) ( / - > 0 + ). 

If condition (3.8) is not satisfied, assertion (iii) connected with the space Z 
must be dropped, and one has: 

COROLLARY 1. Under the assumption of Lemma 5 for X, F, and {Mn}, the 
following are equivalent for each 0 Ç $ satisfying (3.9), a > 0, and (3.8) for 
some /5 ̂  0, and f £ X : 

(i) £ „ ( / ; * ) = O W n - 1 ) ) ( n - > o o ) , 

(ii) |g»*(/) | r = OCn^Cn-1)) ( w - > « > ) , 
( i i i ) i ^ , / ; X , F) = 0 ( 0 ( 0 ) ( * - 0 + ) . 

In order to apply Lemma o to X = X2ir we take Mn = Un, Y = ^ X 2 / for 
an a > 0 with | / | F = | | />f| |x27r . Then g*(f) = t*(f) exists. In view of Pro­
position 1 and Lemma 4, the Jackson and Bernstein inequalities of order a 
are valid for WX2v". For Z take WXJ, 0 g 0 < a, with | / | z - | | ^ / | | X 2 7 r , so 
tha t ( J z ) , C#z) are satisfied with order f3 ̂  0. Finally take </>(/) = /*; then 
(3.8), (3.9) are satisfied, provided j3 < 6 < a. 

T H E O R E M 1. The following assertions are equivalent for f £ X^, 0 ^ 13 < 6 < a, 
a, i3, eeR+: 

(i)En(f;X2r) = 0(n-°) ( r c - o o ) , 
(ii) \\D«tn*(f)\\X2„ = 0(n°-°) ( » - > o o ) , 

(iii) / G I F X 2 / « ^ | | ^ / - DHn*(f)\\X2r = 0(nP-°) (n -> oo ), 
(iv) # ( * * , / ; X2T , I F X 2 / ) - 0(/«) ( * - > 0 + ) . 

For functions 0 tha t increase rather rapidly, such as 0 ( 0 = exp £*, a > 0, 
one has the counterpar t of Theorem 1 only under additional assumptions (see 
[7]). If </> increases slowly, such as </>(/) = (1 + log (l/t))~l, one does not have 
assertions of type (ii), (iii). Indeed, Corollary 1 yields: 

T H E O R E M 2. The following are equivalent for f £ X, a > 0: 

(i) £ „ ( / ; X2r) = 0(1/log n) (n -+ oo ), 
(iv) K(t«,f; X2 x , T^2T«) = 0 ( l / l o g ( 1 / 0 ) (t - 0 + ). 

Since previous results of this type only deal with integral a, our next interest 
lies in making concrete conditions (iv) in Theorems 1 and 2 for arbi t rary a > 0. 
This leads to the second half of the main theorem, namely Theorem 3. Theorem 
1 will also be useful to give a short proof for a reduction theorem for Lipschitz 
classes of fractional index (see Theorem 3, (v) <=> (vii) and Remark 7). 

4. M o d u l i of c o n t i n u i t y of fract ional index . The purpose here is to 
express assertions (iv) in Theorems 1 and 2 in terms of a modulus of continuity 
of fractional index, just as is the case for natural a. Also, most of the familiar 
properties of the classical moduli of continuity will be transferred to the frac­
tional case. The present approach is made possible by the fact tha t the frac-
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tional derivative is defined by the same fractional difference as is the modulus 
of cont inui ty of fractional index. 

Definition 3. The modulus of continuity of f Ç X27r of index a > 0 is defined by 

(4.1) co a( / ;ô;X2 . ) EE W a ( f ;ô) = sup | |A ,7 | | x 2 . (Ô > 0), 

and the associated Lipschitz class of index a and order a > 0 by 

(4.2) Upa(a;X2v) = {/£ X 2 i r ;co a ( / ;ô) = 0(5"), S - + 0 + } . 

Some elementary properties of these two concepts are collected in the 
following lemma. 

LEMMA 6. Let f, g 6 X2v and a, /3 > 0. 

