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Abstract

We show that the typed region calculus of Tofte and Talpin can be encoded in a typed

π-calculus equipped with name groups and a novel effect analysis. In the region calculus, each

boxed value has a statically determined region in which it is stored. Regions are allocated

and de-allocated according to a stack discipline, thus improving memory management. The

idea of name groups arose in the typed ambient calculus of Cardelli, Ghelli, and Gordon.

There, and in our π-calculus, each name has a statically determined group to which it belongs.

Groups allow for type-checking of certain mobility properties, as well as effect analyses. Our

encoding makes precise the intuitive correspondence between regions and groups. We propose

a new formulation of the type preservation property of the region calculus, which avoids Tofte

and Talpin’s rather elaborate co-inductive formulation. We prove the encoding preserves the

static and dynamic semantics of the region calculus. Our proof of the correctness of region

de-allocation shows it to be a specific instance of a general garbage collection principle for

the π-calculus with effects. We propose new equational laws for letregion , analogous to scope

mobility laws in the π-calculus, and show them sound in our semantics.

Capsule Review

The paper presents a correctness proof for Tofte and Talpin’s region calculus based on

a translation into the pi-calculus. Generally, such a translation technique allows to reason

about higher-order languages (like the region calculus) in a first- order setting (the pi-calculus),

and to exploit the powerful proof-machinery that has been developed for the pi-calculus. I

consider the work to be especially in line with pi-calculus encodings of the lambda-calculus

by Milner and Sangiorgi, for the following reasons: (1) the region calculus is an extension of

the lambda-calculus with regions; (2) for the encoding, an extension of the pi-calculus with

groups is used; these groups correspond exactly to the regions; (3) the encoding inherits a lot

from encodings of the lambda-calculus; in fact, regions and groups turn out to be orthogonal

in the sense that adding them does not harm the validity of the methods applied to the

lambda-calculus parts of the encoding.

1 Motivation

This paper reports a new proof of correctness of region-based memory management

(Tofte & Talpin, 1997), and also proofs of new equational laws for the region

calculus.

https://doi.org/10.1017/S0956796801004270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004270


230 S. Dal Zilio and A. D. Gordon

Tofte and Talpin’s region calculus is a compiler intermediate language that,

remarkably, supports an implementation of Standard ML that has no garbage

collector, the ML Kit compiler (Birkedal et al., 1996). The basic idea of the region

calculus is to partition heap memory into a stack of regions. Each boxed value

(that is, a heap-allocated value such as a closure or a cons cell) is annotated

with the particular region into which it is stored. The construct letregion ρ in b

manages the allocation and de-allocation of regions. It means: “Allocate a fresh,

empty region, denoted by the region variable ρ; evaluate the expression b; de-

allocate ρ.” A type and effect system for the region calculus guarantees the safety

of de-allocating the defunct region as the last step of letregion . The allocation

and de-allocation of regions obeys a stack discipline determined by the nesting of

the letregion constructs. A region inference algorithm compiles ML to the region

calculus by computing suitable region annotations for boxed values, and inserting

letregion constructs as necessary. In practice, space leaks, where a particular region

grows without bound, are a problem. Still, they can practically always be detected

by profiling and eliminated by simple modifications. The ML Kit efficiently executes

an impressive range of benchmarks without a garbage collector and without space

leaks. Region-based memory management facilitates interoperability with languages

like C that have no garbage collector and helps enable realtime applications of

functional programming.

Tofte and Talpin’s semantics of the region calculus is a structural operational

semantics. A map from region names to their contents represents the heap. A fresh

region name is invented on each evaluation of letregion . This semantics supports a

co-inductive proof of type safety, including the safety of de-allocating the defunct

region at the end of each letregion . The proof is complex and surprisingly subtle, in

part because active regions may contain dangling pointers that refer to de-allocated

regions.

This paper describes a new semantics for a form of the region calculus, ob-

tained by translation to a typed π-calculus equipped with a novel effect system.

The π-calculus (Milner, 1999) is a rather parsimonious formalism for describing the

essential semantics of concurrent systems. It serves as a foundation for describing

a variety of imperative, functional, and object-oriented programming features (San-

giorgi & Walker, 2001; Walker, 1995), for the design of concurrent programming

languages (Fournet & Gonthier, 1996; Pierce & Turner, 2000), and for the study

of security protocols (Abadi & Gordon, 1999), as well as other applications. The

only data in the π-calculus are atomic names. Names can model a wide variety of

identifiers: communication channels, machine addresses, pointers, object references,

cryptographic keys, and so on. A new-name construct (νx)P generates names dy-

namically in the standard π-calculus. It means: “Invent a fresh name, denoted by

x; run process P .” One might hope to model region names with π-calculus names

but unfortunately typings would not be preserved: a region name may occur in

a region-calculus type, but in standard typed π-calculi (Pierce & Sangiorgi, 1996),

names may not occur in types.

We solve the problem of modelling regions by defining a typed π-calculus equipped

with named groups and a new-group construct (Cardelli et al., 2000a). The idea is
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that each π-calculus name belongs to a group, G. The type of a name now includes

its group. A new-group construct (νG)P generates groups dynamically. It means:

“Invent a fresh group, denoted by G; run process P .” The basic ideas of the new

semantics are that region names are groups, that pointers into a region ρ are names of

group ρ, and that given a continuation channel k the continuation-passing semantics

of letregion ρ in b is simply the process (νρ)[[b]]k where [[b]]k is the semantics of

expression b. The semantics of other expressions is much as in earlier π-calculus

semantics of λ-calculi (Sangiorgi & Walker, 2001). Parallelism allows us to explain a

whole functional computation as an assembly of individual processes that represent

components such as closures, continuations, and function invocations.

This new semantics for regions makes two main contributions.

• First, we give a new proof of the correctness of memory management in the

region calculus. We begin by extending a standard encoding with the equation

[[letregion ρ in b]]k = (νρ)[[b]]k. Then the rather subtle correctness property of

de-allocation of defunct regions turns out to be a simple instance of a new

group-based garbage collection principle expressed in the π-calculus.

• Secondly, the semantics provides a more abstract account of the behaviour of

the region calculus than the standard operational semantics. A specific benefit

is that new equational laws for letregion are corollaries of its semantics in

terms of the new-group construct.

The specific technical results of the paper are:

• A simple proof of type soundness of the region calculus (Theorem 2.1).

• A new semantics of the region calculus in terms of the π-calculus with groups.

The translation preserves types and effects (Theorem 4.1) and operational

behaviour (Theorem 4.2).

• A new garbage collection principle for the π-calculus (Theorem 4.3) whose

corollary (Theorem 4.4) justifies de-allocation of defunct regions in the region

calculus.

• A new equational theory for letregion , inspired and justified (Theorem 5.2) by

the π-calculus model.

Overall, the paper makes a new connection between two programming language

constructs, regions and groups, that were proposed independently and for different

purposes. A benefit for the theory of the π-calculus is the discovery of a new

confinement principle, Theorem 4.3. Although our proof of this theorem involves a

substantial theoretical development, we anticipate it will be of use in other settings,

such as the study of other source languages with regions. A benefit for the theory

of the region calculus is that once we have proved this principle, we can write down

a strikingly simple proof of the soundness of region-based memory management.

We organise the rest of the paper as follows. Section 2 introduces the region

calculus. Section 3 describes the π-calculus with groups and effects. Section 4 gives

our new π-calculus semantics for regions. Section 5 describes our new equations

for manipulating letregion . Section 6 considers extensions. Section 7 concludes.
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Appendix A reviews the untyped π-calculus. Appendix B describes proofs of all

properties stated without proof in the main text.

An abridged version of this work appears as a conference paper (Dal Zilio &

Gordon, 2000a).

2 A λ-calculus with regions

To focus on the encoding of letregion with the new-group construct, we work with a

simplified version of the region calculus of Tofte & Talpin (1997). Our calculus omits

the recursive functions, type polymorphism, and region polymorphism present in

Tofte and Talpin’s calculus. Section 6 extends our results to a version of the region

calculus of this section extended with recursive functions, finite lists, and region

polymorphism. Tofte and Talpin explain that type polymorphism is not essential for

their results. Still, we conjecture that our framework could easily accommodate type

polymorphism.

2.1 Syntax

Our region calculus is a typed call-by-value λ-calculus equipped with a letregion

construct and an annotation on each function to indicate its storage region. We

assume an infinite set of names, ranged over by p, q, x, y, z. For the sake of

simplicity, names represent both program variables and memory pointers, and a

subset of the names L = {`1, . . . , `n} represents literals. The following table defines

the syntax of λ-calculus expressions, a or b, as well as an auxiliary notion of boxed

value, u or v.

Expressions and Values:

x, y, p, q, f, g name: variable, pointer, literal

ρ region variable

a, b ::= expression

x name

v at ρ allocation of v at ρ

x(y) application

let x = a in b sequencing

letregion ρ in b region allocation, de-allocation

u, v ::= boxed value

λ(x:A)b function

We shall explain the type A later. In both let x = a in b and λ(x:A)b, the name x

is bound with scope b. Let fn(a) be the set of names that occur free in the expression

a. We identify expressions and values up to consistent renaming of bound names.

We write P {x←y} for the outcome of renaming all free occurrences of x in P to the

name y. Our syntax is in a reduced form, where an application x(y) is of a name

to a name. We can regard a conventional application b(a) as an abbreviation for
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let f = b in let x = a in f(x), where f 6= x and f is not free in a. This reduced syntax

for application allows a more concise presentation of the operational semantics than

the conventional syntax.

We explain the intended meaning of the syntax by example. The expression

ex1
∆
= letregion ρ′ in

let f = λ(x:Lit)x at ρ′ in
let g = λ(y:Lit)f(y) at ρ in g(5)

means “Allocate a fresh, empty region, and bind it to ρ′; allocate λ(x:Lit)x in

region ρ′, and bind the pointer to f; allocate λ(y:Lit)f(y) in region ρ (an already

existing region), and bind the pointer to g; call the function at g with literal ar-

gument 5; finally, de-allocate ρ′.” The function call amounts to calling λ(y:Lit)f(y)

with argument 5. So we call λ(x:Lit)x with argument 5, which immediately returns

5. Hence, the final outcome is the answer 5, and a heap containing a region ρ

with g pointing to λ(y:Lit)f(y). The intermediate region ρ′ has gone. Any subse-

quent invocations of the function λ(y:Lit)f(y) would go wrong, since the target

of f has been de-allocated. The type and effect system of Section 2.3 guarantees

there are no subsequent allocations or invocations on region ρ′, such as invoking

λ(y:Lit)f(y).

2.2 Dynamic semantics

Like Tofte and Talpin, we formalize the intuitive semantics via a conventional

structural operational semantics. A heap, h, is a map from region names to regions,

and a region, r, is a map from pointers (names) to boxed values (function closures).

In Tofte and Talpin’s semantics, defunct regions are erased from the heap when they

are de-allocated. In our semantics, the heap consists of both live regions and defunct

regions. Our semantics maintains a set S containing the region names for the live

regions. This is the main difference between the two semantics. Side-conditions on

the evaluation rules guarantee that only the live regions in S are accessed during

evaluation. Retaining the defunct regions simplifies the proof of subject reduction.

Semmelroth & Sabry (1999) adopt a similar technique for the same reason in their

semantics of monadic encapsulation.

Regions, Heaps, and Stacks:

r ::= (pi 7→ vi)
i∈1..n region, pi distinct

h ::= (ρi 7→ ri)
i∈1..n heap, ρi distinct

S ::= {ρ1, . . . , ρn} stack of live regions

A region r is a finite map of the form p1 7→ v1, . . . , pn 7→ vn, where the pi are

distinct, which we usually denote by (pi 7→ vi)
i∈1..n. An application, r(p), of the map

r to p denotes vi, if p is pi for some i ∈ 1..n. Otherwise, the application is undefined.

The domain, dom(r), of the map r is the set {p1, . . . , pn}. We write ? for the empty

map. If r = (pi 7→ vi)
i∈1..n, we define the notation h − p to be pi 7→ vi

i∈(1..n)−{j} if
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p = pj for some j ∈ 1..n, and otherwise to be simply r. Then we define the notation

r + (p 7→ v) to mean (r − p), p 7→ v.

We use finite maps to represent regions, but also heaps, and various other

structures. The notational conventions defined above for regions apply also to other

finite maps, such as heaps. Additionally, we define dom2(h) to be the set of all

pointers defined in h, that is,
⋃

ρ∈dom(h) dom(h(ρ)).

The evaluation relation, S · (a, h) ⇓ (p, h′), may be read: in an initial heap h, with

live regions S , the expression a evaluates to the name p (a pointer or literal), leaving

an updated heap h′, with the same live regions S .

Judgments:

S · (a, h) ⇓ (p, h′) evaluation

Evaluation Rules:

(Eval Var)

S · (p, h) ⇓ (p, h)

(Eval Alloc)

ρ ∈ S p /∈ dom2(h)

S · (v at ρ, h) ⇓ (p, h + (ρ 7→ (h(ρ) + (p 7→ v))))

(Eval Appl)

ρ ∈ S h(ρ)(p) = λ(x:A)b S · (b{x←q}, h) ⇓ (p′, h′)

S · (p(q), h) ⇓ (p′, h′)

(Eval Let)

S · (a, h) ⇓ (p′, h′) S · (b{x←p′}, h′) ⇓ (p′′, h′′)

S · (let x = a in b, h) ⇓ (p′′, h′′)

(Eval Letregion)

ρ /∈ dom(h) S ∪ {ρ} · (a, h + ρ 7→ ?) ⇓ (p′, h′)

S · (letregion ρ in a, h) ⇓ (p′, h′)

Recall the example expression ex1 from the previous section. Consider an initial

heap h = ρ 7→ ? and a region stack S = {ρ}, together representing a heap with

a single region ρ that is live but empty. We can derive S · (ex1, h) ⇓ (5, h′) where

h′ = ρ 7→ (g 7→ λ(y:Lit)f(y)), ρ′ 7→ (f 7→ λ(x:Lit)x). Since ρ ∈ S but ρ′ /∈ S , ρ is live

but ρ′ is defunct.
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2.3 Static semantics

The static semantics of the region calculus is a simple type and effect system (Gifford

& Lucassen, 1986; Talpin & Jouvelot, 1992; Wadler, 1998). The central typing

judgment of the static semantics is:

E ` a :{ρ1 ,...,ρn} A

which means that in a typing environment E, the expression a may yield a result

of type A, while allocating and invoking boxed values stored in regions ρ1, . . . ,

ρn. The set of regions {ρ1, . . . , ρn} is the effect of the expression, a bound on the

interactions between the expression and the store. For simplicity, we have dropped

the distinction between allocations, put(ρ), and invocations, get(ρ), in Tofte and

Talpin’s effects. This is an inessential simplification; the distinction could easily be

added to our work.

