A CHARACTERIZATION OF A CLASS OF BARRELLED SEQUENCE SPACES

by J. SWETITS

(Received 19 May, 1976)

- 1. Introduction. In a recent paper [4] Bennett and Kalton characterized dense, barrelled subspaces of an arbitrary FK space, E. In this note, it is shown that if E is assumed to be an AK space, then the characterization assumes a simpler and more explicit form.
- 2. Definition and preliminaries. ω denotes the vector space of sequences of complex numbers. A subspace E of ω is a K space if it is endowed with a locally convex topology τ such that the linear functionals

$$x \rightarrow x_i$$
 $(j = 0, 1, 2, \ldots)$

are continuous. In addition, if τ is complete and metrizable, then (E, τ) is an FK space.

If $x = \{x_k\}$, let $P_n x = \{x_0, x_1, \dots, x_n, 0, \dots\}$. If a K space (E, τ) has the property that $P_n x \to x$ in τ for each $x \in E$, then (E, τ) is called an AK space.

If E is an FK-AK space then the dual of E may be identified with

$$E^{\beta} = \left\{ y \in \omega : \sum_{j=0}^{\infty} x_j y_j \text{ converges } \forall x \in E \right\}.$$

If F is a subspace of E^{β} containing the space ϕ of sequences with only finitely many non-zero terms then E, F form a separated pair under the bilinear form

$$\langle x, y \rangle = \sum_{j=0}^{\infty} x_j y_j.$$

 $\sigma(E, F)$, $\tau(E, F)$ and $\beta(E, F)$ denote the weak, Mackey and strong topologies, respectively, on E by F (see, e.g., [7]).

If $A = (a_{nk})$ is an infinite matrix of complex numbers, the sequence $Ax = \{(Ax)_n\}$ is defined by

$$(Ax)_n = \sum_{k=0}^{\infty} a_{nk} x_k$$
 $(n = 0, 1, 2, ...).$

 $E_A = \{x : Ax \in E\}$, where E is a given sequence space. A' denotes the transpose of A. The following theorem is established in [8].

THEOREM 2.1. Let E and F be sequence spaces, each containing ϕ , such that $(E^{\beta}, \sigma(E^{\beta}, E))$ and $(F, \sigma(F, F^{\beta}))$ are sequentially complete. If $A = (a_{nk})$ is an infinite

Glasgow Math. J. 19 (1978) 27-31

matrix, then the following are equivalent:

- (i) F_A contains E;
 (ii) E^β_A contains F^β;
- (iii) F_{A} contains $(E^{\beta})^{\beta}$.

Proof. (i) \Rightarrow (ii). Let $\{t_k\} \in F^{\beta}$ and $\{x_k\} \in E$. Define the matrix $B = (b_{nk})$ by

$$b_{nk} = \begin{cases} t_k & (0 \le k \le n), \\ 0 & (k > n). \end{cases}$$

Then

$$\sum_{n=0}^{\infty} t_n \sum_{k=0}^{\infty} a_{nk} x_k = \lim_{j \to \infty} \sum_{n=0}^{j} t_n \sum_{k=0}^{\infty} a_{nk} x_k$$
$$= \lim_{j \to \infty} \sum_{k=0}^{\infty} x_k \sum_{n=0}^{j} t_n a_{nk}$$
$$= \lim_{j \to \infty} [(BA)x]j.$$

The hypotheses on E insure that

$$\lim_{j\to\infty} [(BA)x]_j = \sum_{k=0}^{\infty} x_k \lim_{j\to\infty} [(BA)e^k]_j$$
$$= \sum_{k=0}^{\infty} x_k \sum_{n=0}^{\infty} t_n a_{nk},$$

where e^{k} denotes the sequence with a one in the kth coordinate and zeros elsewhere.

Since $\{t_k\} \in F^{\beta}$, $\{x_k\} \in E$ are arbitrary, it follows that A' maps F^{β} to E^{β} .

(ii) \Rightarrow (iii) follows from (i) \Rightarrow (ii) and the fact that $F = (F^{\beta})^{\beta}$ if $(F, \sigma(F, F^{\beta}))$ is sequentially complete [10, p. 974].

