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Introduction. In [3] Schafer has defined generalized standard rings as 
rings satisfying the identities 

(1) (x,y,x) = 0, 

(2) (x, yy z)x + (y, z, x)x + (z, x, y)x — (x, y, xz) + (y, xz, x) + (xz, x, y), 

(3) (x, y, wz) + (w, y, xz) + (z, y, xw) = (x, (w, z, y)) + (x, w, (y, z)), 

and observed that these identities imply (y,y, (x, z)) = 0 and if the 
characteristic is not three, (x, y, x2) = 0. Schafer determined the structure 
of simple, finite-dimensional generalized standard algebras of characteristic 
not two or three by showing that they must be either commutative, Jordan, 
or alternative. 

Previously one of us [2] had studied accessible rings, which are defined 
by the identities (x,y,z) + (z,x,y) — (x, z, y) = 0 and ((w, x), y, z) = 0. 
The structure of accessible rings is determined in that paper as it turns out 
that an accessible ring without trivial ideals must be a subdirect sum of an 
associative ring and a commutative ring. 

Both of the above results generalize some results on standard algebras by 
Albert [1]. 

In this paper we define an even more general class of rings called generalized 
accessible, as consisting of those rings which satisfy the identities 

(1) (x,y,x) = 0, 

(4) (x, (z,y,y)) = 0 , 

(5) 3(x, y, (w, z)) = - (w, (x, y,z)) - 2(x, (y, z, w)) 

+ 2(y, (z, w, x)) + (z, O , x, y)). 
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U.S. Army Research Office (Durham), and the National Science Foundation (NSF Grant 
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We will prove that identities (1) and (3) imply generalized accessible and 
also that accessible implies generalized accessible. The following schematic 
diagram summarizes the relationships which hold between the various types 
of rings under discussion. An arrow indicates implication. 

Jordan Associative 

Commutative i\lternative 

Accessible Generalized Standard 

I 
(1) and (3) 

Generalized Accessible 

The implications not proved in this paper are either trivial or can be found 
in [1; 2; 3]. Thus "generalized accessible" is implied by "commutative" and 
also by "alternative" so that it is a generalization of both. 

The main theoremsf of this paper are as follows. 

THEOREM 1. If R is a prime generalized accessible ring of characteristic not 
two or three, then R is either commutative or alternative. 

This then generalizes the results for prime rings in both [3] and [2]. Since 
primitive implies prime, we have the result also for primitive rings and with 
the usual extension of the Jacobson radical (as in the alternative case) we 
have the result that a semi-simple generalized accessible ring is isomorphic to 
a subdirect sum of primitive, commutative, and alternative rings. 

THEOREM 2. Let R be a generalized accessible ring of characteristic not two 
or three and without trivial ideals. Then R is isomorphic to a subdirect sum of a 
commutative ring and an alternative ring. 

fThese results have been announced under the title: The structure of generalized accessible 
rings, Bull. Amer. Math. Soc. 75 (1969), 415-417. 
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1. Preliminaries. We make the following definitions. 

H(x, y, z) = (x, y, z) + (y, z, x) + (z, x, y), 

T(w, x, y, z) = (TO, y, z) — (w, xy, z) + (w, x, yz) 

— w(x, y, z) — (w, x, y)z, 

B(x, y, z) = (xy, z) - x(y, z) - (x, z)y - (x, y, z) 

— (z, x,y) + (x, z,y), 

G(x, y, w, z) = 3(x, y, (w, z)) + (w, (x, y, z)) + 2(x, (y, z, w)) 

- 2(y, (z, w, x)) - (z, (w, x, y)). 

It can be checked by expanding the associators and commutators that in an 
arbitrary ring we have T(w, x, y, z) = 0 and B (x, y, z) = 0. In a ring satisfying 
the flexible law (1) we have 

(6) 0 = B(x, y, z) = (xy, z) — x(y, z) — (x, z)y — H(x, y, z). 

Also in a ring satisfying (1) we may form 0 = T(w, x, y, z) + T(z, y, x, w) 
and verify that 

(7) (w, x, (y, z)) - (w, (x, y),z) + ((w, x), y, z) 
= (w, (x,y,z)) - (z, (w,x,y)). 

In the following we assume characteristic not two or three. 

LEMMA 0. Equations (1) and (3) imply 
(i) (x, (z,y,y)) = 0, 

(ii) 0 , y, (w, z)) + (x, w, (z, y)) + (x, z, (y, w)) = 2(x, (w, z,y)), 
(iii) G(x, y, w, z) = 0, 
(iv) generalized accessibility. 
Also accessible implies generalized accessible. 

