
PROBLEMS ON MEASURE ALGEBRAS 

ROBERT KAUFMAN 

Suppose that G is a locally compact abelian group, u an element of infinite 
order, and w a complex number of modulus 1. I t is a familiar fact that there is a 
complex homomorphism ^ of the measure algebra M of G, which maps eu (the 
unit mass concentrated at u) to w. Beyond this, one may specify an element n 
of M, and require a homomorphism ^ which does not annihilate y.. The 
resolution of this problem leads to an abstract lemma on measurable trans­
formations, derived in some generality in the first section. Next, following the 
examples of Hewitt and Kakutani (1 ), we construct a family of perfect compact 
subsets P of real numbers, such that for each measure M supported by P , we can 
have | ^ ( M ) | = limn_>œ |j/,iw||1/w. This is based on a probabilistic construction, 
which allows us to derive some miscellaneous facts about measures; for 
example, P supports measures M with ji(n) — o(l). The paper of Salem (4) 
seems to be the ultimate source for this method. We prove also that the closed 
ideal in M generated by eu — we (e = €o, the identity of M) is not the inter­
section of maximal ideals when G is the circle group; the last section gives 
another example. 

1. A lemma on measurable transformations. Let 5 be a set, (g a 
a-field of subsets of 5, and T a measurable transformation of 5 into itself: 
T~XE G (g for each E in @. For a complex number w of modulus 1, a measurable 
function h on S is (T, w)-invariant if h(Ts) = wh(s), s G S. We write C.A. for 
the complex Banach space of finite countably additive measures in (5, @) and 
define a linear contraction U in C.A. : 

(E7/0(E) = / i ( ^ £ ) , E Ç (g, M € C.A. 
Set, for a measure /* fixed throughout this section, 

d = inf || U\ - w\ - /i||, X G C.A. 

LEMMA l.d = sup |/g(s)M(ds)|, \g(s)\ < 1, g(T, w)-invariant. 

Proof. For a bounded measurable function h, and X 6 C.A., 

J*(*)(tfM)(<fc) = f h(Ts)p(ds). 

For a function g as in the lemma, this shows that g is orthogonal to U\ — w\, 
proving the easy half of the statement. Define now a positive measure X on 5 by 
the formula 
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then /x « X and X(£) = 0 implies that X ^ E ) = 0. Let Y = L 1 ^ , G, X), a 
subspace left invariant by U. By the definition of d there is a linear functional 
x* of norm < 1 on Y such that ff*(/x) = d, x*(U<r) = m*((r). This means, of 
course, that there is a measurable function h on S such that \h\ < 1 and 

J h(s)n(ds) = d, J h(s)(Ua)(ds) = w J h(s)a(ds). 

From the identity at the beginning of the proof it is clear that h(s) = wh{Ts) 
except on a set of X-measure 0. Now put 

h*(s) = l i m ^ S vT'HT's) 

whenever the limit exists, and h*(s) = 0 otherwise. Then h* = h X-almost 
everywhere and h* is (T, w)-invariant on all of S, as required. 

2. Applications to measures in groups. Measurability in the group G is 
in reference to the cr-field determined by all continuous functions on G, which we 
call the Baire cr-field. We let / be the closed principal ideal of M generated by 
eu — we. To apply the lemma on measurable transformations, we note that if E 
is a Baire set and X Ç M, then [(eu - w)*\](E) = \(E - u) - w\(E). Taking 
T(g) = g + u, g £ G, we conclude that the distance of a measure fi from G is d, 
described in the lemma. 

THEOREM 1. These statements are equivalent for c > 0: 
(i) There is a complex homomorphism ^r of M for which V(J) = 0, |^ (M) | > c. 

(ii) For every number d in (0, c) there is a bounded Baire function h such that 
Kg + «) = tt*(g), g € G and 

J I l / n 

h(x)fxn(dx) > d. 
Proof. If (ii) holds for some d > 0 and some h, it holds also for VII^IU» so 

that by Lemma 1, 
limsup ||/xw+ J\\1/n>d. 

The implication (ii) —» (i) follows now from the formula of Beurling and 
Gelfand (3, 1.6, I I I . l ) , applied to the Banach algebra M/J (3, pp. 43-44). To 
prove the converse, let Z be the Banach space of Baire functions h as described 
in the theorem. Suppose that for some d > 0 and each h Ç Z 

J 11/» 

h(x)j/(dx) < d, 
..-^ I 

or equivalently 

- I f I 
lim r n\ I h(x)nn(dx) = 0, whenever r > d. 

By the principle of uniform boundedness, for each r > d there exists a constant 
B(r) such that J h(x)nn(dx) < r " 5 ( r ) | |ft|L, (A € Z , ! < » < » ) . 
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By Lemma 1, \\nn + J\\ < B(f)rn, 1 < n < » . Because each complex homo-
morphism of M is norm-decreasing, ^(J) = 0 forces |^(/x)| < r, and so 
|^(/x)| < d, as required. 

The sequence of lemmas below is intended mainly to elucidate the examples 
which conclude this article. 