(iii) ⇒ (i) is trivial.

3. A class of barrelled spaces.

THEOREM 3.1. Let E be an FK-AK space and E_0 a subspace of E containing ϕ . E_0 is barrelled in E if and only if

- (i) $E_0^{\beta} = E^{\beta}$, and
- (ii) $(E^{\beta}, \sigma(E^{\beta}, E_0))$ is sequentially complete.

Proof. (Necessity) Let $\{t_k\} \in E_0^{\beta}$, and define $A = (a_{nk})$ by

$$a_{nk} = \begin{cases} t_k & (0 \le k \le n), \\ 0 & (k > n). \end{cases}$$

If c denotes the space of convergent sequences, then c_A includes E_0 . Since c_A is an FK space [9, ch. 12], it follows from [4, Theorem 1] that c_A includes E. Thus, for any $x \in E$, $\sum_{k=0}^{\infty} t_k x_k$ converges. Consequently E^{β} includes E_0^{β} . Since the reverse inclusion is satisfied, we have $E_0^{\beta} = E^{\beta}$.

Let $\{a^{(n)}\}\$ be a sequence in E^{β} that is $\sigma(E^{\beta}, E_0)$ Cauchy. If $A = (a_{nk})$ is defined by $a_{nk} = a_k^{(n)}$, then c_A includes E_0 . Consequently, c_A includes E, [4, Theorem 1]. Condition (ii) now follows from the fact that E^{β} is $\sigma(E^{\beta}, E)$ sequentially complete.

(Sufficiency). Let $\{a^{(n)}\}$ be a sequence in E^{β} that is $\sigma(E^{\beta}, E_0)$ bounded. Let m denote the space of bounded sequences, and define $A = (a_{nk})$ by $a_{nk} = a_k^{(n)}$. Then m_A includes E_0 . Conditions (i) and (ii) and Theorem 2.1 imply that m_A includes E since $(m, \sigma(m, \ell))$ is sequentially complete $(\ell = \text{space of absolutely convergent series})$. Thus, $\sigma(E^{\beta}, E_0)$ and $\sigma(E^{\beta}, E)$ define the same bounded sequences and, hence, the same bounded sets. Thus, the topology $\beta(E_0, E^{\beta})$ is the restriction of $\beta(E, E^{\beta}) = \tau(E, E^{\beta}) = FK$ topology of E to E_0 . It follows that E_0 is barrelled in E.

REMARKS. If E_0 is monotone (i.e., the coordinatewise product $xy \in E_0$ if $x \in E_0$ and y is a sequence of zeros and ones) then condition (ii) of Theorem 3.1 can be omitted [3, p. 55].

Let $\{r_n\}$ denote a non-decreasing unbounded sequence of positive integers with $r_0 = 1$ and $r_n = o(n)$. For each $x \in \omega$ and each $n = 0, 1, 2, \ldots$, let $c_n(x)$ denote the number of non-zero elements in $\{x_0, x_1, \ldots, x_n\}$. If E is a sequence space, a scarce copy of E is the linear span of

$$\{x \in E : c_n(x) \le r_n, n = 0, 1, 2, \ldots\}.$$

As corollaries to Theorem 3.1, we obtain Theorems 7, 8 and 10 of [2]. In each case the spaces are monotone and the verification of condition (i) of Theorem 3.1 is straightforward.

 ω has the topology of coordinatewise convergence, and, for p>0, $\ell^p=\left\{x:\sum_{j=0}^{\infty}|x_j|^p<\infty\right\}$.

COROLLARY 3.2. Every scarce copy of ω is barrelled.

Corollary 3.3. Every scarce copy of $\bigcap_{p>0} \ell^p$ is barrelled as a subspace of ℓ .

COROLLARY 3.4. Let E be a monotone FK-AK space. The union of all the scarce copies of E is a barrelled subspace of E.

It is noted that Corollary 3,4 strengthens Theorem 10 of [2], which is stated for solid spaces.

Another consequence of Theorem 3.1 is the following result.