An expression type, A, is either Lit , a type of literal constants, or (A
e→ B) at ρ,

the type of a function stored in region ρ. The effect e is the latent effect: the effect

unleashed by calling the function. An environment E has entries for the regions and

names currently in scope.

Effects, Types, and Environments:

e ::= {ρ1, . . . , ρn} effect

A,B ::= type of expressions

Lit type of literals

(A
e→ B) at ρ type of functions stored in ρ

E ::= environment

? empty environment

E, ρ entry for a region ρ

E, x:A entry for a name x

Let fr(A) be the set of region variables occurring in the type A. We define the

domain, dom(E), of an environment, E, by the equations dom(?) = ?, dom(E, ρ) =

dom(E) ∪ {ρ}, and dom(E, x:A) = dom(E) ∪ {x}.
The following tables present our type and effect system as a collection of typing

judgments defined by a set of rules. Tofte and Talpin present their type and effect

system in terms of constructing a region-annotated expression from an unannotated

expression. Instead, our main judgment simply expresses the type and effect of a

single region-annotated expression. Otherwise, our system is essentially the same as

Tofte and Talpin’s.

Type and Effect Judgments:

E ` � good environment

E ` A good type

E ` a :e A good expression, with type A and effect e

https://doi.org/10.1017/S0956796801004270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004270


236 S. Dal Zilio and A. D. Gordon

Type and Effect Rules:

(Env ?)

? ` �

(Env x) (recall L is the set of literals)

E ` A x /∈ dom(E) ∪ L
E, x:A ` �

(Env ρ)

E ` � ρ /∈ dom(E)

E, ρ ` �

(Type Lit)

E ` �
E ` Lit

(Type →)

E ` A {ρ} ∪ e ⊆ dom(E) E ` B
E ` (A

e→ B) at ρ

(Exp x)

E, x:A,E ′ ` �
E, x:A,E ′ ` x :? A

(Exp `)

E ` � ` ∈ L

E ` ` :? Lit

(Exp Appl)

E ` x :? (B
e→ A) at ρ E ` y :? B

E ` x(y) :{ρ}∪e A

(Exp Let)

E ` a :e A E, x:A ` b :e
′
B

E ` let x = a in b :e∪e′ B

(Exp Letregion)

E, ρ ` a :e A ρ /∈ fr(A)

E ` letregion ρ in a :e−{ρ} A

(Exp Fun)

E, x:A ` b :e B e ⊆ e′ {ρ} ∪ e′ ⊆ dom(E)

E ` λ(x:A)b at ρ :{ρ} (A
e′→ B) at ρ

The rules for good environments are standard; they assure that all the names and

region variables in the environment are distinct, and that the type of each name is

good. All the regions in a good type must be declared. The type of a good expression

is checked much as in the simply typed λ-calculus. The effect of a good expression is

the union of all the regions in which it allocates or from which it invokes a closure.

In the rule (Exp Letregion), the condition ρ /∈ fr(A) ensures that no function with

a latent effect on the region ρ may be returned. Calling such a function would be

unsafe since ρ is de-allocated once the letregion terminates. In the rule (Exp Fun),

the effect e of the body of a function must be contained in the latent effect e′ of the

function. For the sake of simplicity we have no rule of effect subsumption, but it

would be sound to add it: if E ` a :e A and e′ ⊆ dom(E) then E ` a :e∪e′ A. In the

presence of effect subsumption we could simplify (Exp Fun) by taking e = e′.
Recall the expression ex1 from section 2.1. We can derive the following judgments:

ρ, ρ′ ` (λ(x:Lit)x) at ρ′ :{ρ′} (Lit
?→ Lit) at ρ′

ρ, ρ′, f:(Lit
?→ Lit) at ρ′ ` (λ(x:Lit)f(x)) at ρ :{ρ} (Lit

{ρ′}→ Lit) at ρ

ρ, ρ′, f:(Lit
?→ Lit) at ρ′, g:(Lit

{ρ′}→ Lit) at ρ ` g(5) :{ρ,ρ′} Lit

Hence, we can derive ρ ` ex1 :{ρ} Lit .

For an example of a type error, suppose we replace the application g(5) in ex1

simply with the identifier g. Then we cannot type-check the letregion ρ′ construct,
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because ρ′ is free in the type of its body. This is just as well, because otherwise we

could invoke a function in a defunct region.

For an example of how a dangling pointer may be passed around harmlessly, but

not invoked, consider the following. Let F abbreviate the type (Lit
?→ Lit) at ρ′. Let

ex2 be the following expression:

ex2
∆
= letregion ρ′ in

let f = λ(x:Lit)x at ρ′ in
let g = λ(f:F)5 at ρ in

let j = λ(z:Lit)g(f) at ρ in j

We have ρ ` ex2 :{ρ} (Lit
{ρ}→ Lit) at ρ. If S = {ρ} and h = ρ 7→ ?, then

S · (b, h) ⇓ (j, h′) where the final heap h′ is ρ 7→ (g 7→ λ(f:F)5, j 7→ λ(z:Lit)g(f)), ρ′ 7→
(f 7→ λ(x:Lit)x). In the final heap, there is a pointer f from the live region ρ to the

defunct region ρ′. Whenever j is invoked, this pointer will be passed to g, harmlessly,

since g will not invoke it.

2.4 Relating the static and dynamic semantics

To relate the static and dynamic semantics, we need to define when a configuration

is well-typed. First, we need notions of region and heap typings. A region typing R

tracks the types of boxed values in the region. A heap typing H tracks the region

typings of all the regions in a heap. The environment env (H) lists all the regions in

H , followed by types for all the pointers in those regions.

Region and Heap Typings:

R ::= (pi:Ai)
i∈1..n region typing

H ::= (ρi 7→ Ri)
i∈1..n heap typing

ptr(H)
∆
= R1, . . . , Rn if H = (ρi 7→ Ri)

i∈1..n

env (H)
∆
= dom(H), ptr(H)

The next tables describe the judgments and rules defining well-typed regions,

heaps, and configurations. The main judgment H |= S · (a, h) : A means that a

configuration S · (a, h) is well-typed: the heap h conforms to H and the expression a

returns a result of type A, and its effect is within the live regions S .

Region, Heap, and Configuration Judgments:

E ` r at ρ : R in E, region r, named ρ, has type R

H |= � the heap typing H is good

H |= h in H , the heap h is good

H |= S · (a, h) : A in H , configuration S · (a, h) returns A
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Region, Heap, and Configuration Rules:

(Region Good)

E ` vi at ρ :{ρ} Ai ∀i ∈ 1..n

E ` (pi 7→ vi)
i∈1..n at ρ : (pi:Ai)

i∈1..n

(Heap Typing Good)

env (H) ` �
H |= �

(Heap Good) (where dom(H) = dom(h))

env (H) ` h(ρ) at ρ : H(ρ) ∀ρ ∈ dom(H)

H |= h

(Config Good) (where S ⊆ dom(H))

env (H) ` a :e A e ∪ fr(A) ⊆ S H |= h

H |= S · (a, h) : A

These predicates roughly correspond to the co-inductively defined consistency

predicate of Tofte and Talpin. The retention of defunct regions in our semantics

allows a simple inductive definition of these predicates, and a routine inductive proof

of the subject reduction theorem stated below.

We now present a subject reduction result relating the static and dynamic seman-

tics. Let H � H ′ if and only if the pointers defined by H and H ′ are disjoint, that

is, dom2(H) ∩ dom2(H
′) = ?. Assuming that H � H ′, we write H + H ′ for the heap

consisting of all the regions in either H or H ′; if ρ is in both heaps, (H + H ′)(ρ) is

the concatenation of the two regions H(ρ) and H(ρ′).

Theorem 2.1

If H |= S · (a, h) : A and S · (a, h) ⇓ (p′, h′) there is H ′ such that H � H ′ and

H + H ′ |= S · (p′, h′) : A.

Intuitively, the theorem asserts that evaluation of a well-typed configuration

S · (a, h) leads to another well-typed configuration S · (p′, h′), where H ′ represents

types for the new pointers and regions in h′.
The following proposition shows that well-typed configurations avoid the runtime

errors of allocation or invocation of a closure in a defunct region.

Proposition 2.2

(1) If H |= S · (v at ρ, h) : A then ρ ∈ S .

(2) If H |= S · (p(q), h) : A then there are ρ and v such that ρ ∈ S , h(ρ)(p) = v, and

v is a function of the form λ(x:B)b with env (H), x:B ` b :e A.

Combining Theorem 2.1 and Proposition 2.2 we may conclude that such runtime

errors never arise in any intermediate configuration reachable from an initial well-

typed configuration. Implicitly, this amounts to asserting the safety of region-based

memory management, that defunct regions make no difference to the behaviour of

a well-typed configuration. Our π-calculus semantics of regions makes this explicit:

we show equationally that direct deletion of defunct regions makes no difference to

the semantics of a configuration.
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3 A π-calculus with groups

In this section, we define a typed π-calculus with groups. In the next, we explain

a semantics of our region calculus in this π-calculus. Exactly as in the ambient

calculus with groups (Cardelli et al., 2000a), each name x has a type that includes

its group G, and groups may be generated dynamically by a new-group construct,

(νG)P . So as to model the type and effect system of the region calculus, we equip

our π-calculus with a novel group-based effect system. In other work (Cardelli et al.,

2000b), not concerned with the region calculus, we consider a simpler version of

this π-calculus, with groups but without an effect system, and show that new-group

helps keep names secret, in a certain formal sense.

Several authors have developed type and effect analyses for concurrent languages.

The earliest include systems by Nielson & Nielson (1993; 1994) and Talpin (1993).

There are several effect-based analyses of the π-calculus (Yoshida, 1996; Kobayashi,

1998). Our type and effect system is considerably simpler, and therefore less ex-

pressive, than some of these related systems. Unlike previous systems, it exploits

the analogy between a function type with a latent effect in a functional calculus

– such as the region calculus – and a channel type with a hidden effect. In our

system, we may attach a hidden effect to a channel type; the effect is unleashed by

an output and is masked by an input on the channel. This new idea is essential for

our modelling of the region calculus.

3.1 Syntax

The following table gives the syntax of processes, P . The syntax depends on a set

of atomic names, x, y, z, p, q, and a set of groups, G, H . For convenience, we

assume that the sets of names and groups are identical to the sets of names and

region names, respectively, of the region calculus. We impose a standard constraint

(Fournet & Gonthier, 1996; Merro & Sangiorgi, 1998), usually known as locality,

that received names may be used for output but not for input. This constraint

confers a richer equational theory on the π-calculus and is needed for the results of

section 5. Except for the addition of type annotations and the new-group construct,

and the locality constraint, the following syntax and semantics are the same as for

the polyadic, choice-free, asynchronous π-calculus (Milner, 1999).

Expressions and Processes:

x, y, p, q name: variable, channel

P ,Q, R ::= process

x(y1:T1, . . . , yn:Tn).P input (no yi ∈ inp(P ))

x〈y1, . . . , yn〉 output

(νG)P new-group: group restriction

(νx:T )P new-name: name restriction

P | Q composition

!P replication

0 inactivity
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We explain the set inp(P ) below, and the types T , T1, . . . , Tn in section 3.3.

In a process x(y1:T1, . . . , yn:Tn).P , the names y1, . . . , yn are bound; their scope is P

(we explain the types T below). In a group restriction (νG)P , the group G is bound;

its scope is P . In a name restriction (νx:T )P , the name x is bound; its scope is P .

We identify processes up to the consistent renaming of bound groups and names.

We let fn(P ) and fg(P ) be the sets of free names and free groups, respectively, of a

process P . We write P {x←y} for the outcome of a capture-avoiding substitution of

the name y for each free occurrence of the name x in the process P .

Free Names, fn(P ), of Process P :

fn(x(y1:T1, . . . , yn:Tn).P )
∆
= {x} ∪ (fn(P )− {y1, . . . , yn})

fn(x〈y1, . . . , yn〉) ∆
= {x, y1, . . . , yn}

fn((νG)P )
∆
= fn(P )

fn((νx:T )P )
∆
= fn(P )− {x}

fn(P | Q)
∆
= fn(P ) ∪ fn(Q)

fn(!P )
∆
= fn(P )

fn(0)
∆
= ?

Free Groups, fg(P ), of Process P :

fg(x(y1:T1, . . . , yn:Tn).P )
∆
= fg(T1) ∪ · · · ∪ fg(Tn) ∪ fg(P )

fg(x〈y1, . . . , yn〉) ∆
= ?

fg((νG)P )
∆
= fg(P )− {G}

fg((νx:T )P )
∆
= fg(T ) ∪ fg(P )

fg(P | Q)
∆
= fg(P ) ∪ fg(Q)

fg(!P )
∆
= fg(P )

fg(0)
∆
= ?