LEMMA 2. If /x € L1, M $ / , Jftere w a continuous character x of G such that 
x(u) = w and Jx dix ^ 0. 

Proof. Suppose first that u generates a discrete subgroup H, so there is 
certainly a continuous character x of G, with x W = w. The automorphism 
/ ~^ X * / °f i 1 onto itself maps /x to an element not in the closure of the ideal 
Lx{eu — e) C I 1 , The quotient algebra of L1 by the closure of this ideal is 
IMG/H), so that for some character 7 of G with y(u) = 1, jyxdjji 9e 0, as 
required. 

In the remaining case H may be supposed compact with Haar measure mH. 
By the hypothesis we know there is a bounded Baire function h such that 
h(x + u) = wh(x), x ÇG, and Jh(x)n(dx) = 1. From the absolute continuity 
of y we conclude that the function F, defined by 

F(y) = J h(x + y)p(dx)9 y G G, 

is continuous. Since F(nu) = wn for each integer n, there is a continuous 
character 7 on i J fulfilling the condition y(u) = w. Writing *> = (7 • mH) * JU, 

J h(x)v(dx) = I I &(# + y)y(y)mH(dy)/jL(dx) 
J G "H 

-i y(y)F{y)mH{dy) = 1. 

Choose a character x for which fx dv 9^ 0—it is clear that x(u) = w and 
JX dfx * 0. 

LEMMA 3. Suppose that /x is supported in the compact set E. If for a certain 
integer m > 1 

nu £? ± £ ± . . . =fc -E (2m summands), a// w > 1, 

^ | | / x m + / | | = I IMII . 

Proof. Since /x™ is supported in the ra-fold sum of E with itself, the measures 
Mm * eww(—°° <n < 00 ) are mutually singular. Writing X = weM, 

AT 

| /T|| for every N > 1 
1 ^ 

But 11 (1/N) J^\k * P\\ converges to zero for every v in / , whence 

\\»m + J\\ = IIMII. 

Remarks. It may be observed that, in the event E is not a Baire set, it is 
contained in a compact Ga, Eu which meets the requirement of the lemma. 
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Further, if F\ is a compact Gg and F2 a compact set, F\ + F% is a G&. For if 

^1= n (ut), 
then 

^1 + ^2= n o/* + ^2), 

where t/i 2 272 2 • . . is a sequence of open sets, and each Uk has compact 
closure contained in £/ib-i. 

The construction of examples for the theory presented is based on the well-
known fact (Kolmogoroff et ah) that if rly r2j r3, . . . are positive numbers and 

oo 

Z) ft < °°> 
i 

then there is a probability measure /z on (— °°, «>) such that 

J 00 

eiutn(dt) = ]~I cos(«r<), — oo < # < oo 
(Pitt 2, pp. 44, 97). We consider, though, sequences subject to the stronger 
condition 

00 

52 fi < °°. 
In this case /x is supported in the "symmetric set" 

Z W = { Ê e« r«: €« = zfcl, 1 < * < » | . 

Following Salem (4 ) we introduce the product space of sequences 

£ = Ui ,É2,É8, . . .} , 
0 < £ j i < l , l < i < °° , and let P be the product of the Lebesgue measures d£* 
on the intervals 0 < £* < 1. According to our convention we write 

12 tt • f) = \ 12 c< £* ̂ : ê  = ± i , l < i < oo | . 
Let us say that the multiplier sequence (r) = {ri, r2, r3, . . .} is "m-sparse" 
(m = 1 , 2 , 3 , . . .) if for each number b 9e 0, it is almost certain that the m-fold 
difference set ± 2 (£ • r) ± . . . ± (£ • r) does not contain b. A technical 
detail is the fact that the subset of C whose measure is to be 1 is open in C. 

THEOREM 2. (r) is m-sparse if 

lim inf (2m + 1)* £ '* = °-

Proof. An element of the difference set has the form 
oo 

]C ai ii fu —m < ôi < m, 1 < i < oo. 
î 

I t is enough to prove that, almost certainly, this form does not represent b 9^ 0, 
provided also that one fixed hM has a specified value 9^0 ; for example, we may 
arrange the sequences of ô's according to the first number 5*0. 
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This restriction in effect, whenever 
oo 

S $«£«'< = & and N > M, 

Ë tiiiTi-b < (2m + 1) E r,. 

There are at most (2m + 1)^ iV-tuples (8U . . . , 5 )̂ which contribute to the 
probability ; for each choice, and any Borel set A of Lebesgue measure \A\, 

PU: It StZtrt €A}<J±-\A\. 
v i J oMrM 

Therefore the probability that the above inequality hold is at most 

2(5MrM)-1(2m + l)N+1tl rt. 
N+l 

As N —•> oo , the probability is seen to be 0. 
An immediate corollary is that if (l/i) logr*—> —oo, (r) i s m-sparse for 

every m, so that the symmetric set £ ( £ • r) almost certainly satisfies all the 
conditions under Lemma 3 (i.e. for all n and m). The set XX £ * r) is then an 
example of a set P mentioned in the introduction. Observe, however, that if 
rt = e"1** where a > 5, then for almost all £ £ C, the conditions in Lemma 3 
with m = 1 are fulfilled. 