COROLLARY 3.5. Let E be an FK-AK space and E_0 a subspace of E containing ϕ . The following are equivalent:

- (i) E_0 is barrelled;
- (ii) If G is a separable FK space containing E_0 , then G contains E.

Proof. (i) \Rightarrow (ii). This is a consequence of [4, Theorem 1]. (ii) \Rightarrow (i). Let $\{t_k\} \in E_0^{\beta}$, and define $A = (a_{nk})$ by

$$a_{nk} = \begin{cases} t_k & (0 \le k \le n), \\ 0 & (k > n). \end{cases}$$

Then c_A includes E_0 . Since c_A is a separable FK space [1, p. 199], c_A includes E. Thus, $\{t_k\} \in E^{\beta}$, and condition (i) of Theorem 3.1 is satisfied.

Let $\{a^{(n)}\}\$ be a sequence in E^{β} that is $\sigma(E^{\beta}, E_0)$ Cauchy. If $A = (a_{nk})$ is the matrix defined by $a_{nk} = a_k^{(n)}$, then c_A includes E_0 . It follows that c_A includes E. Since E^{β} is $\sigma(E^{\beta}, E)$ sequentially complete, condition (ii) of Theorem 3.1 is satisfied. Thus, E_0 is barrelled.

REMARK. For FK-AK spaces, (ii) \Rightarrow (i) of Corollary 3.5 improves (ii) \Rightarrow (i) of [4, Theorem 1].

In Theorem 3.1, if it is not assumed that E is an AK space, then (i) and (ii) are not sufficient to insure that E_0 is barrelled in E.

Let E be ac_0 , the space of sequences that are almost convergent to 0, (see [6]). For $x \in ac_0$, let

$$||x|| = \sup_{n} |x_n|.$$

Let $E_0 = bs + c_0$, where

$$c_0 = \left\{ x \in \omega : \lim_{n \to \infty} x_n = 0 \right\},$$

$$bs = \left\{ x \in \omega : \sup_n \left| \sum_{j=0}^n x_j \right| < \infty \right\}.$$

Then $E_0^{\beta} = E^{\beta} = \ell$, and E_0 is dense in E [5, p. 29]. Furthermore, ℓ is $\sigma(\ell, E_0)$ sequentially complete. However, E_0 is a normed FK space when topologized by

$$||x|| = \inf \left\{ \sup_{n} |y_n| + \sup_{n} \left| \sum_{j=0}^{n} z_j \right| : x = y + z, \ y \in c_0, \ z \in bs \right\}.$$

It follows from [4, Theorem 1] that E_0 is not barrelled in E.

REFERENCES

1. G. Bennett, A representation theorem for summability domains, *Proc. London Math. Soc.* 24 (1972), 193–203.

- 2. G. Bennett, Some inclusion theorems for sequence spaces, *Pacific J. Math.* 46 (1973), 17-30.
- 3. G. Bennett, A new class of sequence spaces with applications in summability theory, J. Reine Angew. Math. 266 (1974), 49-75.
- 4. G. Bennett and N. J. Kalton, Inclusion theorems for K spaces, Canad. J. Math. 25 (1973), 511-524.
- 5. G. Bennett and N. J. Kalton, Consistency theorems for almost convergence, *Trans. Amer. Math. Soc.* 198 (1974), 23-43.
- 6. G. G. Lorentz, A contribution to the theory of divergent sequences, *Acta. Math.* 80 (1948), 167-190.
 - 7. A. P. Robertson and W. J. Robertson, Topological vector spaces, (Cambridge, 1963).
- 8. J. Swetits, On the relationship between a summability matrix and its transpose, Old Dominion University, Department of Mathematical and Computing Sciences Technical Report, TR-76-2, (1976).
 - 9. A. Wilansky, Functional analysis (Blaisdell, New York, 1964).
- 10. D. J. H. Garling, The β and γ duality of sequence spaces, *Proc. Cambridge Philos. Soc.* 63 (1967), 963-981.

DEPARTMENT OF MATHEMATICAL AND COMPUTING SCIENCES OLD DOMINION UNIVERSITY NORFOLK, VIRGINIA 23508