The set inp(P ) consists of each name x such that an input x(y1:T1, . . . , yn:Tn).P
′

occurs as a subprocess of P , with x not bound.

Names in Input Position, inp(P ), in Process P :

inp(x(y1:T1, . . . , yn:Tn).P )
∆
= {x} ∪ (inp(P )− {y1, . . . , yn})

inp(x〈y1, . . . , yn〉) ∆
= ?

inp((νG)P )
∆
= inp(P )

inp((νx:T )P )
∆
= inp(P )− {x}

inp(P | Q)
∆
= inp(P ) ∪ inp(Q)

inp(!P )
∆
= inp(P )

inp(0)
∆
= ?

Next, we explain the semantics of the calculus informally, by example. We omit

type annotations and groups; we shall explain these later.
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A process represents a particular state in a π-calculus computation. A state may

reduce to a successor when two subprocesses interact by exchanging a tuple of

names on a shared communication channel, itself identified by a name. For example,

consider the following process:

f(x, k′).k′〈x〉 | g(y, k′).f〈y, k′〉 | g〈5, k〉
This is the parallel composition (denoted by the | operator) of two input processes

g(y, k′).f〈y, k′〉 and f(x, k′).k′〈x〉, and an output process g〈5, k〉. The whole process

performs two reductions. The first is to exchange the tuple 〈5, k〉 on the channel g. The

names 5 and k are bound to the input names y and k, leaving f(x, k′).k′〈x〉 | f〈5, k〉
as the next state. This state itself may reduce to the final state k〈5〉 via an exchange

of 〈5, k〉 on the channel f.

The process above illustrates how functions may be encoded as processes. Specifi-

cally, it is a simple encoding of the example ex1 from section 2.1. The input processes

correspond to λ-abstractions at addresses f and g; the output processes correspond

to function applications; the name k is a continuation for the whole expression.

The reductions described above represent the semantics of the expression: a short

internal computation returning the result 5 on the continuation k.

The following is a more accurate encoding:

(νf)(νg)(

f 7→λ(x)x︷ ︸︸ ︷
!f(x, k′).k′〈x〉 |

g 7→λ(y)f(y)︷ ︸︸ ︷
!g(y, k′).f〈y, k′〉 |

g(5)︷ ︸︸ ︷
g〈5, k〉)

A replication !P is like an infinite parallel array of replicas of P ; we replicate

the inputs above so that they may be invoked arbitrarily often. A name restriction

(νx)P invents a fresh name x with scope P ; we restrict the addresses f and g

above to indicate that they are dynamically generated, rather than being global

constants.

The other π-calculus constructs are group restriction and inactivity. Group re-

striction (νG)P invents a fresh group G with scope P ; it is the analogue of name

restriction for groups. Finally, the 0 process represents inactivity.

3.2 Dynamic semantics

We formalize the semantics of our π-calculus using standard techniques. A reduction

relation, P → Q, means that P evolves in one step to Q. It is defined in terms of an

auxiliary structural congruence relation, P ≡ Q, that identifies processes we never

wish to tell apart.

Structural Congruence: P ≡ Q

P ≡ P (Struct Refl)

Q ≡ P ⇒ P ≡ Q (Struct Symm)

P ≡ Q,Q ≡ R ⇒ P ≡ R (Struct Trans)

P ≡ Q⇒ x(y1:T1, . . . , yn:Tn).P ≡ x(y1:T1, . . . , yn:Tn).Q (Struct Input)

P ≡ Q⇒ (νG)P ≡ (νG)Q (Struct GRes)

https://doi.org/10.1017/S0956796801004270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004270


242 S. Dal Zilio and A. D. Gordon

P ≡ Q⇒ (νx:T )P ≡ (νx:T )Q (Struct Res)

P ≡ Q⇒ P | R ≡ Q | R (Struct Par)

P ≡ Q⇒ !P ≡ !Q (Struct Repl)

P | 0 ≡ P (Struct Par Zero)

P | Q ≡ Q | P (Struct Par Comm)

(P | Q) | R ≡ P | (Q | R) (Struct Par Assoc)

!P ≡ P | !P (Struct Repl Par)

x1 6= x2 ⇒ (νx1:T1)(νx2:T2)P ≡ (νx2:T2)(νx1:T1)P (Struct Res Res)

x /∈ fn(P )⇒ (νx:T )(P | Q) ≡ P | (νx:T )Q (Struct Res Par)

(νG1)(νG2)P ≡ (νG2)(νG1)P (Struct GRes GRes)

G /∈ fg(T )⇒ (νG)(νx:T )P ≡ (νx:T )(νG)P (Struct GRes Res)

G /∈ fg(P )⇒ (νG)(P | Q) ≡ P | (νG)Q (Struct GRes Par)

Reduction: P → Q

x〈y1, . . . , yn〉 | x(z1:T1, . . . , zn:Tn).P → P {z1←y1} · · · {zn←yn} (Red Interact)

P → Q⇒ P | R → Q | R (Red Par)

P → Q⇒ (νG)P → (νG)Q (Red GRes)

P → Q⇒ (νx:T )P → (νx:T )Q (Red Res)

P ′ ≡ P , P → Q,Q ≡ Q′ ⇒ P ′ → Q′ (Red ≡)

Groups help to type-check names statically but have no dynamic behaviour;

groups are not themselves values. The following proposition demonstrates this

precisely; it asserts that the reduction behaviour of a typed process is equivalent to

the reduction behaviour of the untyped process obtained by erasing all type and

group annotations. (Appendix A reviews the untyped π-calculus.)

Erasing Type Annotations and Group Restrictions:

erase((νG)P )
∆
= erase(P )

erase((νx:T )P )
∆
= (νx)erase(P )

erase(0)
∆
= 0

erase(P | Q)
∆
= erase(P ) | erase(Q)

erase(!P )
∆
= !erase(P )

erase(x(y1:T1, . . . , yn:Tn).P )
∆
= x(y1, . . . , yn).erase(P )

erase(x〈y1, . . . , yn〉) ∆
= x〈y1, . . . , yn〉

Proposition 3.1 (Erasure)

For all typed processes P and Q, if P → Q then erase(P )→ erase(Q). If erase(P )→ R

then there is a typed process Q such that P → Q and R ≡ erase(Q).
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3.3 Static semantics

The main judgment E ` P : {G1, . . . , Gn} of the effect system for the π-calculus

means that the process P uses names according to their types and that all its

external reads and writes are on channels in groups G1, . . . , Gn. A channel type takes

the form G[T1, . . . , Tn]\H. This stipulates that the name is in group G and that it

is a channel for the exchange of n-tuples of names with types T1, . . . , Tn. The set

of group names H is the hidden effect of the channel. In the common case when

H = ?, we abbreviate the type to G[T1, . . . , Tn].

As examples of groups, in our encoding of the region calculus we have groups

Lit and K for literals and continuations, respectively, and each region ρ is a group.

Names of type Lit[] are in group Lit and exchange empty tuples, and names of

type K[Lit[]] are in group K and exchange names of type Lit[]. In our running

example, we have 5 : Lit[] and k : K[Lit[]]. A pointer to a function in a region

ρ is a name in group ρ. In our example, we could have f : ρ′[Lit[], K[Lit[]] and

g : ρ[Lit[], K[Lit[]]].

Given these typings for names, we have g(y, k′).f〈y, k′〉 : {ρ, ρ′} because the reads

and writes of the process are on the channels g and f whose groups are ρ and ρ′.
Similarly, we have f(x, k′).k′〈x〉 : {ρ′, K} and g〈5, k〉 : {ρ}. The composition of these

three processes has effect {ρ, ρ′, K}, the union of the individual effects.

The idea motivating hidden effects is that an input process listening on a channel

may represent a passive resource (for example, a function) that is only invoked if

there is an output on the channel. The hidden effect of a channel is an effect that

is masked in an input process, but incurred by an output process. In the context

of our example, our formal translation makes the following type assignments: f :

ρ′[Lit[], K[Lit[]]]\{K} and g : ρ[Lit[], K[Lit[]]]\{K, ρ′}. We then have f(x, k′).k′〈x〉 :
{ρ′}, g(y, k′).f〈y, k′〉 : {ρ}, and g〈5, k〉 : {ρ, ρ′, K}. The hidden effects are transferred

from the function bodies to the process g〈5, k〉 that invokes the functions. This

transfer is essential in the proof of our main garbage collection result, Theorem 4.4.

The effect of a replicated or name-restricted process is the same as the original

process. For example, abbreviating the types for f and g, we have:

(νf:ρ′)(νg:ρ)(!f(x, k′).k′〈x〉 |
!g(y, k′).f〈y, k′〉 | g〈5, k〉) : {ρ, ρ′, K}

On the other hand, the effect of a group-restriction (νG)P is the same as that of

P , except that G is deleted. This is because there can be no names free in P of group

G; any names of group G in P must be internally introduced by name-restrictions.

Therefore, (νG)P has no external reads or writes on channels of group G. For

example,

(νρ′)(νf)(νg)(!f(x, k′).k′〈x〉 |
!g(y, k′).f〈y, k′〉 | g〈5, k〉) : {ρ,K}

The following tables describe the syntax of types and environments, the judgments

and the rules defining our effect system. Let fg(G[T1, . . . , Tn]\H)
∆
= {G} ∪ fg(T1) ∪

· · · ∪ fg(Tn) ∪H.
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Syntax of Types and Environments, Typing Judgments:

G,H ::= {G1, . . . , Gn} finite set of name groups

T ::= G[T1, . . . , Tn]\H type of channel in group G with hidden effect H

E ::= ? | E,G | E, x:T environment

E ` � good environment

E ` T good channel type T

E ` x : T good name x of channel type T

E ` P : H good process P with effect H

Typing Rules:

(Env ?)

? ` �

(Env x)

E ` T x /∈ dom(E)

E, x:T ` �

(Env G)

E ` � G /∈ dom(E)

E,G ` �

(Type Chan)

E ` � {G} ∪H ⊆ dom(E) E ` T1 · · · E ` Tn

E ` G[T1, . . . , Tn]\H

(Exp x)

E ′, x:T ,E ′′ ` �
E ′, x:T ,E ′′ ` x : T

(Proc Input)

E ` x : G[T1, . . . , Tn]\H E, y1:T1, . . . , yn:Tn ` P : G

E ` x(y1:T1, . . . , yn:Tn).P : {G} ∪ (G−H)

(Proc Output)

E ` x : G[T1, . . . , Tn]\H E ` y1 : T1 · · · E ` yn : Tn

E ` x〈y1, . . . , yn〉 : {G} ∪H

(Proc GRes)

E,G ` P : H

E ` (νG)P : H− {G}

(Proc Res)

E, x:T ` P : H

E ` (νx:T )P : H

(Proc Par)

E ` P : G E ` Q : H

E ` P | Q : G ∪H

(Proc Repl)

E ` P : H

E ` !P : H

(Proc Zero)

E ` �
E ` 0 : ?

(Proc Subsum)

E ` P : G G ⊆ H ⊆ dom(E)

E ` P : H

The rules for good environments and good channel types ensure that declared

names and groups are distinct, and that all the names and groups occurring in a

type are declared. The rules for good processes ensure that names are used for input

and output according to their types, and compute an effect that includes the groups

of all the free names used for input and output.

https://doi.org/10.1017/S0956796801004270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004270


Region analysis and a π-calculus with groups 245

In the special case when the hidden effect H is ?, (Proc Input) and (Proc Output)

specialise to the following:

E ` x : G[T1, . . . , Tn]\?
E, y1:T1, . . . , yn:Tn ` P : G

E ` x(y1:T1, . . . , yn:Tn).P : {G} ∪G

E ` x : G[T1, . . . , Tn]\?
E ` y1 : T1 · · · E ` yn : Tn

E ` x〈y1, . . . , yn〉 : {G}

In this situation, we attribute all the effect G of the prefixed process P to the

input process x(y1:T1, . . . , yn:Tn).P . The effect G of P is entirely excluded from the

hidden effect, since H = ?.

A dual special case is when the effect of the prefixed process P is entirely included

in the hidden effect H. In this case, (Proc Input) and (Proc Output) specialise to the

following:

E ` x : G[T1, . . . , Tn]\H
E, y1:T1, . . . , yn:Tn ` P : H

E ` x(y1:T1, . . . , yn:Tn).P : {G}

E ` x : G[T1, . . . , Tn]\H
E ` y1 : T1 · · · E ` yn : Tn

E ` x〈y1, . . . , yn〉 : {G} ∪H

The effect of P is not attributed to the input x(y1:T1, . . . , yn:Tn).P but instead is

transferred to any outputs in the same group as x. If there are no such outputs, the

process P will remain blocked, so it is safe to discard its effects.

These two special cases of (Proc Input) and (Proc Output) are in fact sufficient for

the encoding of the region calculus presented in section 4.2; we need the first special

case for typing channels representing continuations, and the second special case

for typing channels representing function pointers. For simplicity, our actual rules

(Proc Input) and (Proc Output) combine both special cases; an alternative would

be to have two different kinds of channel types corresponding to the two special

cases.

The rule (Proc GRes) discards G from the effect of a new-group process (νG)P ,

since, in P , there can be no free names of group G (though there may be restricted

names of group G). The rule (Proc Subsum) is a rule of effect subsumption. We need

this rule to model the effect subsumption in rule (Exp Fun) of the region calculus.

The other rules for good processes simply compute the effect of a whole process in

terms of the effects of its parts.

We can prove a standard subject reduction result.

Proposition 3.2

If E ` P : H and P → Q then E ` Q : H.

