PROBLEMS ON MEASURE ALGEBRAS

ROBERT KAUFMAN

Suppose that G is a locally compact abelian group, # an element of infinite
order, and w a complex number of modulus 1. It is a familiar fact that thereisa
complex homomorphism ¥ of the measure algebra M of G, which maps ¢, (the
unit mass concentrated at #) to w. Beyond this, one may specify an element u
of M, and require a homomorphism ¥ which does not annihilate x. The
resolution of this problem leads to an abstract lemma on measurable trans-
formations, derived in some generality in the first section. Next, following the
examples of Hewitt and Kakutani (1), we construct a family of perfect compact
subsets P of real numbers, such that for each measure u supported by P, we can
have |¥(u)| = lim,,, ||u"||*/*. This is based on a probabilistic construction,
which allows us to derive some miscellaneous facts about measures; for
example, P supports measures p with u(n) = o(1). The paper of Salem (4)
seems to be the ultimate source for this method. We prove also that the closed
ideal in M generated by ¢, — we (¢ = ¢, the identity of M) is not the inter-
section of maximal ideals when G is the circle group; the last section gives
another example.

1. A lemma on measurable transformations. Let S be a set, € a
o-field of subsets of S, and T" a measurable transformation of S into itself:
TE € @foreach Ein €. For a complex number w of modulus 1, a measurable
function % on S is (T, w)-invariant if h(Ts) = wh(s), s € S. We write C.A. for
the complex Banach space of finite countably additive measures in (S, €) and
define a linear contraction Uin C.A.:

(Up)(E) = u(TE), E ¢ G u e CA.
Set, for a measure u fixed throughout this section,
d =inf ||[UN —w\ — 4|, A€ CA.
LeEmMA 1.d = sup |[g(s)u(ds)], |g(s)] < 1, g(T, w)-invariant.
Proof. For a bounded measurable function #,and A € C.A,,

Jrownas = [ ramas.

For a function g as in the lemma, this shows that g is orthogonal to Ux — w,
proving the easy half of the statement. Define now a positive measure A on S by

the formula
_ Z‘” u|(TE) .
)\(E) - - (n + 1)2 1} E e (&1
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then u < X and M(E) = 0 implies that N(T1E) = 0. Let ¥ = L'(S, E, \), a
subspace left invariant by U. By the definition of d there is a linear functional
x* of norm <1 on Y such that x*(u) = d, x*(Us) = wx*(s). This means, of
course, that there is a measurable function % on S such that |4| < 1 and

f h(s)u(ds) = d, f h(s)(Us)(ds) = wf h(s)o(ds).

From the identity at the beginning of the proof it is clear that k(s) = wh(Ts)
except on a set of A-measure 0. Now put
N
B (s) = lim ]%, 3w h(TY)
Nooo 1
whenever the limit exists, and #*(s) = 0 otherwise. Then #* = & \-almost
everywhere and #* is (T, w)-invariant on all of .S, as required.

2. Applications to measures in groups. Measurability in the group G is
in reference to the ¢-field determined by all continuous functions on G, which we
call the Baire o-field. We let J be the closed principal ideal of M generated by
e, — we. To apply the lemma on measurable transformations, we note that if E
is a Baire set and A € M, then [(e, — w)*\](E) = ME — u) — wA(E). Taking
T(g) = g + u,g € G, we conclude that the distance of a measure u from G is d,
described in the lemma.

THEOREM 1. These statements are equivalent for ¢ > 0:

(1) Thereis a complex homomorphism ¥ of M for which ¥(J) = 0, [¥(u)| > c.

(ii) For every number d in (0, ¢) there is a bounded Baire function h such that
h(g + u) = wh(g), g € G and

1/n
lim sup ‘ f h(x)u" (dx) > d.

Proof. 1f (ii) holds for some d > 0 and some £, it holds also for #/||h||.,, so
that by Lemma 1,

lim sup |[x" + J|['* > d.

The implication (ii) — (i) follows now from the formula of Beurling and
Gelfand (3, 1.6, I11.1), applied to the Banach algebra M/J (3, pp. 43-44). To
prove the converse, let Z be the Banach space of Baire functions % as described
in the theorem. Suppose that for somed > Oandeachh € Z

[ hewran| "<,

lim sup

n—->co

or equivalently

lim» ™"

tim | [ o @)

By the principle of uniform boundedness, for each » > d there exists a constant
B(r) such that

J rewa

=0, whenever » > d.

<PrBOAl. (B EZ1<n< ).
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By Lemma 1, |[u* 4 J|| < B(r)r*, 1 < n < «. Because each complex homo-
morphism of M is norm-decreasing, ¥(J) = 0 forces |[¥(u)| <7, and so
|¥(u)| < d, as required.

The sequence of lemmas below is intended mainly to elucidate the examples
which conclude this article.

