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Abstract. We provide results from an extended 3D numerical simulation study of Reynolds
stress models of stellar convection and probe the modelling of compressibility, pressure fluctua-
tions, and dissipation of turbulent kinetic energy.
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1. Introduction and motivation
In Kupka & Muthsam (2007a) we introduce our study of Reynolds stress models for

turbulent convection and consider super-adiabatic temperature gradients and the con-
vective (enthalpy) flux. The modelling of non-locality as represented by the third order
moments (TOMs) of velocity and temperature fields is discussed in Kupka & Muthsam
(2007b). Here, we investigate the modelling of pressure fluctuations and compressibility.
We also study the flux of the dissipation rate of turbulent kinetic energy. We focus on con-
sistency tests in which second order moments and mean quantities are taken from the 3D
numerical simulations. The latter have been perfomed with the ASCIC code (Muthsam
et al. 1995, 1999), as in Kupka & Muthsam (2007a,b). For a non-local Reynolds stress
model an accurate approximation of pressure fluctuations and dissipation in the flow
is as important as a proper model for the advection processes described by the TOMs.
This can already be concluded from some of the results shown by Kupka & Muthsam
(2007a,b) and we provide further evidence in this paper. In the following w and θ denote
the fluctuations of vertical velocity and temperature relative to their horizontal, ensemble
averaged mean. Similarly, p′ relates to pressure fluctuations around the ensemble average
of the mean pressure. Finally, 〈εw〉 denotes the flux of the dissipation rate of turbulent
kinetic energy ε, which is required for the non-local (differential) equation of the dissipa-
tion rate that in turn allows avoiding the introduction of a mixing length into convection
models (Canuto 1992, 1993).

2. Fluxes of pressure fluctuations and dissipation rate
We investigate the modelling of pressure fluctuations p′ and the dissipation rate of

turbulent kinetic energy ε by probing models for their fluxes. For the flux of the dis-
sipation rate we consider two models: 〈εw〉 = c〈q2w〉/τ = c〈q2w〉ε/〈q2〉 with c ∼ 0.6
(q2 is the sum of the squares of all three components of velocity fluctuations: u, v, w)
and a down-gradient model, 〈εw〉 = −k dε/dz with k proportional to turbulent viscosity
νt (and also turbulent conductivity χt). The former was used in Canuto (1992) with
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Figure 1. For cases ‘3J’ (left column panels) and ‘155X’ (right column panels) consistency tests
are shown for the non-local fluxes 〈εw〉 (top row) and 〈p′w〉 (middle row). Input data for these
models are taken from simulations and compared against direct computations. The bottom row
shows the variation of the quantity m with depth, as found in the numerical simulations. The
dependence on Prandtl number Pr appears negligible. Values range from about −1 underneath
to slightly above −1 inside convection zones with a more complex behaviour above them.

c = 1 in the derivation of the TOM equations, the latter suggested in Canuto (1992) and
Canuto & Dubovikov (1998). For 〈p′w〉 we consider three models: 〈p′w〉 = −0.2 ρ〈q2w〉,
where ρ is the mean density, as in Canuto (1992, 1993); 〈p′w〉 = (m + 1)Rgas ρ〈wθ〉 =
(m + 1)Pgas / T 〈wθ〉, where the second variant assumes a perfect gas equation of state
(Rgas is the gas constant, Pgas the mean gas pressure, T the mean temperature), sug-
gested by Canuto (1997) (who required to weight averages with ρ, which provides only
small corrections here and is thus neglected); and a variant thereof, where we take the
polytropic index n = 1 + 1/m as a constant. The index n is used to model pressure
fluctuations in Canuto (1997), not stellar structure or the equation of state of the gas.
For m = −1, the Boussinesq approximation is recovered, while in general m is obtained
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as the ensemble average of (ρ′/ρ) (〈ρT 〉/(〈ρ〉T − 〈ρT 〉)). We computed the latter for our
simulations (m-index).

3. Discussion of results and conclusions
Although ε remains difficult to compute, an excellent scaling relation exists for its

non-local flux 〈εw〉 provided a good model for the TOM 〈q2w〉 is available, as we can see
for both cases, ‘3J’ and ‘155X’, in Fig. 1 (see Kupka & Muthsam 2007a for further details
on these simulation runs). The down-gradient approximation for this quantity performs
extremely poorly and should be avoided. It was also avoided in Kupka & Montgomery
(2002) and Montgomery & Kupka (2004), who used the first model. For the pressure
flux 〈p′w〉 the available models are less convincing (Fig. 1). Clearly, the first (traditional)
model, also quoted in Canuto (1992, 1993), provides just a crude estimate, which even
yields the wrong sign in overshooting regions below the convection zone. The model sug-
gested by Canuto (1997) provides a considerable improvement both in terms of accuracy
and particularly in the ability to recover the correct direction of this flux. Evidently,
the coupling between temperature and pressure field is important but ignored in the
traditional model. However, the choice of m remains difficult. From Fig. 1 we see it is
everything but a constant and it certainly is not just −1 (the Boussinesq case), although
this value is a first approximation for the overshooting region below convection zones. In
similar regions above convection zones, large positive values are found, but they may be
related to the upper, closed boundary conditions. We finally note that compressibility
corrections are less important than the modelling of 〈p′w〉 itself. Although we have not
explicitly tested the models of Xiong (1978, 1986) and Xiong et al. (1997), we expect our
conclusions to hold for them as well. Particularly, down-gradient approximations have to
be considered with great caution, if more than integral quantities (such as radii) are to
be predicted in detail.

Acknowledgements

H.J. Muthsam acknowledges support from FwF projects P17024 and P18224.

References
Canuto, V. M. 1992, ApJ 392, 218 (C’92)
Canuto, V. M. 1993, ApJ 416, 331 (C’93)
Canuto, V. M. 1997, ApJ 482, 827 (C’97)
Canuto, V. M. & Dubovikov, M. S. 1998, ApJ 493, 834 (CD98)
Gryanik, V. M. & Hartmann, J. 2002, J. Atmos. Sci. 59, 2729
Kupka, F. & Montgomery, M. H. 2002, MNRAS 330, L6 (KM2002)
Kupka, F. & Muthsam, H. J. 2007a, this volume p. 80
Kupka, F. & Muthsam, H. J. 2007b, this volume p. 83
Montgomery, M. H. & Kupka, F. 2004, MNRAS 350, 267
Muthsam, H. J., Göb, W., Kupka, F., Liebich, W. & Zöchling, J. 1995, Astron. & Astrophys.
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