Proof. Setting w = y in (3) we see that 

(x, y, yz) + (y, y, xz) + (z, y, xy) = (x, y, (y, z)) 

because of (1). By cancellation and subtraction, this last equation becomes 
(x, y, zy) + (y, y, xz) + (z, y, xy) = 0. In that equation, interchange x and 
z and subtract, so that 

(8) (y,y, (x,z)) = 0 . 

By linearizing (8) and using (1), we obtain: 

(9) (w, y, (x, z)) = - (y, w, (x, z)) = ((x, z), w,y) = - ((x, z), y, w). 

Setting w = z = x in (3) and using (8) we see that 

(10) 3(x, y, x2) = (x, (x,x,y)). 

Now if we let z = y — x in (7), we obtain ((w, x), x, x) = — (x, (w, x, x)). 
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Using (8) and the linearization of (1) we have ((w, x), x, x) = 0, hence we 
have shown that (x, (w, x, x)) = 0. If we let w = y in this last equation and 
use the linearization of (1), then (x, (x, x, y)) = 0. Comparing this with (10) 
yields 3(x, y, x2) = 0, and since we are assuming characteristic not three, 
it follows that 

(11) (x,y,x>) = 0 

Schafer has already proved identities (8) and (11). We give proofs only 
to make the paper self-contained. 

Now put w = x in (3) and use (8) to obtain 

2(x, y, xz) + (z, y, x2) = (x, (x, z, y)). 

But a linearization of (11) yields (x, y, xz + zx) + (z, y, x2) = 0. Comparing 
the last two equations shows that 

(12) (x, y, (x, z)) = (x, (x, z, 3/)). 

Now in (3) interchange w and z and subtract the resulting equation from 
(3). This results in 

(13) (x, y, (w, z)) = (x, (w, z, y) - (z, w, y)) 

+ (x, w, (y, z)) - (x, z, (y, w)). 

In (13) set w = y and use (1). Then 

(x, y , Cy»z)) = - (x> fe y>y)) + (x> y> ( y» z ) ) 

which implies that 

(14) (x,(z,y,y)) = 0 . 

Now by linearization of (14) and use of (1) we see that 

(15) (x, (wa, y a, za)) = sgn c(x, (w, y, z)), 

where a is any permutation of the three letters w, y, and z. In the light of 
(15) we may rewrite (13) as 

(16) (x, y, (w, z)) + (x, w, (z, y)) + (x, z, (y, w)) = 2(x, (w, z} y)). 

By linearizing (12) we see that 

(w, y, (x, z)) + (x, y, (w, z)) = (w, (x, z, y)) + (x, (w, z,y)). 

In this last equation interchange x and y to obtain 

(17) (w, x, (y, z)) + (y, x, (w, z)) = (w, {y, z, x)) + (y, (w, z,x)). 

In (17) perform the permutation (wyz) to obtain 

(18) (y, x, (z, w)) + (z, x, (3/, w)) = (3/, (z, a/,x)) + (z, (y, w, x)). 

https://doi.org/10.4153/CJM-1970-043-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-043-7


352 E. KLEINFELD, M. H. KLEINFELD, AND F. KOSIER 

Now subtracting (17) from (18) and using (15), we have 

(19) 2(x, y, (w, z)) + (x, w, (y, z)) + (z, x, (y, w)) 

= - (w, (x, y, z)) + 2(y, (z, w, x)) + (z, (w, x, y)). 

Adding (16) and (19) and using (15) and (9), it follows that 

(20) 3(x, y, (w, z)) = - (w, (x, y,z)) - 2(x, (y, z, w)) 

+ 2(y, (z, w, x)) + (z, (w, x, y)). 

In other words, G(x, y,w, z) = 0. Since (1), (14), and (20) constitute a 
generalized accessible ring, we have shown that (1) and (3) imply generalized 
accessibility. 

In an arbitrary accessible ring R, it has been shown that R must be flexible 
[3, bottom of p. 335], that all commutators are in the nucleus, and that all 
associators satisfy ((x, y, z), w) = 0 [2, (7)]. From this information it follows 
directly that R must be generalized accessible. 

2. Main section. In the following we assume that R is a generalized 
accessible ring (as defined above) of characteristic not 2 or 3. Note that in a 
generalized accessible ring we have (x,y,x) = 0, (x, (z,y,y)) = 0 and 
C7(x, y, w, z) = 0 by definition. 

LEMMA 1. ((wa, xo-, ya), z) = sgn a((w, x, y), z), where w, x, y, and z are 
arbitrary in R and a is any permutation of the three letters w, x, and y. 

