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Every proper orthogonal matrix A can be written 

A=eQ 

where Q is a skew matrix [6], and conversely every such matrix A is orthogonal. 
It is also known that every proper orthogonal transformation in real Euclidean 
four-space may be characterized in term of quaternions [1, 3] by the equation 

x' = axby Na = Nb = 1. 
Here the quaternion 

x = XQ + x\i + x2j + x^k 
determines with the origin a vector having the coordinates (XQ, XI, x2, x3). 
The relationship between these two representations was clearly shown by 
Murnaghan [5]. 

The present paper employs the first and second regular representations of 
quaternions by matrices in place of Murnaghan's ''special matrices/' with the 
result that known properties of the regular representations can be applied 
directly to this problem. Incidentally an easy method not using infinite 
series is found for finding the skew matrix Q when the orthogonal matrix A 
is given. 

1. The first and second regular representations of the real quaternion 

a = do + d\i + Ozj + #3& 
are, respectively, 

R(a) = a0I + aiRi + 02-R2 + azRz, S(a) = a0I + aiSi + a2S2 + a3S3 

where 
I" 0 - 1 0 0 

1 0 0 0 
1 0 0 0 - 1 

L 0 0 1 0 
(1) 

0 0 0 1 1 
0 0 - 1 0 
0 1 0 0 r 

j -1 0 0 0 J 
Let ST denote the transpose of 5. The six matrices 2?i, R2, i?3, 5 i r , 5 2

r , SzT 

are all skew and are linearly independent. The most general 4 by 4 skew 
matrix 
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0 0 - 1 0 
0 0 0 1 
1 0 0 0 
0 - 1 0 0 

0 0 0 - 1 
0 0 - 1 0 
0 1 0 0 
1 0 0 0 

5i = 

0 1 0 0 
- 1 0 0 0 
0 0 0 - 1 
0 0 1 0 

> s2 

0 0 1 0 
0 0 0 1 

- 1 0 0 0 
0 - 1 0 0 

5 3 = 
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(2) Q 

0 goi go2 go3 
— #01 0 #12 — g 31 

— <Zo2 — gi2 0 g23 
L "~303 #31 -"523 0 

is therefore a linear combination of them. In fact 

Q = - Ksoi + 523)^1 - i(go2 + gsi)2?2 - |(gos + qn)Rz 

— Ifeoi - g23)5ir - |(go2 - g3i)52
r - |(«03 - gi2)53

r. 

Note the analogy of the g's to Plucker line coordinates [2]. 

If we let — |(goi + g23) = ru — Kgoi — g2s) = Si etc., we may write 
P = ni + r2j + rzky a = sii + s2j + szk. 

That is, every skew matrix can be written 
Q = R(p) + ST(a), 

where p and a are pure quaternions. Therefore p satisfies the quadratic 
equation 
(3) x2 + NP = 0, NP = n2 + n2 + r3

2, 
and similarly for or. 

The matrix eQ is denned as a power series which converges for every matrix 
Q. In every associative algebra, every matrix of the first regular representation 
is commutative with the transpose of every matrix of the second regular 
representation [4]. It follows upon multiplying power series that 

eQ = eR(P)es
T(a) = es

T(*)eR(p)t 

Write R for R(p). Then 

~R I + T;R2 + ~-tR" +-" + mi + ~R~ + -r.R* + 
2 4! L 3! 5! 

From (3), R2 — —v2I where v2 — Np, v*z 0. Hence 
• • • ] • 

R T R . 
e — cos V'l -f ~" sin v. 

v If we define the quaternion 

(4) 

then clearly 

(4) a = cos v + ~ sin v, 
v 

R(a) = e
R{p\ Na = 1. 

By means of (4) every pure quaternion p determines a unit quaternion a 
and vice versa. Similarly 

es
T(«) = STWI N0 = 1. 

We have proved 

THEOREM 1. Every real proper 4 by 4 orthogonal matrix can be written 

A = R(a)-ST(I3) = ST(0)-R(a) 

where a and 0 are unit quaternions. Every such product is orthogonal and proper. 
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Let us assume a second such representation, 

A = R(y)-ST(Ô), N 7 = NÔ = 1. 
Then 

R-i(y)-R(a) = ST(6)-S-T(P), RÇy'^a) == 5 r(^"1ô). 
The skew components of these matrices vanish, since the skew matrices 
in (1) are linearly independent. Thus 

R(y-ia) = ST^~1Ô) = kl, k real, 
so that a = ky,h = kp. Since Na = N7 = 1, Nfe = k2 = 1, k = dbl. We have 

THEOREM 2. Tfee £air 0/ quaternions a> fi of Theorem 1 w unique except that 
it may be replaced by — a, —0. 

2. The unit quaternion 
(5) a = a0 + aii + a2j + azk, Na = 1, 
satisfies the quadratic equation 
(6) x2 - 2a0x + 1 = 0 , 

whose roots are the characteristic roots of R(a). Since the discriminant is 
—4(#i2 + a2

2 + a3
2), these characteristic roots are real only if a = ± 1. That 

is, unless the orthogonal matrix R(a) is db I, the orthogonal transformation 
which it defines leaves no vector through the origin invariant. But if v is 
any vector through the origin, the plane of vectors kiv + k2R(a)-v is invariant. 
For by (6) 

R(a)[kiv + k2R(a) -v] = - fa» + (fa + 2a0k2)R(a) • v. 
Thus R(a) is the matrix of a left Clifford translation. 

Coxeter [1] has shown that in quaternion coordinates the left Clifford 
translation is given by 

x' = ax, Na = 1, 
where a is given by (5), and 

x = Xo + X\i + x2j + xzk. 

Upon multiplying out and equating the coefficients of 1, i, j and fa we have 
x'o — 0o#o — #i#i ~~ a2x2 — azXz, 
x'i = aix0 + aoXi — azx2 + a2x%, 
x'2 — a2xQ + a$xi + a0x2 — a\Xz, 
x'i = azx0 — a2xi + aix2 + a<&z. 

If we denote by v the column vector with components x<>, #1, #2, #3, this may 
be written 

v' = R(a) •», Na = 1. 
In the same notation the right Clifford translations may be written 

v' = sT(p) -v, m = i-
3. It has been shown that if A is proper orthogonal, 

A =R(a)'ST((i), 
where a is given by (5) and j3 is given similarly. We shall show how a and /3 
can be determined from A. From (1) 
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3 3 3 

(7) A = aobol + S dibjRiSj1, + a0 2 & A r + 60 2 a ^ . 
i,j=l i = 1 i = 1 

Since i£* and S j r are both skew and commutative, their product is symmetric. 
Thus the first ten terms above are symmetric and the last six are skew. Hence 
the unique skew part of A is 

UA - AT) = a0[6i5i r + b2S2
T + bzSz

T] + bQ[aiRi + d2R2 + azR*]. 
Since the Ri and SjT are linearly independent, we can determine uniquely the 
numerical values of 

aobu aob2l aobz, bodi> bod2l bodz. 

With the aid of the relations 
ao2 + ax

2 + a2
2 + ai = 1, b0

2 + h2 + b2
2 + 63

2 = 1, 
we obtain quadratic equations for a0

2 and bo2 and hence the values of the 
eight di and bj. It is known from Theorem 2 that just two sets of values can 
satisfy (7). 

When a and /3 are known, p and a can be found from (4), and then Q from (2). 
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