Next, a standard definition of the barbs exhibited by a process formalizes the

idea of the external reads and writes through which a process may interact with its

environment. Let a barb, β, be either a name x or a co-name x.
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Exhibition of a Barb:

(Barb Input)

x(y1:T1, . . . , yn:Tn).P ↓ x

(Barb Output)

x〈y1, . . . , yn〉 ↓ x

(Barb GRes)

P ↓ β
(νG)P ↓ β

(Barb Res)

P ↓ β β /∈ {x, x}
(νx:T )P ↓ β

(Barb Par)

P ↓ β
P | Q ↓ β

(Barb ≡)

P ≡ Q Q ↓ β
P ↓ β

The following asserts the soundness of the effect system. The group of any barb

of a process is included in its effect.

Proposition 3.3 (Effect Soundness)

If E ` P : H and P ↓ β with β ∈ {x, x} then there is a type G[T1, . . . , Tn]\G such

that E ` x : G[T1, . . . , Tn]\G and G ∈ H.

3.4 Barbed congruence

To state equational properties of our encoding of the region calculus in the π-

calculus, we need a notion of operational equivalence. To this end, we use a

typed form (Pierce & Sangiorgi, 1996) of the barbed congruence of Milner &

Sangiorgi (1992), an equivalence with a uniform definition for a variety of process

calculi. See the textbook of Sangiorgi & Walker (2001) for further motivations and

examples. What follows is a series of definitions leading up to our definition of

barbed congruence.

First, we state a simple predicate for processes well-defined in a specific environ-

ment:

• We write E ` P to mean there is an effect G such that E ` P : G.

Since we are in a typed calculus, we only wish to ask whether two processes are

equivalent when they are well-defined in the same environment. The notion of a

relation on typed processes, given next, is that of a family of binary relations on

processes, indexed by an environment. Barbed congruence is defined as a relation

on typed processes.

• A relation on typed processes, S, is a set of triples (E, P , Q) where E is an

environment and P and Q are typed terms such that E ` P and E ` Q. We

write E ` P S Q to mean (E, P , Q) ∈ S.

• A relation on typed processes,S, is reflexive if and only if E ` P S P whenever

E ` P . It is symmetric if and only if E ` Q S P whenever E ` P S Q. It is

transitive if and only if E ` P S R whenever E ` P S Q and E ` QS R.

• For any relation on typed processes, S, let E ` P ≡S≡ Q mean there are

processes P ′ and Q′ such that P ≡ P ′, E ` P ′ S Q′, and Q′ ≡ Q.

Next, as a standard step towards defining barbed congruence, we define an

auxiliary relation, barbed bisimilarity. It is defined co-inductively as the greatest

barbed bisimulation.
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• We write P ⇓ β to mean there is a process P ′ such that P →∗ P ′ and P ′ ↓ β.

• A relation on typed processes, S, is a barbed bisimulation if and only if it is

symmetric and E ` P S Q implies:

(1) If P ↓ x then Q ⇓ x.
(2) If P → P ′ then there is Q′ such that Q→∗ Q′ and E ` P ′ ≡S≡ Q′.
• Barbed bisimilarity,

•≈, is the relation on typed processes such that E ` P •≈ Q

if and only if there is a barbed bisimulation S such that E ` P S Q.

By definition of E ` P •≈ Q, it follows that the operational behaviours of P and

Q are related in that the reductions and the barbs of P are matched by Q, and vice

versa. On the other hand, barbed bisimilarity,
•≈, is not a congruence relation, that

is, it is not preserved by the syntax formers of our calculus. In particular, it is not

even closed under parallel composition. To remedy this, we extract a congruence

relation, barbed congruence, from barbed bisimilarity as follows.

• A renaming, σ, is a substitution {x1←x′1} · · · {xn←x′n} of names for names where

n > 0 and the names x1, . . . , xn are pairwise distinct. Let dom(σ) = {x1, . . . , xn}
and ran(σ) = {x′1, . . . , x′n}. If x = xj for some j ∈ 1..n, let σ(x) = x′j . Otherwise,

if x /∈ dom(σ), let σ(x) = x. A renaming, σ, is an E-renaming if and only if

for all names x, y, if σ(x) = σ(y) and E ` x : T and E ` y : T ′ then T = T ′.
For any E-renaming, σ, the environment Eσ is defined as follows: ?σ

∆
= ?;

(E ′, G)σ
∆
= E ′σ, G; (E ′, x:T )σ

∆
= E ′σ, σ(x):T if σ(x) /∈ dom(E ′σ), and E ′σ if not.

• Barbed congruence, ≈, is the relation on typed processes such that E ` P ≈ Q

if and only if for all processes R, all E-renamings σ and all type environments

E ′, if Eσ, E ′ ` R then Eσ, E ′ ` Pσ | R •≈ Qσ | R.

The following are basic properties of barbed congruence needed for equational

reasoning. It is a congruence relation that is preserved by well-typed renamings,

includes structural congruence, and satisfies a weakening principle.

Proposition 3.4

(1) Barbed congruence is reflexive, transitive, and symmetric.

(2) Barbed congruence satisfies the congruence properties:

• If E, y1:T1, . . . , yn:Tn ` P ≈ Q then

E ` x(y1:T1, . . . , yn:Tn).P ≈ x(y1:T1, . . . , yn:Tn).Q.

• If E ` P ≈ Q and E ` R then E ` P | R ≈ Q | R.

• If E, x:T ` P ≈ Q then E ` (νx:T )P ≈ (νx:T )Q.

• If E,G ` P ≈ Q then E ` (νG)P ≈ (νG)Q.

• If E ` P ≈ Q then E ` !P ≈ !Q.

(3) If E ` P ≈ Q and σ is an E-renaming then Eσ ` Pσ ≈ Qσ.

(4) If P ≡ Q and E ` P then E ` P ≈ Q.

(5) If E ` P ≈ Q and E, E ′ ` � then E, E ′ ` P ≈ Q.

4 Encoding regions as groups

This section interprets the region calculus in terms of our π-calculus.
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4.1 The encoding

Most of the ideas of the translation are standard, and have already been illustrated

by example. A function value in the heap is represented by a replicated input process,

awaiting the argument and a continuation on which to return a result. A function is

invoked by sending it an argument and a continuation. Region names and letregionρ

are translated to groups and (νρ), respectively.

The remaining construct of our region calculus is sequencing: let x = a in b.

Assuming a continuation k, we translate this to (νk′)([[a]]k′ | k′(x).[[b]]k). This process

invents a fresh, intermediate continuation k′. The process [[a]]k′ evaluates a returning

a result on k′. The process k′(x).[[b]]k blocks until the result x is returned on k′, then

evaluates b, returning its result on k.

The following tables interpret the types, environments, expressions, regions, and

configurations of the region calculus in the π-calculus. In particular, if S · (a, h) is a

configuration, then [[S · (a, h)]]k is its translation, a process that returns any eventual

result on the continuation k. In typing the translation, we assume two global groups:

a group, K , of continuations and a group, Lit , of literals. The environment [[?]]

declares these groups and also a typing `i:Lit for each of the literals `1, . . . , `n.

Translating of the Region Calculus to the π-Calculus:

[[A]] type modelling the type A

[[E]] environment modelling environment E

[[a]]k process modelling term a, answer on k

[[p 7→ v]] process modelling value v at pointer p

[[r]] process modelling region r

[[S · (a, h)]]k process modelling configuration S · (a, h)

In the following equations, where necessary to construct type annotations in the

π-calculus, we have added type subscripts to the syntax of the region calculus.

The notation
∏

i∈I Pi for some finite indexing set I = {i1, . . . , in} is short for the

composition Pi1 | · · · | Pin | 0.

Translation Rules:

[[Lit]]
∆
= Lit[]

[[(A
e→ B) at ρ]]

∆
= ρ[[[A]], K[[[B]]]]\(e ∪ {K})

[[?]]
∆
= K,Lit , `1:Lit[], . . . , `n:Lit[]

[[E, ρ]]
∆
= [[E]], ρ

[[E, x:A]]
∆
= [[E]], x:[[A]]

[[x]]k
∆
= k〈x〉

[[let x = aA in b]]k
∆
= (νk′:K[[[A]]])([[a]]k′ | k′(x:[[A]]).[[b]]k)

[[p(q)]]k
∆
= p〈q, k〉

[[letregion ρ in a]]k
∆
= (νρ)[[a]]k

[[(v at ρ)A]]k
∆
= (νp:[[A]])([[p 7→ v]] | k〈p〉)
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[[p 7→ λ(x:A)bB]]
∆
= !p(x:[[A]], k:K[[[B]]]).[[b]]k

[[(pi 7→ vi)
i∈1..n]]

∆
=
∏

i∈1..n[[pi 7→ vi]]

[[(ρi 7→ ri)
i∈1..n]]

∆
=
∏

i∈1..n[[ri]]

[[S · (a, hH )]]k
∆
= (ν~ρdefunct)(ν[[ptr(H)]])([[a]]k | [[h]]) where {~ρdefunct} = dom(H)− S

The following theorem asserts that the translation preserves the static semantics

of the region calculus.

Theorem 4.1 (Static Adequacy)

(1) If E ` � then [[E]] ` �.
(2) If E ` A then [[E]] ` [[A]].

(3) If E ` a :e A and k /∈ dom([[E]]) then [[E]], k:K[[[A]]] ` [[a]]k : e ∪ {K}
(4) If H |= h and ρ ∈ dom(H) then [[env (H)]] ` [[h(ρ)]] : {ρ}
(5) If H |= S · (a, h) : A and k /∈ [[env (H)]] then

[[env (H)]], k:K[[[A]]] ` [[a]]k | [[h]] : dom(H) ∪ {K}
and also: [[?]], S , k:K[[[A]]] ` [[S · (a, h)]]k : S ∪ {K}

Next we state that the translation preserves the dynamic semantics. Our theorem

states that if one region calculus configuration evaluates to another, their π-calculus

interpretations are barbed congruent:

Theorem 4.2 (Dynamic Adequacy)

If H |= S · (a, h) : A and S · (a, h) ⇓ (p′, h′) then there is H ′ such that H � H ′ and

H + H ′ |= S · (p′, h′) : A and for all k /∈ dom2(H + H ′) ∪ L, [[?]], S , k:K[[[A]]] `
[[S · (a, h)]]k ≈ [[S · (p′, h′)]]k.

Recall the evaluations of the examples ex1 and ex2 given previously. From The-

orem 4.2 we obtain the following equations (in which we abbreviate environments

and types for the sake of clarity):

[[{ρ} · (ex1, h)]]k ≈ (νρ′)(νf:ρ′)(νg:ρ)([[f 7→ λ(x)x]] | [[g 7→ λ(y)f(y)]] | k〈5〉)
[[{ρ} · (ex2, h)]]k ≈ (νρ′)(νf:ρ′)(νg:ρ)(νj:ρ)

([[f 7→ λ(x)x]] | [[g 7→ λ(f)5]] | [[j 7→ λ(z)g(f)]] | k〈j〉)

4.2 Two garbage collection theorems

We present a general π-calculus theorem that has as a corollary a theorem asserting

that defunct regions may be deleted without affecting the meaning of a configura-

tion. Although various untyped equations to eliminate unused resources have been

proposed, as far as we know none is applicable in our situation.

Suppose there are processes P and R such that R has effect {G} but G is not in

the effect of P . So R only interacts on names in group G, but P never interacts

on names in group G, and therefore there can be no interaction between P and R.

Moreover, if P and R are the only sources of inputs or outputs in the scope of

G, then R has no external interactions, and therefore makes no difference to the

behaviour of the whole process. The following makes this idea precise equationally.
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We state the theorem in terms of the notation (νE)P defined by the equations:

(ν?)P
∆
= P , (νE, x:T )P

∆
= (νE)(νx:T )P , and (νE, G)P

∆
= (νE)(νG)P . The proof

proceeds by constructing a suitable bisimulation relation.

Theorem 4.3

If E,G, E ′ ` P : H and E,G, E ′ ` R : {G} with G /∈ H, then E ` (νG)(νE ′)(P | R) ≈
(νG)(νE ′)P .

Now, by applying this theorem, we can delete the defunct region ρ′ from our two

examples. We obtain:

(νρ′)(νf:ρ′)(νg:ρ)([[f 7→ λ(x)x]] | [[g 7→ λ(y)f(y)]] | k〈5〉)
≈ (νρ′)(νf:ρ′)(νg:ρ)([[g 7→ λ(y)f(y)]] | k〈5〉)

(νρ′)(νf:ρ′)(νg:ρ)(νj:ρ)([[f 7→ λ(x)x]] | [[g 7→ λ(f)5]] | [[j 7→ λ(z)g(f)]] | k〈j〉)
≈ (νρ′)(νf:ρ′)(νg:ρ)(νj:ρ)([[g 7→ λ(f)5]] | [[j 7→ λ(z)g(f)]] | k〈j〉)

The first equation illustrates the need for hidden effects. The hidden effect of g

is {K, ρ′}, and so the overall effect of the process [[g 7→ λ(y)f(y)]] | k〈5〉 is simply

{ρ,K}. This effect does not contain ρ′ and so the theorem justifies deletion of the

process [[f 7→ λ(x)x]], whose effect is {ρ′}. In an effect system for the π-calculus

without hidden effects, the effect of [[g 7→ λ(y)f(y)]] | k〈5〉 would include ρ′, and so

the theorem would not be applicable.

A standard garbage collection principle in the π-calculus is that if f does not occur

free in P , then (νf)(!f(x, k).R | P ) ≈ P . One might hope that this principle alone

would justify de-allocation of defunct regions. But neither of our example equations

is justified by this principle; in both cases, the name f occurs in the remainder of

the process. We need an effect system to determine that f is not actually invoked by

the remainder of the process.