Proof. Immediate from the linearizations of (1) and (4). 

LEMMA 2. Let V = S (R, R)- Let v G V and x,y G R. Then (va, xa, y a) = 
sgn a(v, x, y), where a is any permutation of the three elements v, x, and y. 

Proof. From G(y, y, w, z) = 0 we have: 

(21) 3(y, y, (w, z)) = - (w, (y, y, z)) - 2(y, (y, z, w)) 

+ 2(;y, (z, w, y)) + (z, (w, y, y)). 

It follows from Lemma 1 that the right-hand side of equation (21) is zero. 
Thus we have (y,y, (w, z)) = 0. Linearization of this identity yields 
(x, y, (w, z)) = — (y, x, (w, z)). Because of the flexible law, (y, y, (w, z)) = 0 
implies ((w, z), y, y) = 0, and hence we have ((w, z), x, y) = — ((w, z), y, x). 
Thus we have the following: 

(x, y, (w, z)) = - (3/, x, (w, z)) = ((w, z), x, y) = - ((w, z), 3/, x). 

We also know from the flexible law that (x, (w, z), y) = — (y, (w, z), x). 
We now need only show that (x, (w, z),y) = — (x, y, (w, z)). To do this, 

define 

K(w, x, y, z) = (w, x, (y, z)) - (w, (x, y), z) 

+ ((w, x), y, z) - (w, (x, y, z)) + (2, (w, x, y)) . 
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Now equation (7) states precisely that K(w, x, y, z) = 0. 
From 3K(x, z, w, y) + G(y, w, x, z) — G(x, z, w,y) = 0 we obtain: 

(22) 3(x, (*, w), y) = 3((x, z), w, y) + 3(x, z, (w, y)) 

- 3(x, (z, w, y)) - 3((x, z, w), y) + 3(y, w, (x, z)) 

+ (x, (y, w, z)) + 2(y, (w, z, x)) — 2(w, (z, x, y)) 
- (z, (x, y, w)) - 3(x, g, (w, y)) - (w, (x, 2, y)) 

- 2(x, (2, y, w)) + 2(2, (y, w, x)) + (y, (w, x, 2)). 

Using Lemma 1 and collecting terms on the right-hand side of (22) yields: 

(23) - 3 ( x , (w, z),y) = - (w, (x, y, 2)) - 2(x, (y, 2, w)) 

+ 2(y, (2, w, x)) + (2, (w, x, y)). 

But from G(x, y, w, 2) = 0 we have 

(24) 3(x, y, (w, 2)) = - (w, (x, y, 2)) - 2(x, (y, 2, w)) 

+ 2(y, (2, w, x)) + (2, (w, x, y)) . 

Comparison of equations (23) and (24) yields (x, y, (w, 2)) = — (x, (w, 2), y), 
as desired. 

LEMMA 3. Let S = {5 £ jR| (5, i?) = 0}, Ze£ F ôe as iw Lemma 2, awd fe£ C 
&e £&£ cew/re of R. If s £ S, v £ V, and x,y £ R, then 

(i) H(pc, y, 5) = 0, 
(ii) (sa, xa, ycr) G S, 

(iii) 5 w a subring of R, 
(iv) (̂ cr, va, xa) = 0, 

(v) 5 n (iî, 20 c a 
Proof. From (6) we have 

0 = B(x, y, s) = (xy, 5) - x(y, 5) - (x, s)y - H(x, y, 5) = —H(x, y, 5). 

Thus jff(x, y, 5) = 0. Since H(x, y, 2) is invariant under cyclic permutations 
of the variables x, y, and z, we have also 0 = H(y, s, x) = H(s, x, y). Now 
0 = (2, i7(x, y, 5)) and because of Lemma 1, (2, H(x, y, 5)) = 3(2, (x, y, 5)). 
Thus (2, (x, y, s)) = 0. Using Lemma 1 again this implies that 

(2, (xa, yc , 50-)) = 0, 

hence (xa, ya, sa) £ 5. 
To see that S is a subring of R, let $i and s2 be elements of 5. Then by (6) 

we have 

0 = B(jsi, s2j z) = (sis2, z) — Si(s2, z) — (si, z)s2 — H(si, s2, z) = ($is2, z). 