(i) o)a(f; 8) is a non-negative, increasing function of 8 on (0, oo ) with 
l im^o+w a ( / ; 8) = 0. 

(ii) W t t ( / ; ô) g 2 { « - ^ ^ ( / ; 8) (8 > 0; 0 < /3 g « ) . 
(iii) < o a ( / + g ; ô ) ^ ««( / ;« ) + coa(g;ô) (ô > 0) . 
(iv) coa(/; ô) = o(<5a) (ô —> 0 + ) ^/ fl-wd <w/;y if f = constant (a.e.). 

Vf e row, //^ 
(v )co a ( / ;ô ) g C(a)ô«||Z)«/IU2ir (ô > 0) , 

(vi) coa+/3(/; ô) ^ C(a)ô«co^(P«/; «) (« > 0) . 

Proof. In (i), the convergence to zero for 5 —> 0 + follows by Lemma 1 (vi) ; 
(ii) is an obvious consequence of Lemma 1 (iv), (i), and (iii) follows readily 
by definition. Concerning (iv), coa(f', 8) = o(8a), 8 -—» 0 + , implies Daf = 0 by 
Definition 1, h e n c e / = constant (a.e.) by Lemma 2; the converse is trivial. 
For (vi) one has by (2.12), (2.5), Lemma 1 (iii), Lemma 3 (i), and (4.1) 

l | A ^ / | | x 2 . = h"\\Ahe(D°(Ah°f))\\X2ir = h°\\Ah°(Ahe(D°f))\\Xsw 

^ h°C(a)\\Ahe(D"f)\\X2ir è &*C(a)vfi(D"f;ô) (0 < h è S,f £ X), 

and (v) is proved similarly. 

Remark 1. Lemma 6 enables one to give a short proof of the Jackson in­
equali ty (Proposition 1) provided one assumes the validi ty of the classical 
Jackson theorem for natural a: 

(4.3) £ n ( / ; X 2 T ) g J'(a)œa(f;ir/n) (n G N, / G X 2 T ) . 

Indeed, if a (? N , apply (4.3) and use Lemma 6 (ii) to deduce 

(4.4) En(f;Xir) ^J'{{a\)2^-Ua{f-ir/n). 

This yields Proposition 1 by Lemma 6 (v ) . 

PROPOSITION 2. For eachf £ X2r, a > 0, tf/^re exist constants n(a), N(a) > 0, 
such that for 0 < t < GO 

(4.5) « ( « K ( / ; *; X 2 x ) ^ X (*«,/; X 2 „ W^2T«) g TV (a)coa(/; /; X2r). 
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Proof. Setting / = (/ — g) + g for an arbitrary g Ç WX2ir
a, we have by 

Lemma 6(iii), (v) and Lemma l(i) , 

««(/;*) ^ û > a ( / - g ; 0 + c o „ t e ; 0 g 2 W | | / - g|U2T + C(a)*»| |i>g||x2.. 

Taking the infimum over all g Ç WX2T
a establishes the left hand side of (4.5) 

with [n(a)]~l = max {2{«], C(a)}. 
Setting 

£i(*) = - É ( - 1 ) V ) ^ ^ / / / ) W for some r > a, r G N, 

we have g, € WXir" for all / > 0 by Lemma 3(iii). By (2.11), 

\\Da(AlJ/r
Tf)\\X2r £ C(r - a ) - ^ | | A W r 7 | U , T 

^C(r-a)(r-j)ajua(j;t) 

for 1 ^ j S r. Hence it follows that 

(4.6) t"\ \D"gl\\X2„ g C(r - «)rV(f ! 0 È W , ) = C* («)«„(/; 0 

(0 < / < oo). 
In view of (2.10) and (2.1) one has 

n/-g«iu!ir= /+ i i-iy 

X27T X I . ) J • • • J /I * — ~~ (ul + • • • + Ur) JdU! . . . dur 

^ I • • • I \\^\t/r){ui+..^Ur)f\\dUi. . .dur 

Jo *> o 
^ sup IIA/ZH^ = cor(/;0 ^ 2{r-a}œa(f;t)} 

the latter inequality following by Lemma 6(h). Combining this with (4.6), 
it follows that 

K(F,f;X2v,WXsr") S \\f ~ gt\\x2„ + ti\D«gt\\X2T è N(a)a>a(f'J), 

where N(a) = max {C*(a), 2r~a}, which is the right-hand side of (4.3). 