The two equations displayed above are instances of our final theorem, a corollary

of Theorem 4.3. It asserts that deleting defunct regions makes no difference to the

behaviour of a configuration:

Theorem 4.4

Suppose H |= S · (a, h) : A and k /∈ dom2(H) ∪ L. Let ~ρdefunct be the sequence of

groups in dom(H)− S . Then:

[[?]], S , k:K[[[A]]] ` [[S · (a, h)]]k ≈ (ν~ρdefunct)(ν[[ptr(H)]])([[a]]k |∏ρ∈S [[H(ρ)]])

5 An equational theory

The new-group construct enjoys various equational properties, such as our laws

of structural congruence. On the other hand, equational properties of letregion do

not appear to have been previously studied. This section proposes an equational

theory for the region calculus, including equations for letregion inspired in part by

equations for new-group. We prove that the equational theory is sound with respect

to the semantics of the previous section. The equational transformations of Benton

& Kennedy (1999) for their ML intermediate language (without regions) appear to
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be the only prior work on an explicit equational theory for a typed calculus with

effects.

In the following, recall that the conventional syntax for application, b(a), where

either b or a is not a name, abbreviates b(a)
∆
= let f = b in let x = a in f(x) where

f /∈ {x} ∪ fn(a). Given this abbreviation, we can define in the standard way the

substitution b{x←a} to be the expression obtained by replacing each free occurrence

of x in b with the expression a.

Substitution of a Term for a Name:

x{z←c} ∆
=

{
c if x = z

x otherwise

x(y){z←c} ∆
= x{z←c}(y{z←c})

(let x = a in b){z←c} ∆
= let x = a{z←c} in (b{z←c}) for x /∈ {z} ∪ fn(c)

(λ(x:A)b){z←c} ∆
= λ(x:A)(b{z←c}) for x /∈ {z} ∪ fn(c)

The rules in the following tables inductively define the judgment E ` a ↔ b : A

intended to mean that the terms a and b have the same type, A, and equivalent

observable behaviour, although they may have different effects.

The first set of rules is essentially the call-by-value λ-calculus (Plotkin, 1975). As

usual in an equational theory for call-by-value, we restrict the argument a in the rule

(Eq Fun β) to be fully evaluated, either a name, x, or an allocation, λ(x)b at ρ. This

restriction is actually unnecessary for the present calculus, since there are no non-

terminating computations, but we include it so that the equational theory remains

valid when we extend our calculus with recursion. In rule (Eq Fun β), we also ask

for (λ(x:A)b at ρ)(a) and b{x←a} to share the same type, B. This is because the type

of b{x←a} can sometimes differ from the type of (λ(x:A)b at ρ)(a).

Equational Theory: The Call-by-Value λ-Calculus

(Eq Refl)

E ` a :e A

E ` a↔ a : A

(Eq Symm)

E ` a↔ b : A

E ` b↔ a : A

(Eq Trans)

E ` a↔ b : A E ` b↔ c : A

E ` a↔ c : A

(Eq Fun)

E ` (A
e→ B) at ρ E, x:A ` b1 ↔ b2 : B

E, x:A ` bi :ei B ei ⊆ e ∀i ∈ 1..2

E ` (λ(x:A)b1) at ρ↔ (λ(x:A)b2) at ρ : (A
e→ B) at ρ

(Eq Fun β) (where a is a name or an allocation)

E ` a :e1 A E, x:A ` b :e2 B E ` b{x←a} :e3 B ρ ∈ dom(E)

E ` (λ(x:A)b at ρ)(a)↔ b{x←a} : B

Next, we have rules for let , inspired by the computational λ-calculus (Moggi,

1989).
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Equational Theory: let

(Eq Let)

E ` a↔ a′ : A E, x:A ` b↔ b′ : B

E ` let x = a in b↔ let x = a′ in b′ : B

(Eq Let Assoc)

E ` a :e1 A E, x:A ` b :e2 B E, y:B ` c :e3 C

E ` let x = a in (let y = b in c)

↔ let y = (let x = a in b) in c : C

(Eq Let β) (where a is a name or an allocation)

E ` a :e1 A E, x:A :e2 b : B E ` b{x←a} :e3 B

E ` let x = a in b↔ b{x←a} : B

Finally, here are the new rules for letregion . For the sake of brevity, we write

(νρ)a as a shorthand for letregion ρ in a.

Equational Theory: letregion

(Eq Letregion)

E, ρ ` a↔ a′ : A ρ /∈ fr(A)

E ` (νρ)a↔ (νρ)a′ : A

(Eq Drop)

E ` a :e A ρ /∈ dom(E)

E ` (νρ)a↔ a : A

(Eq Swap)

E, ρ, ρ′ ` a :e A {ρ, ρ′} ∩ fr(A) = ?

E ` (νρ)(νρ′)a↔ (νρ′)(νρ)a : A

(Eq Letregion Let)

E, ρ ` a :e1 A E, x:A, ρ ` b :e2 B ρ /∈ fr(A) ∪ fr(B)

E ` (νρ)let x = a in b↔ let x = (νρ)a in (νρ)b : B

The rule (Eq Letregion) is a congruence rule. The rule (Eq Swap) allows region

scopes to be re-ordered. The rule (Eq Drop) allows unused region scopes to be

discarded; we need the condition ρ /∈ dom(E), rather than the weaker condition

ρ /∈ e∪ fr(A), to ensure that both (νρ)a and a are well-typed. The rule (Eq Letregion

Let) allows a single region to be broken into two.

The following lemma justifies our intention that if a1 and a2 are related by the

equational theory then in fact they have the same type, although they need not have

the same effect.

Lemma 5.1

If E ` a1 ↔ a2 : A then there are e1, e2 such that for each i ∈ 1..2, ei ⊆ dom(E) and

E ` ai :ei A.
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Using standard π-calculus techniques, we can show that our equational theory is

sound with respect to our π-calculus semantics.

Theorem 5.2

Suppose E ` a↔ b : A and k /∈ dom(E) ∪ L. Then [[E]], k:K[[[A]]] ` [[a]]k ≈ [[b]]k.

Tofte and Talpin proved a result that the operational behaviour of a region-

annotated term (like the terms of our calculus) is the same as its erasure to a pure

term of the λ-calculus. We conjecture that our equational theory is sound for a

standard contextual equivalence for the region calculus, and that this could easily

be shown by appealing to Tofte and Talpin’s result.

The following are derivable rules. The first is an instance of (Eq Drop). The

second follows from the first, (Eq Letregion Let), and (Eq Trans).

(Eq Appl x(y))

E ` x :? (B
e→ A) at ρ′ E ` y :? B ρ /∈ dom(E)

E ` (νρ)x(y)↔ x(y) : B

(Eq Appl) (where ρ /∈ fr((A
e2→ B) at ρ′))

E, ρ ` b :e1 (A
e2→ B) at ρ′ E, ρ ` a :e3 A

E ` (νρ)(b(a))↔ ((νρ)b)((νρ)a) : B

Other examples of derivable rules are:

E ` x :? A
e→ B at ρ E ` a :e

′
A y /∈ dom(E)

E ` x(a)↔ let y = a in x(y) : B

E ` a :e
′
A

e→ B at ρ E ` x :? A y /∈ dom(E)

E ` a(x)↔ let y = a in y(x) : B

E, x:A ` b :e1 B E ` a :e2 A E ` b{x←a} :e3 B f /∈ dom(E) ρ ∈ dom(E)

E ` let f = λ(x:A)b at ρ in f(a)↔ b{x←a} : B

E ` a :e1 A E, x:A ` b :e2 B ρ ∈ dom(E)

E ` let x = a in b↔ (λ(x:A)b at ρ)(a) : B

E ` a :e1 A E ` b :e2 B x /∈ dom(E)

E ` let x = a in b↔ b : B

E ` a :e1 A E, x:A ` b :e2 B E ` b{x←a} :e3 B

E ` let x = a in b↔ let x = a in b{x←a} : B

E ` a :e1 A E, x:A ` b :e2 B E, x:A, y : B ` c :e3 C

E ` let x = a in let y = b in c↔
let y = (let x = a in b) in (let x = a in c) : C
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The following are special cases of (Eq Drop):

E, ρ ` x :? A

E ` (νρ)x↔ x :? A

E, ρ ` v at ρ′ :{ρ′} (A
e→ B) at ρ′ ρ /∈ fr(A

e→ B at ρ′)

E ` (νρ)(v at ρ′)↔ v at ρ′ :{ρ′} (A
e→ B) at ρ′

In the following example, we apply (Eq Let Assoc) followed by (Eq Letregion

Let) to optimise a computation by replacing a single global region ρ by two smaller

local regions ρ1 and ρ2 whose lives do not overlap, and hence could share storage.

? ` (νρ)let f = λ(x)x at ρ in let y = f(5)

in let g = λ(z)y at ρ in g(42)

↔ (νρ)let y = (let f = λ(x)x at ρ in f(5))

in let g = λ(z)y at ρ in g(42)

↔ let y = (νρ1)(let f = λ(x)x at ρ1 in f(5))

in (νρ2)let g = λ(z)y at ρ2 in g(42) : Lit

6 Extensions

In this section, we show that the main results of the paper apply not only to the

simple region calculus of Section 2 but also to that calculus extended with recursive

functions, lists, and region polymorphism. As we discussed at the beginning of

section 2, this extended calculus includes all the features of Tofte and Talpin’s

original calculus, except type polymorphism. We include lists as a simple example

of a boxed data structure. We conjecture that our treatment of lists would easily

extend to general algebraic types, that is, recursive sums-of-products, with no further

extensions to the typed π-calculus of this section. Likewise, a treatment of mutable

storage would require no extensions. On the other hand, type or effect polymorphism

would require an extended π-calculus; we leave this study as future work. The results

of this section show that our π-calculus model of the region calculus is robust with

respect to extensions that do not directly manipulate regions.

We describe our extended calculus in section 6.1. Then in section 6.2 we describe

an extended π-calculus. Its extensions are recursive types, to model lists, and group

polymorphism, to model region polymorphism. In Section 6.3 we define an encoding

of the extended region calculus in this extended π-calculus. With the exception of

the results in section 5 concerning equational reasoning, all the other theorems in

the paper concerning the unextended calculi can be generalized to the extended

calculi. We omit the statement of these generalized theorems from this section,

but in Appendix B we state and prove all these theorems. We conjecture that the

material in section 5 could be generalized also, but we have not investigated this

generalization.
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6.1 An Extended λ-calculus

Here is the extended syntax of expressions and values.

Expressions and Values:

x, y, p, q, f, g name: variable, pointer, literal

ρ region variable

a, b ::= expression

x variable or pointer or literal

v at ρ allocation of v at ρ

x[ρ1, . . . , ρn](y) application

let x = a in b sequencing

letregion ρ in b region allocation and de-allocation

case x of nil ⇒ b1 | (y1 :: y2)⇒ b2 list case

u, v ::= boxed value

µ(f:A)λ[ρ1, . . . , ρn](x)b recursive function

nil empty list

x1 :: x2 cons cell

Previously, the only kind of value was function abstraction. In this calculus, a

boxed value can be a recursive, region-polymorphic function, an empty list, or a

cons cell.

In a function value µ(f:A)λ[ρ1, . . . , ρn](x)b, the names f and x and the region

variables ρ1, . . . , ρn are bound, with scope b. During evaluation, the name x gets

bound to the function’s argument and the name f gets bound to the function itself,

to enable recursive calls. The region parameters ρ1, . . . , ρn allow the function to

allocate and read from regions passed in as arguments. This region polymorphism

is essential for efficient code generation in the ML Kit compiler (Tofte & Talpin,

1997). Other kinds of boxed values are lists, that is either the empty list, nil , or a

cons cell, x1 :: x2, where the names x1 and x2 are heap pointers referring to the

head and tail of the list, respectively.

A new expression for function application, x[ρ1, . . . , ρn](y), applies the function

pointed to by x to the region parameters ρ1, . . . , ρn, and the value parameter y. The

other new expression, case xof nil ⇒ b1 | (y1 :: y2)⇒ b2, is for list discrimination. In

this expression, the names y1 and y2 are bound, with scope b2. When the expression

evaluates, if x is the empty list, b1 runs. Otherwise, if x is a cons cell x1 :: x2, then

b2{y1←x1}{y2←x2} runs. The other expressions of the extended calculus have the

same interpretation as in the unextended calculus.

The definitions of regions, heaps, and stacks needed for the dynamic semantics

are the same as before, though the set of values, v, stored in regions is extended.

Regions, Heaps and Stacks:

r ::= (pi 7→ vi)
i∈1..n region, pi distinct

h ::= (ρi 7→ ri)
i∈1..n heap, ρi distinct

S ::= {ρ1, . . . , ρn} stack of live regions
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The evaluation relation, S · (a, h) ⇓ (p, h′), is defined by the rules in the following

table.

Evaluation Rules:

(Eval Var)

S · (p, h) ⇓ (p, h)

(Eval Alloc)

ρ ∈ S p /∈ dom2(h)

S · (v at ρ, h) ⇓ (p, h + (ρ 7→ (h(ρ) + (p 7→ v))))

(Eval Appl) (where ρ ∈ S and h(ρ)(p) = µ(f:A)λ[ρ1, . . . , ρn](x)b)

S · (b{f←p}{ρ1←ρ′1} · · · {ρn←ρ′n}{x←q}, h) ⇓ (p′, h′)

S · (p[ρ′1, . . . , ρ′n](q), h) ⇓ (p′, h′)

(Eval Let)

S · (a, h) ⇓ (p′, h′) S · (b{x←p′}, h′) ⇓ (p′′, h′′)

S · (let x = a in b, h) ⇓ (p′′, h′′)

(Eval Letregion)

ρ /∈ dom(h) S ∪ {ρ} · (a, h + ρ 7→ ?) ⇓ (p′, h′)

S · (letregion ρ in a, h) ⇓ (p′, h′)

(Eval Case 1)

ρ ∈ S h(ρ)(p) = nil S · (b1, h) ⇓ (p′, h′)

S · (case p of nil ⇒ b1 | (y1 :: y2)⇒ b2, h) ⇓ (p′, h′)

(Eval Case 2)

ρ ∈ S h(ρ)(p) = q1 :: q2 S · (b2{y1←q1}{y2←q2}, h) ⇓ (p′, h′)

S · (case p of nil ⇒ b1 | (y1 :: y2)⇒ b2, h) ⇓ (p′, h′)

Next, we introduce the effects, types, and environments needed for the static

semantics. The definitions of effects and environments are unchanged, but we need

to introduce new types for region polymorphic functions and for lists.