Hence s\s2 G 5. 
By Lemma 2, fZ"(», x, s) = 3(v, x, 5) but by (i), £T(v, x, s) = 0, thus 

(y, x, s) = 0 and using Lemma 2 again implies (flcr, xo-, sa) — 0. 
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To prove (v), let z G -S Pi (R, R) ; then (z, R) = 0, since z G S, H(x, y, z) = 0 
by (i) and since z G (R,R), H(x,y,z) = 3(x,y,z) by Lemma 2. Thus 
(x, y, z) = 0 and using Lemma 2 again yields (xa, ya, za) = 0. Thus z G C. 

LEMMA 4. Q = V + Fi? is aw idm/ of R. 

Proof. Equation (5) implies that 3(R, R, (R, R)) C (R,R), and since we 
have characteristic not three (the map x —» 3x is one-to-one and onto) this 
implies that (R, R, (R, R)) C (R,R). Linearization of (1) implies that 
((R,R),R,R) C (R,R). By definition, Q is closed under addition, and 
(x, y)z G Q by definition. Now z(x, 3/) = (x, y)z + (z, (x, 3O), and so 
z(x, 3O G Q. Now (x, 3/)s • w = ((x,y), z,w) + (x, 3/) • zw, hence (x, y)z - w £ Q 
while w • (x, y)z = (x, y)z • w + (w, (x, 3O2) implies that w • (x, y)z G (?. 

LEMMA 5. If U = {w G S\ uV = 0}, then U is an ideal of R and UQ = 0. 

Proof. First wTe show that u G U implies that ux G U. To see that ux G S, 
form 0 = B(u, x, z) = (^x, 2) — (u, z)x — ̂ (x, 2) — H(u, x, z). Since u £ S 
and ^ annihilates commutators, this yields (ux, z) = H(u, x, z) = 0 by 
Lemma 3 (i). Thus ux G S. Now wx • (3/, z) = xu • (3̂ , 2) = x • w(^, z) = 0 
because of Lemma 3 (iv) and the definition of U. Thus ux G U, and hence £/ 
is a right ideal, since Z7 C S', this is sufficient. 

To see that UQ = 0, let u £ U. Then uV = 0 by definition of £/ and 
u - (x, 3/)r = u(x, y) • r = 0. It follows that UQ = 0. 

LEMMA 6. / / 5 G S, y G R, and v G F, ^ew (5, 3/, 3/)^ G S. 

Proof. We have 

0 = T(v, y, s, y) = (vy, s, y) - (v, ys, y) + (v, y, sy) - v(y, s, y) - (v, y, s)y. 

Using (1) and Lemmas 2 and 3, this implies that 2(v, y, sy) = — (vy, s, y), 
and hence 

(25) (v, y, sy) G S. 

Now 

0 = T(s, y, y, v) = (sy, y, v) - (s, y2, v) + (s, y, yv) - s(y, y, v) - (s, y, y)v. 

Using Lemmas 2, 3, and equation (25) we have 

(s, y, y)v = [ - (v, y, sy) - (s, y2, v) + (s, y, yv)] G S. 

LEMMA 7. (S, R,R)VC S. 

Proof. Let s G S, v G V, and x, y G R- Linearizing (25) yields: 

(26) [(v,x,sy) + (j>,y,sx)] G S. 

https://doi.org/10.4153/CJM-1970-043-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-043-7


GENERALIZATION OF RINGS 355 

From 0 = T(v, x, s, y) we obtain 

(vx, s, y) — (v, xs, y) + (v, x, sy) = v(x, s, y) + (v, x, s)y. 

Using Lemmas 2 and 3, this yields 

v(x, s, y) = (vx, s, y) + [(v, x, sy) + (v, y, sx)]. 

It follows from (26) and Lemma 3 thatz;(x, s, y) £ S. By Lemma 3, (x, s,y) £ S, 
and so we have (x, s, y)v = v(x, s, y) £ 5. Again by Lemma 3, H(x, s, y) = 0, 
hence H(x, s, y)v = 0 which implies that (y, x, s)v + (s, yy x)v is an element 
of 5, and using (1) yields 

(27) (s, x, y)v — (s, y, x)v is an element of 5. 

From Lemma 6 we have (s, y, y)v Ç S. Linearizing yields 

[(s,x,y)v + (s,y,x)v] G 5. 

From this and (27) it follows that (s, x, y)v Ç S. 

LEMMA 8. If s £ S and sV C S and if R has no trivial ideals, then s Ç U. 

Proof. We have s (a, b) £ S and s (a, b2) G 5; thus B(s, a,b) = 0 implies 
s (a, b) = (sa, b), and B(s, a, b2) ~ 0 implies s (a, b2) = {sa, b2) so that both 
(sa, b) and (sa, b2) are elements of 5 Pi (R, R) and S C\ (R, R) C C by 
Lemma 3; thus we have (sa, b) 6 C and (sa, b2) Ç C. Now B(b2, s, a) = 0 
implies (b2, sa) = b(b, sa) + (b, sa)b = 2b (b, sa) since (b, sa) Ç C; thus we 
have 

(28) (b2, sa) = 2b(b,sa). 