Remark 2. If one assumes the validity of (4.3), one can give a very different 
proof of the right-hand side of (4.5). Here we make use of the fractional M. 
Riesz inequality (a generalization of Bernstein's inequality) established re­
cently by Nessel-Wilmes [13]. 

LEMMA 7. For each tn £ Un, n ^ N, a > 0 

\\D"tn\\Xir £ (n/2)«\\A„/n«tn\\X2„. 
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With regard to this proof, let 0 < t ̂  2T. Then there is n G N such that 
(ir/n) < t S 2(ir/n). Setting En(f; X2ir) = \\f — tn*\\X2ir,

 o n e has for each 
a > 0, by (4.6), 

| | / - tH*\\x%r£ J'(W)2w-^a(/; T/n). 

On the other hand, by Lemma 7 and Lemma l( i ) , 

\\D%*\\Xîn ^ (n/2)°\\Am« t*\\xtr 

^ (*/t)"{2^\\f - tn*\\x„_T+ \\^f\\xJ 
^ Ta(22(al-aJ'({a}) + 1 )/-aC0a ( / ; 7r/w) . 

This yields, by Lemma 6(i), that 

K(F,f;Xir, WXtT") è | | / - l*\\x„ + t"\\D"tn*\\Xir ^ N'(a)Ua(J; t) 

with N'(a) = (2^-oJ'da}) + 1)TT«. 

Remark 3. A simple corollary of Proposition 2 and of a property of the 
if-functional is a corresponding property of the modulus of continuity, namely 

(4.7) wa(/;X«) g (i\r(a)/«(a))X«wa(/;5) (X ̂  1 ; 5 > 0; a > 0). 

For arbitrary a > ft > 0, / G (0, 1 ) , / € X2,, one has 

K^J;Xin,WxJ) gG(«,0)*" 

X {||/IU + J V^X(«",/ ; X2„, Wxtw
a)duj . 

This is a by-product of the proof of Lemma 5 (cf. [1 ; 7, Theorem 3]). Com­
bining this with Proposition 2 one has the following fractional analog of 
Marchaud's inequality (for the integer case cf. [10] and the literature cited 
there). 

COROLLARY 2. For each f G X2T, a > f3 > 0, / £ (0, 1): 

^{f;ô)X2r) ^ G (a, $)[N{a)/n{a)]f 

X { | l/l |*2. + J ' u-*-1»*^; w,X^)du) . 

5. Lipschitz classes of fractional index. 

THEOREM 3. (a) Let f G X2ir. Assertions (v)-(viii) are equivalent to assertions 
(i)-(iv) of Theorem I for 0 ^ /3 < 0 < a, a, 13, 6, r G R+: 

(v) coa(/;/;X2 .) = O(^) ( / - » 0 + ), i.e. / G Lipa(0;X2 .), 
(vi) DPf e Lipr(0 - 0; X2ir) (6 - (3 <T), 

(vii) Z ^ / 6 Lipa_^(0 - /3;X2T), 

/ .-n ™f . /Lipi(* - 0; X2ir), 0 < 6 - p < 1, 
1 j J ^ lLip2(0 - P;X2r)t 0<6- 0<2. 
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(b) Assertions (i), (iv) of Theorem 2 for arbitrary a > 0 are equivalent to 

(v') coa(/; *; Z 2 T ) = O( l / log ( 1 / 0 ) (t -> 0 + ) . 