In the extended type system, a function value (µ(f:F)λ[ρ1, . . . , ρn](x)b) at ρ, will

have a type F = (∀[ρ1, . . . , ρn]A
e→ B) at ρ, where A is the type of the function

argument x, and the regions ρ1, · · · , ρn are bound. A list stored at ρ will have type

[A] at ρ, where A is the type of the elements of the list. Note that nil is an overloaded

constant, which inhabits every well-formed type, and that each element of a list is

stored in the same region than the list itself.
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Effects, Types, and Environments:

e ::= {ρ1, . . . , ρn} effect

A,B, F ::= type of expressions

Lit type of literals

V at ρ type of V values at ρ

U, V ::= type of boxed values

∀[ρ1, . . . , ρn]A
e→ B polymorphic function

[A] list

E ::= environment

? empty environment

E, ρ entry for a region ρ

E, x:A entry for a name x

In the type (∀[ρ1, . . . , ρn]A
e→ B) at ρ, the regions ρ1, . . . , ρn are bound with

scope A
e→ B. Let fr(A) be the set of region variables free in the type A. We have

fr(Lit) = ?, and fr((∀[ρ1, . . . , ρn]A
e→ B) at ρ) = (fr(A)∪fr(B)∪e)−{ρ1, . . . , ρn}∪{ρ},

and fr([A] at ρ) = fr(A)∪{ρ}. We identify types up to consistent renaming of bound

regions.

The static semantics consists of judgments with the same format as before: good

environments, E ` �, good types, E ` A, and good expressions, E ` a :e A. The

rules in the following tables define the static semantics. For any substitution σ of

regions for regions and effect e = {ρ1, · · · , ρn}, the effect eσ is the set of regions

{σ(ρ1), · · · , σ(ρn)}.

Typing Rules:

(Env ?)

? ` �

(Env x)

E ` A x /∈ dom(E) ∪ L
E, x:A ` �

(Env ρ)

E ` � ρ /∈ dom(E)

E, ρ ` �

(Type Lit)

E ` �
E ` Lit

(Type →) (where E ′ = E, ρ1, . . . , ρn)

E ′ ` A e ⊆ dom(E ′) E ′ ` B ρ ∈ dom(E)

E ` (∀[ρ1, . . . , ρn]A
e→ B) at ρ

(Type List)

E ` A ρ ∈ dom(E)

E ` [A] at ρ

(Exp x)

E, x:A,E ′ ` �
E, x:A,E ′ ` x :? A

(Exp `)

E ` � ` ∈ L

E ` ` :? Lit

(Exp Appl) (where σ = {ρ1←ρ′1} · · · {ρn←ρ′n} and {ρ′1, . . . , ρ′n} ⊆ dom(E))

E ` x :? (∀[ρ1, . . . , ρn]A
e→ B) at ρ E ` y :? Aσ

E ` x[ρ′1, . . . , ρ′n](y) :{ρ}∪(eσ) Bσ
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(Exp Let)

E ` a :e A E, x:A ` b :e
′
B

E ` let x = a in b :e∪e′ B

(Exp Letregion)

E, ρ ` a :e A E ` A
E ` letregion ρ in a :e−{ρ} A

(Exp Case)

E ` x :? [A] at ρ E ` b1 :e1 B E, y1:A, y2:[A] at ρ ` b2 :e2 B

E ` case x of nil ⇒ b1 | (y1 :: y2)⇒ b2 :{ρ}∪e1∪e2 B

(Exp Fun) (where F = (∀[ρ1, . . . , ρn]A
e→ B) at ρ)

E, f:F, ρ1, . . . , ρn, x:A ` b :e
′
B e′ ⊆ e ⊆ dom(E, ρ1, . . . , ρn)

E ` (µ(f:F)λ[ρ1, . . . , ρn](x)b) at ρ :{ρ} F

(Exp Nil)

E ` [A] at ρ

E ` nil at ρ :{ρ} [A] at ρ

(Exp Cons)

E ` x1 :? A E ` x2 :? [A] at ρ

E ` (x1 :: x2) at ρ :{ρ} [A] at ρ

The definitions of region and heap typings, R and H , respectively, and of the

judgments E ` r at ρ : R, H |= �, H |= h, and H |= S · (a, h) : A are exactly as in

section 2.

6.2 An Extended π-calculus

We enrich our typed π-calculus with group polymorphism and recursive types.

The idea of group polymorphism is that instead of simply exchanging tuples of

names with fixed types on a channel, we exchange tuples of names together with

tuples of groups, where the types of the names depend on the groups. Accordingly,

the type of a channel acquires the form G(G1, . . . , Gm)[T1, . . . , Tn]\H, where G is

the group of the channel, G1, . . . , Gm are group parameters, T1, . . . , Tn are

the types of the name parameters, and H is the hidden effect. The types T1,

. . . , Tn and the effect H may depend on the group parameters G1, . . . , Gm. An

output process takes the form x〈G1, . . . , Gm, y1, . . . , yn〉, where G1, . . . , Gm are the

group parameters, and y1, . . . , yn are the name parameters. An input process

takes the form x(G1, . . . , Gm, y1:T1, . . . , yn:Tn).P where G1, . . . , Gm receive the group

parameters, and y1, . . . , yn receive the name parameters. This treatment of group

polymorphism, where group parameters are transmitted on channels, is inspired by

previous treatments of type polymorphism in the π-calculus (Turner, 1995; Pierce

& Sangiorgi, 1997), where type parameters are transmitted on channels. Group

polymorphism allows to type-check richer behaviour, such as an encoding of region

polymorphism, than previously. Still, group polymorphism does not introduce any

new dynamic behaviour: the reductions of any well-typed process are equivalent to

the reductions of its untyped erasure.

The idea of recursive types is standard. A recursive type takes the form µ(X)T .
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A name of type µ(X)T is deemed also to have the unfolded type T {X←µ(X)T },
and vice versa. However, for the sake of simplicity, we do not identify a recursive

type with its unfolding. A name may be assigned the type µ(X)X, but such a name

cannot be used for communication since we cannot unfold µ(X)X to a channel type.

The extended syntax of our π-calculus is as follows:

Types, Expressions, and Processes:

G,H group

X type variable

T ::= channel type

X type variable

G(G1, . . . , Gm)[T1, . . . , Tn]\H channel type

µ(X)T recursive type

x, y, p, q name: variable, channel

P ,Q, R ::= process

x(G1, . . . , Gm, y1:T1, . . . , yn:Tn).P input (no yi ∈ inp(P ))

x〈G1, . . . , Gm, y1, . . . , yn〉 output

(νG)P new-group: group restriction

(νx:T )P new-name: name restriction

P | Q composition

!P replication

0 inactivity

In the type G(G1, . . . , Gm)[T1, . . . , Tn]\H, the groups G1, . . . , Gm are bound with

scope T1, . . . , Tn and H. In the type µ(X)T , the type variable X is bound with

scope T . In a process x(G1, . . . , Gm, y1:T1, . . . , yn:Tn).P , the groups G1, . . . , Gm and

the names y1, . . . , yn are bound; their scope is P . The other binders, new-name and

new-group, have the same semantics as before. The definitions of free names of a

process, fn(P ), free groups of a type, fg(T ), and free groups of a process, fg(P ), are

as before, except for the following changes:

Free Groups, fg(T ), of Type T :

fg(X)
∆
= ?

fg(G(G1, . . . , Gm)[T1, . . . , Tn]\H)
∆
=

{G} ∪ ((fg(T1) ∪ · · · ∪ fg(Tn) ∪H)− {G1, . . . , Gm})
fg(µ(X)T )

∆
= fg(T )

Free Groups, fg(P ), of Process P :

fg(x(G1, . . . , Gm, y1:T1, . . . , yn:Tn).P )
∆
= (fg(T1) ∪ · · · ∪ fg(Tn) ∪ fg(P ))

−{G1, . . . , Gm}
fg(x〈G1, . . . , Gm, y1, . . . , yn〉) ∆

= {G1, . . . , Gm}
fg((νG)P )

∆
= fg(P )− {G}

fg((νx:T )P )
∆
= fg(T ) ∪ fg(P )
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fg(P | Q)
∆
= fg(P ) ∪ fg(Q)

fg(!P )
∆
= fg(P )

fg(0)
∆
= ?

We identify types and processes up to consistent renaming of bound groups,

names, and type variables. We write P {x←y} for the outcome of substituting y

for each free occurrence of the name x in the process P . We write P {G←H} and

T {G←H} for the outcomes of substituting H for each free occurrence of the group

G in the process P and the type T , respectively. We write P {X←T } and T ′{X←T }
for the outcomes of substituting T for each free occurrence of the type variable X

in the process P and the type T ′, respectively.

We define structural congruence P ≡ Q by the same rules as before, except that

we replace (Struct Input) with the following:

P ≡ Q ⇒ x(G1, . . . , Gm, y1:T1, . . . , yn:Tn).P ≡
x(G1, . . . , Gm, y1:T1, . . . , yn:Tn).Q

(Struct Input)

We define reduction P → Q by the following rules:

Reduction:

x〈G′1, . . . , G′m, y′1, . . . , y′n〉 | x(G1, . . . , Gm, y1:T1, . . . , yn:Tn).P

→ P {G1←G′1} · · · {Gm←G′m}{y1←y′1} · · · {yn←y′n}
(Red Interact)

P → Q⇒ P | R → Q | R (Red Par)

P → Q⇒ (νG)P → (νG)Q (Red GRes)

P → Q⇒ (νx:T )P → (νx:T )Q (Red Res)

P ′ ≡ P , P → Q,Q ≡ Q′ ⇒ P ′ → Q′ (Red ≡)

To take recursive types into account, we extend the definition of type environment

to include type variables, X. The definition of the domain, dom(E), of an environ-

ment, E, is also extended and is defined by the equations dom(?) = ?, dom(E, ρ) =

dom(E) ∪ {ρ}, dom(E, x:A) = dom(E) ∪ {x} and dom(E,X) = dom(E) ∪ {X}.

Environments:

E ::= environment

? empty environment

E,X entry for a type variable X

E,G entry for a group G

E, x:T entry for a variable x

The judgments of the type system have the same format as previously: good

environment E ` �, good type E ` T , good name E ` x : T , and good process

E ` P : H. Their meaning is given inductively by the rules in the following tables.
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Typing Rules:

(Env ?)

? ` �

(Env x)

E ` T x /∈ dom(E)

E, x:T ` �

(Env G)

E ` � G /∈ dom(E)

E,G ` �

(Env X)

E ` � X /∈ dom(E)

E,X ` �
(Type Chan) (where E ′ = E,G1, . . . , Gm)

E ′ ` � G ∈ dom(E) H ⊆ dom(E ′) E ′ ` Ti ∀i ∈ 1..n

E ` G(G1, . . . , Gm)[T1, . . . , Tn]\H
(Type X)

E ′, X, E ′′ ` �
E ′, X, E ′′ ` X

(Type Rec)

E,X ` T
E ` µ(X)T

(Exp x)

E ′, x:T ,E ′′ ` �
E ′, x:T ,E ′′ ` x : T

(Exp Unfold)

E ` x : µ(X)T

E ` x : T {X←µ(X)T }

(Exp Fold)

E ` x : T {X←µ(X)T }
E ` x : µ(X)T

(Proc Input) (where (G−H) ∩ {G1, . . . , Gm} = ?)

E ` x : G(G1, . . . , Gm)[T1, . . . , Tn]\H
E,G1, . . . , Gm, y1:T1, . . . , yn:Tn ` P : G

E ` x(G1, . . . , Gm, y1:T1, . . . , yn:Tn).P : {G} ∪ (G−H)

(Proc Output) (where σ = {G1←G′1} · · · {Gm←G′m})
E ` x : G(G1, . . . , Gm)[T1, . . . , Tn]\H
{G′1, . . . , G′m} ⊆ dom(E) E ` y′i : Tiσ ∀i ∈ 1..n

E ` x〈G′1, . . . , G′m, y′1, . . . , y′n〉 : {G} ∪Hσ

(Proc GRes)

E,G ` P : H

E ` (νG)P : H− {G}

(Proc Res)

E, x:T ` P : H

E ` (νx:T )P : H

(Proc Par)

E ` P : G E ` Q : H

E ` P | Q : G ∪H

(Proc Repl)

E ` P : H

E ` !P : H

(Proc Zero)

E ` �
E ` 0 : ?

(Proc Subsum)

E ` P : G G ⊆ H ⊆ dom(E)

E ` P : H

The standard rule (Type Rec) for checking goodness of a recursive types µ(X)T

records the name of the recursively bound variable X by inserting it into the

environment used to check goodness of the body T . This is the only circumstance

in which we are interested in having type variables in an environment. We are only

interested in the behaviour of processes type-checked in proper environments, those

in which no type variables occur.
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Proper environments:

Let E be proper if and only if E ` � but there is no X such that E ` X.

The relation P ↓ β where the barb β ∈ {x, x}, is defined much as before.

Exhibition of a Barb:

(Barb Input)

x(G1, . . . , Gm, y1:T1, . . . , yn:Tn).P ↓ x

(Barb Output)

x〈G1, . . . , Gm, y1, . . . , yn〉 ↓ x

(Barb GRes)

P ↓ β
(νG)P ↓ β

(Barb Res)

P ↓ β β /∈ {x, x}
(νx:T )P ↓ β

(Barb Par)

P ↓ β
P | Q ↓ β

(Barb ≡)

P ≡ Q Q ↓ β
P ↓ β

The definition of a relation on typed processes is the same as before, except we

restrict attention to proper environments:

• A relation on typed processes (of the extended π-calculus),S, is a set of triples

(E, P , Q) where E is a proper environment and P and Q are typed terms such

that E ` P and E ` Q.