Now ((&2, sa), sa) = 0 since (b2, sa) 6 C. This and (28) imply 

(29) 2(b(b,sa),sa) = 0, 

while B(b, (b, sa), sa) = 0 implies (b(b,sa),sa) = (b, sa)2. This and (29) 
imply (b, sa)2 = 0. Now (b, sa) G C and the fact that R is without trivial 
ideals imply (b, sa) = 0. We have seen that s(a,b) = (sa, b) = —(b,sa). 
It follows that s(a, b) = 0. Hence sV = 0 and s £ U. 

COROLLARY. 7/ i£ /zas no trivial ideals, then (S, R, R)V = 0. 

Proof. By Lemma 3(ii) we have (S, R, R) d S. By Lemma 7 we have 
(5, R, R) V C 5. We can now apply Lemma 8 to conclude that (5, R, R) C Z7. 
But UV = 0 by definition of [/. 

LEMMA 9. 7/ (S, R, R) = 0 and i£ has no trivial ideals, then R is alternative. 

Proof. Because of (1), (5, R, R) = 0 implies (R, R, S) = 0 and these 
together with H(x, y, S) = 0 imply (R, S, R) = 0. Thus S = C. By Lemma 1 
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we have [(aa, ba, ca) — sgn a (a, b, c)] £ S. It then follows from (S, R, R) = 0 
that 

(30) ((a<r, ba, ca), w, z) = sgn a ((a, b, c), w, z). 

If c £ C, it follows from T(c, x, y, z) = 0 that 

(31) (ex, y,z) = c(x, 3/, s). 

Now 

0 = T(x, x, y, y) = (x2, y, y) — (x, x;y, y) + (x, x, ;y2) 

- * (* ,? , y) - (x,%>y)y> 

Form (T(x, x, y, y), y, y) = 0. Since (x2, y, y) 6 <S and (x, x, ^2) G 5, these 
terms contribute nothing and we obtain 

(32) - ((x, xy, y), y, y) - (x(x, y, y), y, y) - ((x, x, y)y, y} y) = 0. 

But (x, x, y) 6 5 = C, thus by (31) we have 

((x, x, y)y, y, y) = (x, x, y)(y, y, y) = 0 

and ((x, x, y)x, y, y) = (x, x, y)2. Thus (32) becomes 

(33) —((x,xy,y),y,y) = (^^y^) 2 -

Now 

0 = B(a, b, c) - B{b, a, c) = ((a, b), c) + ((6, c), a) 
+ ((c, a), 6) - H(a, b, c) + H(b, a, c). 

It follows from linearization of (1) that H(b, a, c) = —H(a, b, c), and so 
the above yields 2H(a, b, c) = ((a, b), c) + ((b, c), a) + ((c, a),b). Thus 
H (a, b, c) Ç V, and so it follows by Lemma 2 that (H(xy, x, y), y, y) = 0, 
while (30) implies that (H(xy, x, y), y, y) = — 3((x, xy, y), y, y). Thus 
((x, xy,y),y,y) = 0 and comparison with (33) yields (x, y, y)2 = 0. Since 
(x, y, y) 6 5 = C and R has no trivial ideals, it follows that (x, y, y) = 0. 
This and (1) imply R is alternative. 

THEOREM 1. If R is a prime generalized accessible ring of characteristic not 
two or three, then R is either commutative or alternative. 

Proof. If R is not commutative, the ideal Q of Lemma 4 is not zero. Since 
UQ = 0 by Lemma 5, we must have [ 7 = 0 . Then Lemmas 3(ii) and 7 show 
that (S, R, R) satisfy the hypothesis of Lemma 8 so that (5, R, R) C U = 0. 
But then Lemma 9 implies that R must be alternative. 

COROLLARY 1. If R is a primitive generalized accessible ring of characteristic 
not two or three, then R is either commutative or alternative. 

Proof. Since R is primitive, there is a maximal regular right ideal P contained 
in R which contains no two-sided ideal other than 0. Let A and B be ideals 
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such that AB = 0 and assume that A ^ 0; then A + P = R and 
RB = AB + PB = PB. Now P is a right ideal, and so PB is contained in P. 
Thus we have RB contained in P. Since P is regular, there exists an element 
e G R such that ex — x £ -P for all x £ R. U x £ B, we have ex Ç i?J3 C P, 
and since ex — x £ P, this implies that x £ P. Therefore B C P and we 
must have B = 0. Thus i^ is prime and we can apply the preceding theorem. 