LemMa 2. If u € LY, p € J, there is a continuous character x of G such that
x(u) = w and fx du # 0.

Proof. Suppose first that » generates a discrete subgroup H, so there is
certainly a continuous character x of G, with x(#) = w. The automorphism
f— x - f of L' onto itself maps u to an element not in the closure of the ideal
L'(e, — €) € L. The quotient algebra of L' by the closure of this ideal is
LY(G/H), so that for some character v of G with y(u) =1, f'yx du # 0, as
required.

In the remaining case H may be supposed compact with Haar measure m .
By the hypothesis we know there is a bounded Baire function % such that
h(x + u) = wh(x), x € G, and fh(x)y(dx) = 1. From the absolute continuity
of u we conclude that the function F, defined by

Fo) = [ b +ym@, €,

is continuous. Since F(nu) = w" {or each integer #, there is a continuous
character vy on H fulfilling the condition v(#) = w. Writingv = (y - my) * u,

S rewa = | [ b+ 3 oimanan
= [ v0)FGImatay) = 1.

H
Choose a character x for which fx dv # 0—it is clear that x(#) = w and
fx du # 0.

LeEMMA 3. Suppose that u is supported in the compact set E. If for a certain
integer m > 1
nu ¢ =E + ...+ E (2m summands), alln > 1,
then ||u™ + J|| = [[u"]].

Proof. Since u™ is supported in the m-fold sum of E with itself, the measures
U €y (— 0 < m < o) are mutually singular. Writing A = e,

IO
—_ A m
TRRA
But||(1/N)X Nt * v|| converges to zero for every v in J, whence
lw + Tl = [lw"l.

Remarks. It may be observed that, in the event E is not a Baire set, it is
contained in a compact G;, E;, which meets the requirement of the lemma.

= [lu"|]  forevery N > 1.
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Further, if F;isa compactG;and F;a compactset, F1 + FyisaG;. For if

Fl = m (Uk)1
k=1
then

Fi+ F, = kﬂl (Ur + F2),

where U; 2 U; D ... is a sequence of open sets, and each Uy has compact
closure contained in Up_;.
The construction of examples for the theory presented is based on the well-
known fact (Kolmogoroff et al.) that if 7y, 72, 73, . . . are positive numbers and
Z 7’{2 < @,
1
then there is a probability measure p on (— «, ®) such that

(o]

alu) = fei"'u(dt) = H cos(ury), —o <y ®

(Pitt 2, pp. 44, 97). We consider, though, sequences subject to the stronger
condition

Z r; < o,

i=1
In this case u is supported in the ‘‘symmetric set”’

Z(')={Z 7= +1,1<1< oo}_
=1

Following Salem (4 ) we introduce the product space of sequences

£ = {&, &, & ...,
0< ¢&,<1,1 <7< «,andlet P be the product of the Lebesgue measures d¢;
on theintervals 0 < £; < 1. According to our convention we write

o)

Z(E")={ Z ebiriee=£1,1<1< 00}.

i=1
Let us say that the multiplier sequence (r) = {ri, 7, 73, ...} is ‘“‘m-sparse’
(m =1,2,3,...)if for each number b # 0, it is almost certain that the m-fold
difference set £ (£-7) &= ... & (£-7) does not contain b. A technical
detail is the fact that the subset of C whose measure is to be 1 is open in C.
THEOREM 2. (r) is m-sparse if

liminf @m 4+ 1)V > r, = 0.

Now N+1
Proof. An element of the difference set has the form

o)

Zatfiri, —m<L ;< ml <1< »,
T

It is enough to prove that, almost certainly, this form does not represent b # 0,
provided also that one fixed 6,, has a specified value #0; for example, we may
arrange the sequences of §’s according to the first number 0.
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This restriction in effect, whenever

0

> bkiry=0b and N> M,

1

N [
E 6¢£¢T¢—bl < (2m-|—l) Z 7
1 N+1
There are at most (2m + 1)V N-tuples (8, . .., dy) which contribute to the

probability ; for each choice, and any Borel set 4 of Lebesgue measure |4,

N
1
P{E3 Z 008i7y € A} <6—M—r;|AI'

1
Therefore the probability that the above inequality hold is at most

2(8a¢ rM)_l(zm + 1)N+l Z 74
N+1

As N — o, the probability is seen to be 0.

An immediate corollary is that if (1/7) log7;— — o, (r) is m-sparse for
every m, so that the symmetric set > (¢ - 7) almost certainly satisfies all the
conditions under Lemma 3 (i.e. for all » and m). The set >_(¢ - 7) is then an
example of a set P mentioned in the introduction. Observe, however, that if
r; = ¢~ where a > 5, then for almost all ¢ € C, the conditions in Lemma 3
withm = 1are fulfilled.