Proof, (a) The fact tha t (v) is equivalent to (iv) and so also to (i)-(iii) 
of Theorem 2 follows by Proposition 2. If (v) holds, then one has by (iii) 
t h a t / G W W * and 

En(D^;X2r) S \\Dff - DHn*(f)\\X2r = 0{nP~') ( » - > o o ) , 

t ha t is, (i) is satisfied for D^f and 6 — (3. In view of the equivalence of (i) 
with (v) there holds co T (^ / ; /; X27r) = O ( ^ ) , ( / - > 0 + ) for any r > 0 - 0. 
T h u s (vi) follows. Then (vii) follows by sett ing r = a — j3 m (vi). Finally, if 
(vii) holds, then 

<o«(/;0 ^ C(p)pG>a-p(Df>f;t) = 0(t9) 

by Lemma 6 (vi), which is (v). If 0 < 0 - 0 < 1 or 0 < 0 - 0 < 2, one can 
choose r = 1 and r = 2 in (vi), which shows tha t (viii) is equivalent to the 
other assertions. 

(b) Proposition 2 again yields the equivalence of (iv) with (v ' ) . 

Remark 4. The cases a = 1, 2 of Theorem 3 for the fractional Weyl derivative 
/(/3) are due to Hardy-Lit t lewood and Zygmund (see [17, p. 136]). They 
showed, in the case a = 1, t ha t 

/ G Lipi(0, C2x) =»/<« G Lipi(0 - 0; C27r) 

if 0 < 0 < 0 < 1, and for a = 2, G < 0 < 1 t ha t 

/ G L i p 2 ( l ; C2r) =>/<« G Lip 2 ( l - 0; C 2 T ) . 

The corresponding converse directions are known for arbi t rary integral a and 
the space X^ (see [2, p. 427]). 

Remark 5. The assertions (i) and (vi) of Theorems 1 and 3, respectively, 
yield the generalization of the theorems of Jackson and Bernstein to the frac­
tional instance, namely tha t 

£ » ( / ï X*) = 0(n-9) (n -> co ) <=» Dtfe LipT(0 - /?; X2„) 

provided O ^ 0 < 0 a n d r > 0 - / 3 , / G X27r. 
In particular, this gives the existence of the derivatives D^f of order 0 < 0 

arbitrari ly close to 0. In the classical integral case, fi can only be chosen as [0] 
at most if 0 G N, and as 0 = 0 - 1 if 0 G N . 

Remark 6. Assertion (viii) of Theorem 3 can be used if one wishes to charac­
terize Lipschitz classes with fractional index and fractional order derivatives 
by integral ones. For, to any 0 > 0 there is always /3 G P such tha t 0 < 0 — (3 

^ 1. 

Remark 7. Clearly Theorem 3 implies tha t assertion (v) is independent of a 
for all a > 0, i.e. 

Lip a i(0;X 2 7 r) = Lip«2(0; X27r) (aua2 > 0). 
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If ot\ > ai è 0 then, by Lemma 6(ii), generally only 

(5.1) Lipai(0;X2„) D Lipa2(0;X2 .). 

A similar remark applies to (z/). 

Remark 8. The authors would like to thank the referee for calling their 
attention to the question of whether the inclusion (5.1) is strict in case a2 = 6. 
Let us sketch a proof for the case X^ = CW (setting a\ = a). The C27r-function 
/(*) = Z?-o 3 - ^ cos 3*x satisfies £ n ( / ; C27r) = £%* 3~w = 0(w-«), n -> oo 
where & is chosen such that 3* S n < 3*+1 (cf. [15, p. 77; 17, p. 73]), whence 
/ £ Lipa(#; C27r), for each a > 6 in view of Theorem 3. On the other hand, if 
/ would be in Lipe(0, C27r), by [5, Theorem 7.1] there would exist g G L^ such 
that (ik)ef(k) = g~{k) for each K Z. However, for n = 3*, k = 1, 2, . . . , 
one easily verifies that |(in)ô/ /N(^)| = 1/2, which is a contradiction to 
limn_>0O gA(w) = 0. By the same arguments, using the same function / , one can 
also show that (5.1) is strict for LL, I < p < co . 
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