To pursue the study of semi-simple rings we define 31 to be the intersection 
of the regular maximal right ideals of a generalized accessible ring T, and 
35 to be the intersection of the primitive ideals of T. If there are no regular 
maximal right ideals, then define 31 = T. In this case there are also no primitive 
ideals and we define 35 = T also. Now if 21 F^ T, then let A be a regular 
maximal right ideal. The sum of all the ideals of T contained in A forms a 
maximal ideal of T in A, call it / . Then T/I is primitive since A/1 is a regular 
maximal right ideal containing no ideal of T/I other than zero. Thus / is a 
primitive ideal contained in A. Since A is an arbitrary maximal regular right 
ideal, we have proved that 35 C SI. On the other hand, if Q is a primitive 
ideal of T, then T/Q is a primitive ring. If T/Q is alternative, hence either a 
Cayley-Dickson algebra or associative, it is known that the intersection of 
the regular maximal right ideals of T/Q is 0. If T/Q is commutative, then 
any maximal right ideal that contains no two-sided ideal other than zero 
must be zero. Thus again the intersection of regular maximal right ideals is 
zero. Thus Q equals the intersection of those regular maximal right ideals 
which contain it and so SI Ç 35. But then SI = 35 if SI ^ T. Now it is obvious 
that if J(T) = 3Ï = 35, then J(T/J{T)) = 0, using J(T) = SI. Also, using 
J{T) = 35, there is a natural homomorphism from T into 2Z ©(̂ Y(?<*)> where 
{Qa} equals the set of primitive ideals of T and kernel of this homomorphism 
is Ha Qa- If T is semisimple, i.e., if J(T) = 0, then this homomorphism is an 
isomorphism into the direct sum of primitive generalized accessible rings 
2 ®iX/Qa). By the corollary to Theorem 1, each of these summands is 
either commutative or alternative. Thus if we define J(T) = 31 and T is 
semisimple if J{T) = 0, we have proved the following result. 

COROLLARY 2. If T is a semisimple generalized accessible ring, then T is 
isomorphic to a subdirect sum of primitive, commutative, and alternative rings. 

We now proceed to the more general case of generalized accessible rings 
without trivial ideals. Since we used primeness only in the proof of Theorem 1 
and not in any of the preceding lemmas, these results are still applicable. 

Definition. An element a 6 R which is of the form a = (x, x,y) or 
a = (3/, x, x) for x,y £ R will be called an alternator. 

LEMMA 10. If s G S as defined in Lemma 3, then (xs, y) = (sx, y) = s(x, y). 

Proof. 0 = B(s, x, 3/) = (sx, y) — s(x, y) — (s, y)x — H(s, x, y) from 
equation (6). We have H(s, x, 3;) = H(x, y, s) = 0, because of the definition 
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of H and Lemma 3(i). Moreover, (s,y) = 0 by definition of S. Thus we 
have proved that (sx,y) = s(x,y). That (sx,y) = (xs,y) is immediate 
from the definition of 5. 

Definition, t = (a,b,b) for fixed a and b in R. 

Remark. Note that t G S follows from equation (4). Thus by Lemma 10, 
/ moves freely in and out of commutators. Note also that because of 
Lemma 3(iv), the triplet t, v, and r, where v G V as defined in Lemma 2 
and r G R, associate freely, so that we may write the product tvr without 
ambiguity. We also will be frequently using the fact that t G 5 implies 
(/, R, R) G 5 by Lemma 3(ii) and that if R has no trivial ideals, then 
(S, R, R) V = 0 by the corollary to Lemma 8. 

LEMMA 11. If R has no trivial ideals and if A = tV + X) tVR, then A is a 
two-sided ideal of R. 

Proof. We have t(x,y)z G A by definition while we may write 

zt(x, y) = 0 , t(x, y)) + t(xf y)z = t(z, (x, y)) + t(x, y)z G A. 

Also w • t(x, y)z = t(x, y)z • w + (w, t(x, y)z). Since 

(w, t(x,y)z) = t(w, (x,y)z) G A, 

it now suffices to show that t(x, y)z • w G A. By the definition of the associator 
we have t(x, y)z • w = (/(x, y), z, w) + t(x, y) • zw. Since 

t(x,y) -zw G tVR C A, 

we need only show that the associator (t(x, y), z,w) G A. To establish this, 
note that 3(/(x, y), z, w) = 3((/x, y), z, w) and by Lemma 2, 

3((tx,y),z,w) = 3(2, w, (tx,y)). 