LEmMA 4 (4). (a) If r; = e with a > 1, then for some j = j(a) and almost
all &,

O

>

i )
2 = 2 |’ < .

(b) Ifr; = e t8 8t ¢ > 3 thenfor almostall &, fi(n) = o(1)asn — .

o)

H cos nr &,

i=1

Proof. For any number s > 0 and integer n > 1,
© 1
J 1z = 1 [ 1cos nreeitate
The typical multiplicand is equal to
N nri . 1 _ L4
(nry)™? fo [cos y|°dy < (; + (nr,) 1) J; |cos y|'dy.

Under (a), nr; > 1 for [log n/log o] indices 7, so

L [log n/log e]
f |a(n)|*Pdf) < {r 1 J; lcosyl’dy} .

™

As soon as
T+l f |cos y|'dy < ot
T 0
we have
> [ wmip@e < =

and (a) follows from this.
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In (b), nr; > 1 for large # and

log n
log logn’
Now
J‘ |cos y|'dy < Cs™'*  ass— w.
0
Taking
log n
=s(n) = log logn'’

we find that for large #, log s(#) > 2 log log #,

S 3 l
f |i(n)|°P(dt) < exp <_-1Og "+ Clogoigog n) .

For each integer M > 1,

s A s lgn >
M J‘ la(m)|°Pdt) < exp( “logn+ C1— Tog log 7

so that
Z MS(lnl)m(n)ls(lnl) < o

almost certainly. Therefore g(n#) = o(1) almost certainly.

THEOREM 3. If G is the circle group T, the ideal J is not the intersection of
maximal ideals of M.

Proof. We consider T"as the (additive) group of reals R, mod 2x. We choose
r; = e~"?according to the remarks after Theorem 2. Let H be the subgroup of R
which is mapped onto the infinite subgroup of 7" generated by . It is almost
certain that H M (£ &+ ) = {0}, because H is countable. Writing Y.’ for
the image of >_(mod 27), itis almost certain thatnu ¢ +£>'(£-7) = >/(£-7)
so that the random measure u constructed in Lemma 4, and now projected
from R to T, is almost certainly not in J. Call this new measure A; its jth power
is almost certainly in L'(T). Thus the present theorem follows from Lemma 2
unless x(u) = w for some continuous character x of 7.

In the last event, x is unique, so we can choose a positive measure ¢ with
finite support F, so thatfx do = 0, whence ¢ * A is almost certainly in J. If we
also arrange that nu ¢ +F + Fforn 5 0, then, almost certainly,

nu ¢ £33’ + F+ F.
This is sufficient, because ¢ * X\ is concentrated in Y.’ + F, tovyield e x A ¢ J.
3. Another example. In the following example we construct a compact

metric abelian group G, a Borel probability u in G, a Borel set E C G, and an
element u of G such that
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1) (E + mu) N\ E =@, for m = 0,
(i) w(E) =1,

(iii) w*u*u is equivalent to the Haar measure m in G, with derivative bounded
away from O and .

The construction uses the following notations, p being always an odd prime.
Z, is the group Z/pZ; m, is the invariant probability in Z,. F, = Z, — {0}
and p, is the probability uniformly distributed in F,.G = 11, Z,, m = II,m,,
p=1lp, F=1I,F,u=(1,1,1,...),and E = F~ U .o (F + mu).

Of assertions (i)—(iii), (i) holds by construction and (ii) will follow as soon as
itis proved that u(F 4+ mu) = 0if m > 0. However,

u(F 4 mu) = l"(Hp (Fp +m-1)) = Hp>3ﬂp(Fp +m-1).
Now u,(Fp +m-1) <1 — p~tifm £ 0 (mod p),so u(F + mu) = 0if m # 0.

To prove (iii) we denote by e, the unit massat0in Z,. Then

Mp = P(P - 1)_1(111,, - P_lep)-
Thus

#p*ﬂp*l‘p = P3<p - 1)"3[111,, - 3P—1mp + 31)—2111@ - p‘%p].

Here we used the facts that m, is invariant and that m, and e, are idempotent.
Continuing,

po ity = [1 + (p — 1)7*Im, — (p — 1)7%,.
If we write u, = f, - m,, then
r2l+@-—-DF—pp—-1)"P=1=-0p-1)7>4%

Moreover, |f, — 1| = O(p~?) so the product II, f, converges uniformly to a
function f bounded away from 0 and = ; of course, u = f - m. Thisis (iii).

We note that if w is a complex number of modulus 1, but not a root of unity,
there is no continuous character mapping % to w. Thus for such a w, the closed
principal ideal J generated by €, — we does not contain u (cf. Lemma 4) but
contains p*u*u (Lemma 2). Thus J is not the intersection of the maximal
ideals in M which contain it.
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