The definition of barbed congruence, and the auxiliary notions including barbed

bisimulation and barbed bisimilarity, are exactly as before.

6.3 An extended encoding

We translate the extended region calculus into the extended π-calculus as follows.

In this encoding, the type of a boxed value located at region ρ is of the kind

ρ(ρ1, . . . , ρm)[T1, . . . , Tn]\H. In the common case when m = 0, that is, the value is

monomorphic, and has no hidden effect, we abbreviate the type to ρ[T1, . . . , Tn].

Translating of the Region Calculus to the π-Calculus:

[[A]] type modelling the type A

[[E]] environment modelling proper environment E

[[a]]k process modelling term a, answer on k

[[p 7→ v]] process modelling value v at pointer p

[[r]] process modelling region r

[[S · (a, h)]]k process modelling configuration S · (a, h)

Translation Rules:

[[Lit]]
∆
= Lit[]

[[(∀[ρ1, . . . , ρn]A
e→ B) at ρ]]

∆
= ρ(ρ1, . . . , ρn)[[[A]], K[[[B]]]]\(e ∪ {K})

[[[A] at ρ]]
∆
= µ(X)ρ[ρ[], ρ[[[A]], X]]

https://doi.org/10.1017/S0956796801004270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004270


Region analysis and a π-calculus with groups 263

[[?]]
∆
= K,Lit , `1:Lit[], . . . , `n:Lit[]

[[E, ρ]]
∆
= [[E]], ρ

[[E, x:A]]
∆
= [[E]], x:[[A]]

[[x]]k
∆
= k〈x〉

[[let x = aA in b]]k
∆
= (νk′:K[[[A]]])([[a]]k′ | k′(x:[[A]]).[[b]]k)

[[p[ρ1, . . . , ρn](q)]]k
∆
= p〈ρ1, . . . , ρn, q, k〉

[[(v at ρ)A]]k
∆
= (νp:[[A]])([[p 7→ v]] | k〈p〉)

[[letregion ρ in a]]k
∆
= (νρ)[[a]]k

[[case p[A]atρ of nil ⇒ b1 | (y1 :: y2)⇒ b2]]k
∆
= (νz1:ρ[])(νz2:ρ[[[A]], [[[A] at ρ]]])

(p〈z1, z2〉 | z1().[[b1]]k | z2(y1:[[A]], y2:[[[A] at ρ]]).[[b2]]k)

[[p 7→ µ(f:F)λ[ρ1, . . . , ρn](x)b]]
∆
= !p(ρ1, . . . , ρn, x:[[A]], k:K[[[B]]]).[[b{f←p}]]k

where F = (∀[ρ1, . . . , ρn]A
e→ B) at ρ

[[p 7→ nil [A]atρ]]
∆
= !p(z1:ρ[], z2:ρ[[[A]], [[[A] at ρ]]]).z1〈〉

[[p 7→ (x1 :: x2)[A]atρ]]
∆
= !p(z1:ρ[], z2:ρ[[[A]], [[[A] at ρ]]]).z2〈x1, x2〉

[[(pi 7→ vi)
i∈1..n]]

∆
=
∏

i∈1..n[[pi 7→ vi]]

[[(ρi 7→ ri)
i∈1..n]]

∆
=
∏

i∈1..n[[ri]]

[[S · (a, hH )]]k
∆
= (ν~ρdefunct)(ν[[ptr(H)]])([[a]]k | [[h]]) where {~ρdefunct} = dom(H)− S

The translation of the extended region calculus is an extension of the encoding

given in section 4. In particular, the encodings of type environments, regions, heaps

and configurations are unchanged.

The encoding of lists and the case expression are standard (Milner, 1999). A

polymorphic recursive function is modelled as a replicated input process, awaiting

the argument of the function, a continuation on which to return a result and for

group parameters representing the region parameters to the function. A function is

invoked by sending it the argument and a continuation channel.

Appendix B states and proves reformulations of all the results stated in sections 2, 3

and 4 in terms of the extended calculi of this section.

7 Conclusions

We showed that the static and dynamic semantics of Tofte and Talpin’s region cal-

culus are preserved by a translation into a typed π-calculus. The letregion construct

is modelled by a new-group construct originally introduced into process calculi by

Cardelli, Ghelli & Gordon (2000a). We showed that the rather subtle correctness of

memory de-allocation in the region calculus is an instance of Theorem 4.3, a new

garbage collection principle for the π-calculus. The translation is an example of how

the new-group construct accounts for the types generated by letregion , just as the

standard new-name construct of the π-calculus accounts for dynamic generation of

values.

Banerjee, Heintze & Riecke (1999) give an alternative proof of the soundness of
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region-based memory management. Theirs is obtained by interpreting the region

calculus in a polymorphic λ-calculus equipped with a new binary type constructor

# that behaves like a union or intersection type. Their techniques are those of

denotational semantics, completely different from the operational techniques of this

paper. The formal connections between the two approaches are not obvious but

would be intriguing to investigate. A possible advantage of our semantics in the

π-calculus is that it could easily be extended to interpret a region calculus with

concurrency, but that remains future work.

Other alternative proofs of soundness are contained in some papers published

after this work first appeared (Helsen & Thiemann, 2000; Calcagno, 2001; Talpin,

2001). These papers give concrete, purely syntactic proofs of soundness for various

region calculi. Still, these specific proofs do not expose the fact that the soundness of

region de-allocation follows from a more abstract principle such as our Theorem 4.3.

A line of future work is to consider the semantics of other region calculi (Aiken

et al., 1995; Crary et al., 1999; Hughes & Pareto, 1999) in terms of the π-calculus. Fi-

nally, various researchers (Moggi & Palumbo, 1999; Semmelroth & Sabry, 1999) have

noted a connection between the monadic encapsulation of state in Haskell (Launch-

bury & Peyton Jones, 1995) and regions; hence it would be illuminating to interpret

monadic encapsulation in the π-calculus.
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A Review of the untyped π-calculus

In this section, we review the syntax and semantics of the untyped, polyadic, choice-

free, asynchronous π-calculus (Milner, 1999; Boudol, 1992; Honda, 1992). We impose

two additional (standard) simplifications, that are: (1) the recipient of a name may

only use it in output actions; (2) there are no operators for testing the equality (or

inequality) of names. Intuitively, only the capability to output on a named channel

may be transmitted.

The π-calculus fragment defined by these restrictions, also known as the local

π-calculus (Merro & Sangiorgi, 1998), has a richer equational theory than the

full π-calculus, and can be regarded as a basis for some proposals of concurrent

programming languages (Fournet & Gonthier, 1996; Pierce & Turner, 2000). The

additional algebraic laws obtained in the local variant of π, such as, for example,

the replication laws listed subsequently in Proposition A.6, are required in the proof

of Theorem 5.2, the correctness of our proposed equational theory for the region

calculus.

The syntax and dynamic semantics of the untyped π-calculus are defined in
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Appendixes A.1 and A.2, respectively. In Appendix A.3 we define an alternative

semantics for the calculus based on a labelled transition system, that makes it easier

to reason about possible reductions of a process. We also formulate Proposition A.1,

which relates the reduction and transition semantics. In Appendix A.4 we define

barbed congruence for the untyped calculus and we prove several algebraic laws

that are useful in Appendix B.

A.1 Syntax

Processes of this calculus are those obtained from the typed π-calculus processes

defined in Section 3 by erasing all type and group annotations.

Processes:

x, y, p, q names

P ,Q, R ::= process

x(y1, . . . , yn).P input (no yi ∈ inp(P ))

x〈y1, . . . , yn〉 output

(νx)P restriction

P | Q composition

!P replication

0 inactivity

The locality property is ensured using a syntactic restriction on the definition of

inputs, x(y1, . . . , yn).P , namely that no parameter yi is in inp(P ), where inp(P ) is the

set of names x such that an input x(z1, . . . , zm).P ′ occurs as a subprocess of P , with

x not bound.

We write P {x←x′} for the outcome of a capture-avoiding substitution of x′ for

each free occurrence of the variable x in the process P . We identify processes up to

renaming of bound variables. We write P = Q to mean that P and Q are the same

up to renaming of bound variables.

A.2 Dynamic semantics

We formalize the semantics of the untyped π-calculus using techniques identical to

those applied in section 2.2. In particular, a reduction relation between processes,

P → Q, is defined on top of an auxiliary structural congruence relation, P ≡ Q, that

identifies processes up to simple rearrangements.

Structural Congruence:

P ≡ P (Struct Refl)

Q ≡ P ⇒ P ≡ Q (Struct Symm)

P ≡ Q,Q ≡ R ⇒ P ≡ R (Struct Trans)

P ≡ Q⇒ (νx)P ≡ (νx)Q (Struct Res)

P ≡ Q⇒ P | R ≡ Q | R (Struct Par)
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P ≡ Q⇒ !P ≡ !Q (Struct Repl)

P ≡ Q⇒ x(y1, . . . , yn).P ≡ x(y1, . . . , yn).Q (Struct Input)

P | 0 ≡ P (Struct Par Zero)

P | Q ≡ Q | P (Struct Par Comm)

(P | Q) | R ≡ P | (Q | R) (Struct Par Assoc)

!P ≡ P | !P (Struct Repl Par)

(νx)(νy)P ≡ (νy)(νx)P (Struct Res Res)

x /∈ fn(P )⇒ (νx)(P | Q) ≡ P | (νx)Q (Struct Res Par)

Reduction:

x〈y1, . . . , yn〉 | x(z1, . . . , zn).P → P {z1←y1} · · · {zn←yn} (Red Interact)

P → Q⇒ P | R → Q | R (Red Par)

P → Q⇒ (νx)P → (νx)Q (Red Res)

P ′ ≡ P , P → Q,Q ≡ Q′ ⇒ P ′ → Q′ (Red ≡)

This presentation of the π-calculus semantics allows for a simple and compact

definition of the reduction rules in which the sub-processes having to interact – the

redexes in λ-calculus terminology – appear in contiguous position. Nonetheless, the

operational semantics of concurrent systems are commonly defined using labelled

transition systems and, whereas a reduction semantics may be much more enlight-

ening and simple than a transition semantics, the latter makes it easier to reason

about the possible reductions of a process. For instance, it appears to be difficult

to prove directly Lemma B.29, a property essential in the proof of the garbage col-

lection principle given in Appendix B.5, without proving first an equivalent result,

Lemma B.28, for the labelled transition system.

A.3 Labelled transition semantics

The definitions in this section are adapted from the presentation of the labelled

transition system of the spi calculus (Abadi & Gordon, 1999). In order to define

the labelled transition semantics, we need some new syntactic forms: abstractions,

concretions, and agents.

• An abstraction is an expression of the form (~x)P , where P is a process and ~x

is a sequence of names x1, . . . , xn such that n > 0 and x1, . . . , xn are pairwise

distinct and bound in P .

• A concretion is an expression of the form (ν~z)〈~y〉Q, where Q is a process and

~z and ~y are sequences of names z1, . . . , zm, and y1, . . . , yn, respectively, such

that m, n > 0, and {~z} ⊆ {~y}, and z1, . . . , zm are pairwise distinct and bound

in 〈~y〉Q.

• An agent is either a process, an abstraction, or a concretion. We use the

metavariables A and B to stand for arbitrary agents.
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For any abstraction, (~x)P , let its arity, |(~x)P |, be the length of the sequence ~x.

Similarly, for any concretion, (ν~z)〈~y〉Q, let its arity, |(ν~z)〈~y〉Q|, be the length of the

sequence ~y.

Let fn(A) be the sets of free names of an agent A. Like processes, both abstractions

and concretions are identified up to consistent renaming of bound names.

We extend the restriction and composition operators to arbitrary agents, as

follows. For an abstraction, (~x)P , we set:

(νy)(~x)P
∆
= (~x)(νy)P and R | (~x)P ∆

= (~x)(R | P )

where we assume that the bound names ~x are disjoint from {y} ∪ fn(R).

For a concretion, (ν~z)〈~y〉Q, we set:

(νx)(ν~z)〈~y〉Q ∆
=

{
(νx,~z)〈~y〉Q if x ∈ {~y}
(ν~z)〈~y〉(νx)Q otherwise

R | (ν~z)〈~y〉Q ∆
= (ν~z)〈~y〉(R | Q)

assuming that x 6∈ {~z} and that {~z} ∩ fn(R) = ?.

We define the dual composition A | R symmetrically.

Next, we define processes obtained by combining abstractions and concretions of

equal arity. If F is the abstraction (~x)P where ~x = x1, . . . , xn and C is the concretion

(ν~z)〈~y〉Q where ~y = y1, . . . , yn and {~z} ∩ fn(P ) = ?, we define the interactions F@C

and C@F to be the processes given by:

F@C
∆
= (ν~z)(P {x1←y1} · · · {xn←yn} | Q)

C@F
∆
= (ν~z)(Q | P {x1←y1} · · · {xn←yn})

An action is either a barb or the distinguished silent action τ. The labelled transition

system is written P
α−→ A, where P is a process, α is an action, and A is an agent.