Thus we have 

(34) 3(/(x, y), z, w) = 3(2, w, (tx, y)). 

To establish that 3(z, w, (tx, y)) G A, form G(z, w, tx, y) = 0. This yields 

(35) S(z,w, (tx,y)) = —(tx, (z,w,y)) — 2(z, (w,y,tx)) 

+ 2(w, (y, tx, z)) + (y, (tx, z,w)). 

Now (tx, (z, w, y)) = t(x, (z, w, y)) G A. Form (y, T(t, x, z, w)). This yields 

(36) (y, (tx, z, w) — (t, xz, w) + (t, x, zw) — t(x, z, w) — (/, x, z)w) = 0. 

Now (y, (t, xz,w)) = 0 = (y, (t, x, zw)) since (S, R, R) <Z S and t G S. Thus 
(36) becomes 

(37) (y, (tx, z, w) — t(x, z, w) — (/, x, z)w) = 0. 

But now (y, —t(x,z,w)) = —t(y, (x,z,w)) G A and since (t, x, z) G 5, we 
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have (y, — (t, x, z)w) = — (t, x, z)(y, w) = 0 using Lemma 10 and the fact 
that (S, R, R)V = 0, by the corollary to Lemma 8. It now follows from (37) 
that (y, (tx,z,w)) G A. This is the fourth term on the right-hand side of 
equation (35). Because of Lemma 1, the second and third terms can be 
brought into this form also, and hence are in A. Since we have already shown 
that the first term on the right-hand side of (35) is in A, we conclude that 
3(z,w,(tx,y)) 6 A and hence by equation (34), 3(t(x, y), z, w) £ A. Since 
we are assuming characteristic not 3, this completes the proof. 

LEMMA 12. If R has no trivial ideals, v = (x, y) and t is defined as above, 
then t2v = 0 and in fact t2Q = 0, where Q is the commutator ideal and tA = 0, 
where A is as above. 

Proof. We form (T(a, a, b, b), 6, b)v = 0. This yields 

(38) ((a2, b, 6), b, b)v - ((a, ab, b), b, b)v + ((a, a, b2), b, b)v 

— (a(a, b} b), b, b)v — ((a, a, b)b, b, b)v = 0. 

Since alternators are in 5* by (4) and since (5, R, R)V = 0, the first and third 
terms of (38) vanish. Now H(x, y, z) G V follows from 

B(x, y, z) — B(y, x, z) = 0 

and equation (6) as in the proof of Lemma 9, thus by Lemma 2, 

(H(a, ab, b)b, b) = 0. 

Since alternators are in 5 and (S, R, R)V = 0, we have (H(a, ab, b), b, b)v = 
3((a, ab,b),b,b)v. It follows that ((a, ab,b),b,b) = 0 so that the second 
term of (38) vanishes. To see that the fifth term of (38) vanishes, form 
T((a, a, b), b, b, b)v = 0. This yields 

(39) (tb,b, b)v - (/, b2, b)v + (t, b, b2)v - t(b, b, b)v - (t, b, b)b • v = 0. 

The second and third terms are zero since (S, R, R)V = 0. The fourth term 
is zero by (1). Now (tb, b) ^ S so that 

- (/, b, b)b-v = -b(t, b,b) >v = -b • (t, b, b)v = 0 

using the definition of S, Lemma 3(iv) and (5, R, R) V — 0 by the corollary 
to Lemma 8. Putting these results in equation (39) we conclude that 
(tb, b, b)v = 0. Now equation (38) becomes 

(40) (a(a, b, b),b, b)v = 0. 

Since t = (a,b,b) and t Ç S, (40) may be rewritten as 

(41) (ta, b, b)v = 0. 

But now form T(t, a, b, b)v = 0 to obtain 

(42) (ta, b, b)v - (t, ab, b)v + (t,a,b2)v - t2v - (t, a, 6)6 • v = 0. 
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The second and third terms vanish since (S, R, R)V — 0 and as above 
(t, a, b)b - v = b(t, a,b) • v — b - (t, a, b)v = 0, using Lemma 3(ii) and (iv). 
Thus (42) becomes 

(43) t2v = (ta, b, b)v. 

Combining (41) and (43) yields t2v = 0. Now referring back to Lemma 5, 
t2v = 0 for an arbitrary commutator means t2V = 0. Since t2 G 5 by 
Lemma 3(iii), we have t2 £ U, but it now follows from Lemma 5 that t2Q = 0. 
Now tA = t(tV + E tVR). We have t • tV = t2V = 0 while 

t • tvr = (t, t, vr) — — (vr, t, t). 