LEMMA 4 (4). (a) If rt = e~ia with a > 1, then for some j = j(°0 aw J almost 
all £, 

= E l£(»)l'< °°-f i cos nr&A 

(b) Ifr i = 6~*log log \i > 3, thenfor almost all £,fi(n) = o(l) asn 

Proof. For any number s > 0 and integer n > 1, 

f |A(») | sP(^) = ft f |cos«r, £<!'#,. 

The typical multiplicand is equal to 

(nri)'1 I | cosy |*d:y<l— \ - (wr*)"1 J I |cos;y|*d;y. 

Under (a), w* > 1 for [log n/log a] indices i, so 

co . 

As soon as 

we have 

J |M(«) |SP(^) < {JL^1 J* |cosy|V*y}' 

J |cos;y|sd;y < a~ 
o 

ËjiM(»)rp(«x » 

[log n/log a] 

and (a) follows from this. 
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In (b), nrt > 1 for large n and 

Jog«_ 
log log n ' 

Now 

r | cos3/ | s^ < Cs 1/2 a s 5 —» oo. 
v 0 

Taking 

f v logw 
log log n 

we find that for large n, log s(w) > f log log «, 

J u W r P ^ X e x p ^ f l o g . + C j ^ ) . 

For each integer Af > 1, 

M° j \fi(»)\-rm < exp ( - f l o g , + C ^ - ^ ) 

so that 

£ Ms(lnl)\n(n)\silnl) < oo 

almost certainly. Therefore jl(n) = 0(1) almost certainly. 

THEOREM 3. If G is the circle group T, the ideal J is not the intersection of 
maximal ideals of M. 

Proof. We consider T as the (additive) group of reals R, mod 2ir. We choose 
rt = e~bi according to the remarks after Theorem 2. Let H be the subgroup of R 
which is mapped onto the infinite subgroup of T generated by u. I t is almost 
certain that H C\ ( ± 1 ] àz ]C) = {0}, because H is countable. Writing X/ for 
the image of 2Z(mod 2TT), it is almost certain that nu (? ± X / ( £ • r) db Z/(£ * r) 
so that the random measure n constructed in Lemma 4, and now projected 
from R to T, is almost certainly not in J. Call this new measure A ; its7th power 
is almost certainly in Ll(T). Thus the present theorem follows from Lemma 2 
unless xW-~ w for some continuous character x of T. 

In the last event, x is unique, so we can choose a positive measure a with 
finite support F, so that jx da = 0, whence a * \j is almost certainly in / . If we 
also arrange that nu (? do F do F lor w ^ O , then, almost certainly, 

nu g ± E ' ± E ' ± f ± f . 

This is sufficient, because a * A is concentrated in XI' + ^S to yield or * X $ J . 

3. Another example. In the following example we construct a compact 
metric abelian group G, a Borel probability /x in G, a Borel set £ Ç G , and an 
element uolG such that 
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(i) {E+mu)r\E = 0, for m ^ 0, 
(ii) „(£) = 1, 

(iii) At*At*M is equivalent to the Haar measure m in G, with derivative bounded 
away from 0 and <» . 

The construction uses the following notations, p being always an odd prime. 
Zp is the group Z/pZ\ mp is the invariant probability in Zv. Fp = Zv — {0} 
and \ip is the probability uniformly distributed in Fp. G = II^ Zp, m = Yipmpi 

n = l ipn P , F = n p F^,^ = ( 1 , 1 , 1 , . . . ) , andE = F~ Um9£0(F + mu). 
Of assertions (i)-(iii), (i) holds by construction and (ii) will follow as soon as 

it is proved that n(F + mu) = 0 if m ^ 0. However, 

li(F + mu) = tx(Up (Fp + m- 1)) = Up><i »P(FP + m- 1). 

Now fJip(Fp + m • 1) < 1 — p~l if m ^ 0 (mod £), so n(F + mu) = 0 if m 9e 0. 
To prove (iii) we denote by ep the unit mass at 0 in Zp. Then 

MP = £(£ - l ) - 1 ^ - p^ep). 
Thus 

M , V M , = PKP - l)-3[mP - 3/r-im, + Sp~2mp - />-%,]. 

Here we used the facts that mp is invariant and that mp and ep are idempotent. 
Continuing, 

M / V M , = [1 + (/> - l)"3]mp - (p - 1)"%,. 

If we write /xp = fp • m p , then 

/ , > ! + ( £ - I ) " 3 - />(*> - I ) " 3 = 1 " (P " I)"2 > i 

Moreover, \fP — 1| = 0(p~2) so the product I I^ /p converges uniformly to a 
function/ bounded away from 0 and °° ; of course, /z = / • m . This is (iii). 

We note that if w is a complex number of modulus 1, but not a root of unity, 
there is no continuous character mapping u to w. Thus for such a w, the closed 
principal ideal / generated by @M — we does not contain /* (cf. Lemma 4) but 
contains M*M*M (Lemma 2). Thus J is not the intersection of the maximal 
ideals in M which contain it. 
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