Form T(v, r, t, t) = 0. We obtain 

(vr, t, t) - (v, rt, t) + (v, r, t2) - v(r, t, t) - (v, r, t)t = 0. 

Now (v, rt, t) = 0, (v, r, t2) = 0, and (v, r, t)t = 0 follow from Lemma 3(iv) 
and t G 5, while v(r, t, t) = — (t, t, r)v = 0 using (1), the fact that t Ç S, 
and (S, R,R)V = 0. It follows that (vr, t, t) = 0, and hence that / • tvr = 0. 
Thus we have proved that tA = 0. 

LEMMA 13. If R has no trivial ideals, then ^ 4 = 0 . 

Proof. We first prove that A2 = 0. Let z/bea commutator; then 

to - A = vt • A = v • tA = 0 

by Lemma 12, thus we have 

(44) to-A = 0 . 

Now using the definition of the associator, tvz • A = (to, z, A) + to • zA, but 
since A is an ideal, to • zA Q to - A = 0 . Hence tvz - A = (to, z, A). Using 
equation (1) we have (to, z, A) = —(A,z,tv). Combining this with the 
preceding equation yields 

(45) tvz-A = -(A,z,tv). 

Let v = (x, y), then by Lemma 10, to = t(x, y) = (tx, y), so that (45) becomes 

(46) toz-A = — (A, z, (tx, y)). 

Now form G(A, z, tx, y) = 0. This yields 

(47) -3(A, z, (tx, y)) = (tx, (A, z, y)) + 2(A, (z, y, tx)) 

- 2(2, (y, tx, A)) - (y, (tx, A, z)). 

Now (tx, (A, z,y)) = t(x, (A, z, y)) Ç tA = 0 by Lemma 12. Thus we have 

(48) (tx, (A,z,y)) = 0. 
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Moreover, if we form (y, T(t, x, A,z)) = 0 we obtain 

(49) (y, (tx,A, z)) = (y, t(x, A,z)) + (y, (/, x, A) z). 

Now t(x, A, z) £ tA = 0 while since (/, x, A) 6 5 we use Lemma 10 to get 
(y, (t,x,A)z) = (t,x,A)(y,z) e (S,R,R)V = 0. It now follows from (49) 
that 

(50) (y, (tx,A,z)) = 0 . 

Since alternators are in S, we have (z, (y, tx, A)) = (z, (tx, A,y)), and since 
y and z are both arbitrary, we conclude from this and (50) that 

(51) (z, (y,tx,A)) = 0 . 

We now consider (A, (z, y, tx)). Since alternators are in S, we have 

(52) (A, (z,y,tx)) = (A, (tx,z,y)). 

We form {A, T(t, x, z, y)) = 0 to obtain 

(53) (A, (tx, z, y)) = (A, t(x, z, y) + (t, x, z)y). 

But now (A, t(x, z, y)) = t(A, (x, z, y)) G tA = 0 and 

(A, (t, x, z)y) = (i, x, a)(i4, y) € (5, 2Î, i î ) F = 0. 

Substituting this information in (53) yields 

(54) (A, (tx,z,y)) = 0. 

Combining (54) and (52) yields 

(55) (A, (z,yitx)) = 0 . 

We now substitute (48), (50), (51), and (55) into equation (47) to get 
that — 3(-4, 2, (tx,y)) = 0, and hence —(A,z, (tx,y)) = 0. Comparison 
with (46) now yields tvz • A = 0. We have proved that A2 = 0. Since A is 
an ideal and we are assuming no trivial ideals, this implies that . 4 = 0 . 

THEOREM 2. Let R be a generalized accessible ring of characteristic not two 
or three and without trivial ideals. Then R is isomorphic to a subdirect sum of a 
commutative ring and an alternative ring. 

Proof. From Lemma 13 we have . 4 = 0 , thus tV = 0; by Lemma 5 we have 
t Ç U. Now this is true for every alternator t, thus all alternators are in U. 
Since U is an ideal, this means that the ideal generated by all alternators, 
call it B, is contained in U. However, we have proved in Lemma 5 that 
UQ = 0, where Q is the commutator ideal. Therefore BQ C UQ = 0. If we 
let D = B r\Q we see that D2 = 0, hence D = 0. Now the natural 
homomorphism from R into R/B ® R/Q has kernel B C\ Q = 0, and so is 
an isomorphism. Moreover, R/B is alternative while R/Q is commutative. 
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