We define this relation inductively, by the following rules:

The Labelled Transition System:

(Trans In)

x(y1, . . . , yn).P
x−→ (y1, . . . , yn)P

(Trans Out)

x〈y1, . . . , yn〉 x−→ (ν)〈y1, . . . , yn〉0

(Trans Inter 1) (with |F | = |C|)
P

x−→ F Q
x−→ C

P | Q τ−→ F@C

(Trans Inter 2) (with |F | = |C|)
P

x−→ C Q
x−→ F

P | Q τ−→ C@F

(Trans Par 1)

P
α−→ A

P | Q α−→ A | Q

(Trans Par 2)

Q
α−→ A

P | Q α−→ P | A

(Trans Res)

P
α−→ A α /∈ {x, x}

(νx)P
α−→ (νx)A

(Trans Repl)

P | !P α−→ A

!P
α−→ A

The following is a basic result that states that modulo structural congruence, the

reduction relation exactly represents the silent action of the transition semantics.
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A proof of this property can be obtained by adapting the detailed proof of an

equivalent result for the π-calculus (Abadi & Gordon, 1999).

Proposition A.1

P → Q if and only if there is a process R such that P
τ−→ R and R ≡ Q.

A.4 Barbed congruence

The notion of equivalence between untyped terms that we consider in this paper

is barbed congruence (Milner & Sangiorgi, 1992), a bisimulation-based behavioural

equivalence that preserves a notion of observation, called barbs.

A barb, β, is either a name x or a co-name x. We write P ⇓ β if there exists P ′
such that P →∗ P ′ and P ′ ↓ β, where the relation ↓ is defined in the following table.

Exhibition of a Barb:

(Barb Input)

x(y1, . . . , yn).P ↓ x

(Barb Output)

x〈y1, . . . , yn〉 ↓ x

(Barb Res)

P ↓ β β /∈ {x, x}
(νx)P ↓ β

(Barb Par)

P ↓ β
P | Q ↓ β

(Barb ≡)

P ≡ Q Q ↓ β
P ↓ β

The barbs exhibited by a process, P , are related to the labelled transitions that

P can perform, that is, to the external communications through which a process

may interact with an outer context. We can formalize this idea using the following

proposition.

Proposition A.2

P ↓ β if and only if there is an agent A such that P
β−→ A.

What follows is a series of definitions leading up to our definition of barbed

congruence for the untyped π-calculus.

• For any relation on processes S, let P ≡S≡ Q mean there are processes P ′
and Q′ such that P ≡ P ′, P ′ S Q′, and Q′ ≡ Q.

• A symmetric relation S is a barbed bisimulation if and only if P S Q implies:

(1) If P ↓ x then Q ⇓ x.
(2) If P → P ′ then there is Q′ such that Q→∗ Q′ and P ′ ≡S≡ Q′.
• A renaming, σ, is a substitution {x1←x′1} · · · {xn←x′n} of names for names where

n > 0 and the names x1, . . . , xn are pairwise distinct. Let dom(σ) = {x1, . . . , xn}
and ran(σ) = {x′1, . . . , x′n}. If x = xj for some j ∈ 1..n, let σ(x) = x′j . Otherwise,

if x /∈ dom(σ), let σ(x) = x.

• Barbed bisimilarity,
•≈, is the relation on processes such that P

•≈ Q if and only

if there is a barbed bisimulation S such that P S Q.
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• Barbed congruence, ≈, is the relation on processes such that P ≈ Q if and only

if for all processes R and renamings σ we have that Pσ | R •≈ Qσ | R.

The following are basic properties of barbed congruence for the untyped π-

calculus. As in the typed case, barbed congruence is a congruence relation preserved

by renamings that includes structural congruence.

Proposition A.3

(1) Barbed congruence is reflexive, transitive, and symmetric.

(2) Barbed congruence satisfies the congruence properties.

• If P ≈ Q then x(y1, . . . , yn).P ≈ x(y1, . . . , yn).Q.

• If P ≈ Q then P | R ≈ Q | R.

• If P ≈ Q then (νx)P ≈ (νx)Q.

• If P ≈ Q then !P ≈ !Q.

(3) If P ≈ Q then Pσ ≈ Qσ for any arbitrary substitution σ from names to names.

(4) If P ≡ Q then P ≈ Q.

(5) If x /∈ fn(P ) then (νx)P ≈ P .

Next, we state a non-interference property for communications over a restricted

channel. This property plays an important role in the soundness proof of the

equational theory developed in section 5.

Lemma A.4 (Non-Interference)

If k /∈ {z} ∪ fn(P ), then (νk)(k〈z〉 | k(x).P ) ≈ P {x←z}.
We also make use of the following algebraic laws.

Lemma A.5

(1) If k /∈ {x, y1, . . . , yn} then x(y1, . . . , yn).(νk)P ≈ (νk)x(y1, . . . , yn).P .

(2) If k /∈ fn(Q) then (νk)(k(x1, . . . , xn).P | Q) ≈ Q and

(νk)(!k(x1, . . . , xn).P | Q) ≈ Q.

(3) If x /∈ fn(k′(y).Q) then (νk′)(k(x).(P | k′(y).Q)) ≈ (νk′)(k(x).P | k′(y).Q).

Assume p does not appear free in input position in P , Q, that is, p /∈ inp(P )∪inp(Q),

let the operator def p(x, k) = P in Q denote the process (νp)(!p(x, k).P | Q). Such

processes are found in encodings of the λ-calculus in the π-calculus and also in

our encoding of the region calculus. For example, erase([[λ(x:A)b at ρ]]k) can be

rewritten def p(x, k) = [[b]]k in k〈p〉.
Replicated Resources:

For all processes P and Q, such that p /∈ inp(P ) ∪ inp(Q), we define the process

def p(y1, . . . , yn) = P in Q to be (νp)(!p(y1, . . . , yn).P | Q).

One of the algebraic laws valid in the local π-calculus and not in the full π-calculus

is the replication theorem of Milner that, intuitively, states that private resources can

be safely duplicated, that is, for example:

def p(y1, . . . , yn) = P in (Q | R) ≈
(def p(y1, . . . , yn) = P in Q) | (def p(y1, . . . , yn) = P in R)
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We state below Proposition A.6, which lists a more complete set of replication

laws. Milner (1999) proves an equivalent property for the full π-calculus, where the

equivalence used is strong ground congruence (Milner et al., 1992). But this equality

holds only with the side condition that the link to the resource (the channel x in

this example) may not be emitted, that is, does not appear in object position of an

output. Merro & Sangiorgi (1998) prove the same equation, without the first side

condition, for barbed congruence in the local π-calculus. Dal Zilio (1999) proves

similar laws for a local variant of the blue calculus.

Proposition A.6 (Replication Laws)

(1) If p 6∈ fn(P ) then def p(~y) = R in P ≈ P

(2) def p(~y) = R in (P | Q) ≈ (def p(~y) = R in P ) | (def p(~y) = R in Q)

(3) If p 6= q and q 6∈ fn(R) then:

def p(~y) = R in (def q(~z) = S in P )

≈ def q(~z) = (def p(~y) = R in S) in (def p(~y) = R in P )

(4) If {~z} ∩ fn(p(~y).R) = ? then:

x(~z).(def p(~y) = R in P ) ≈ def p(~y) = R in x(~z).P

(5) def p(y1, . . . , yn) = P in (p〈z1, . . . , zn〉 | Q)

≈ def p(y1, . . . , yn) = P in (P {y1←z1} · · · {yn←zn} | Q)

B Proofs

In this appendix, we prove all the propositions stated without proof in the main

body of the paper. Proofs for auxiliary results can be found in a technical report (Dal

Zilio & Gordon, 2000b). We split the appendix into several sections. Throughout,

with the exception of Appendix B.7, we work with the extended calculi of section 6.

Proofs of all the corresponding theorems for the unextended calculi may be obtained

by simplifying the proofs for the extended calculi.

(1) In Appendix B.1 we prove Theorem B.5, the subject reduction property for

the extended region calculus, and Proposition B.6, the property that well-

typed configurations do not lead to runtime errors. These facts correspond

to Theorem 2.1 and Proposition 2.2, respectively, for the unextended region

calculus.

(2) In Appendix B.2, we prove Proposition B.17, the subject reduction property for

our extended π-calculus, and Proposition B.18, effect soundness, the property

that the group of any barb of a process is included in its effect. These

facts correspond to Proposition 3.2 and Proposition 3.3, respectively, for the

unextended π-calculus.

(3) In Appendix B.3, we prove Proposition B.22, which asserts that the reductions

of a typed process according to the typed operational semantics are equivalent

to the reductions of the untyped erasure of the process according to the

untyped operational semantics. This fact corresponds to Proposition 3.1 for

the unextended π-calculus.
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(4) In Appendix B.4, we prove Proposition B.27, that barbed congruence for the

extended π-calculus satisfies the congruence properties. This fact corresponds

to Proposition 3.4(2), for the unextended π-calculus.

(5) In Appendix B.5, we prove Theorem B.30, the garbage collection principle

for our extended π-calculus. This fact corresponds to Theorem 4.3 for the

unextended π-calculus.

(6) In Appendix B.6 we prove various properties of the encoding of the region

calculus in the π-calculus.

Appendix B.6.1 proves Theorem B.32, which asserts that the encoding preserves

the static semantics.

Appendix B.6.2 introduces an auxiliary small-step semantics for the region

calculus.

Appendix B.6.3 exploits the auxiliary small-step semantics in order to prove

Theorem B.35, which asserts that the encoding preserves the dynamic seman-

tics.

Appendix B.6.4 proves Theorem B.36, which asserts that defunct regions make

no difference to the behaviour of a program.

The three theorems proved in this appendix correspond to Theorems 4.1, 4.2,

and 4.4, respectively, for the unextended calculi.

(7) In Appendix B.7, we prove the auxiliary lemma, Lemma 5.1, and the soundness

of the equational theory for the unextended region calculus, Theorem 5.2, as

stated in section 5.

B.1 Subject reduction for the λ-calculus

In this section, we prove Theorem B.5, that in the extended region calculus reduction

preserves types. We also prove Proposition B.6, that well-typed values are allocated

in live regions and that well-typed function applications invoke closures stored in

live regions. Combining these two properties implies that a well-typed expression

cannot yield a runtime errors.

The proof of these properties uses a standard series of simple intermediate results,

like weakening properties, Lemmas B.1 and B.2, or substitution lemmas, Lemmas B.3

to B.4.

In the type and effect system introduced in section 2.3 and section 6.1, each

judgment has the form E ` J, where E is a typing judgment and J is an assertion

that is either �, for well-formed environments, or a type A, for well-formed types, or

a :e A, for good expressions a with type A and effect e. In the rest of the section, we

use the symbol J to denote such an assertion.

Lemma B.1

If E ` J and E, E ′ ` � then E, E ′ ` J.

Lemma B.2

If env (H) ` J and H � H ′ and H ′ |= � then env (H + H ′) ` J.

Lemma B.3

If E, x:A,E ′ ` J and E ` p :? A then E, E ′ ` J{x←p}.
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Lemma B.4

If E, ρ, E ′ ` J and ρ′ is a region defined in dom(E) then E, E ′{ρ←ρ′} ` J{ρ←ρ′}.
The following is the subject reduction theorem for our extended region calculus.

A proof of Theorem 2.1, subject reduction for the unextended region calculus, can

be obtained by simplifying the following proof.

Theorem B.5

If H |= S · (a, h) : A and S · (a, h) ⇓ (p′, h′) there is H ′ such that H � H ′ and

H + H ′ |= S · (p′, h′) : A.

Proof

By induction on the derivation of S · (a, h) ⇓ (p′, h′).

(Eval Var) Then S · (p, h) ⇓ (p, h), and we have H |= S · (p, h) : A by assumption.

Take H ′ = ? and we trivially have H � H ′ and H + H ′ |= S · (p, h) : A.

(Eval Alloc) Then S · (v at ρ, h) ⇓ (p, h + (ρ 7→ (h(ρ) + (p 7→ v))) with ρ ∈ S and

p /∈ dom2(h).

By (Config Good), H |= S · (v at ρ, h) : A means that env (H) ` v at ρ :e A for

some e ⊆ S , and that H |= h and S ⊆ dom(H). Since only (Exp Nil), (Exp Cons)

or (Exp Fun) can derive env (H) ` v at ρ :e A, we have A = V at ρ, for some V ,

and e = {ρ}.
Let H ′ be the heap typing ρ 7→ (p:A). Since p /∈ dom2(H) = dom2(h), we have

env (H + H ′) ` �. Hence, env (H + H ′) ` p :? A. Moreover S ⊆ dom(H + H ′).
By (Heap Good), H |= h and ρ ∈ S imply that env (H) ` h(ρ) at ρ : H(ρ).

Therefore, env (H + H ′) ` h(ρ) at ρ + (p 7→ v at ρ) : H(ρ) + (p:A). Hence,

H + H ′ |= h + ρ 7→ (h(ρ) + p 7→ v).

We have env (H + H ′) ` p at ρ : A and S ⊆ dom(H + H ′) and H + H ′ |= h + ρ 7→
(h(ρ) + p 7→ v). Hence, by (Config Good), H + H ′ |= S · (p, h) : A, as required.

(Eval Appl) Then S · (p[ρ′1, . . . , ρ′n](q), h) ⇓ (p′, h′) derives from S · (b{f←p} {x←q}σ,
h) ⇓ (p′, h′) where ρ ∈ S and h(ρ)(p) is the function µ(f:F)λ[ρ1, . . . , ρn](x)b and

σ = {ρ1←ρ′1} · · · {ρn←ρ′n} and F = ∀[ρ1, . . . , ρn](B1
e′→ B2) at ρ.

By (Config Good), H |= S · (p[ρ′1, . . . , ρ′n](q), h) : A means that env (H) ` p[ρ′1, . . . ,
ρ′n](q) :e A for some e ⊆ S , and that H |= h and S ⊆ dom(H).

Only (Exp Appl) can derive env (H) ` p[ρ′1, . . . , ρ′n](q) :e A and so we have

env (H) ` p :? F and env (H) ` q :? B1σ and A = B2σ, where e = {ρ} ∪ e′σ
and {ρ′1, . . . , ρ′n} ⊆ dom(H). Since H |= h and ρ ∈ dom(H), we have that env (H) `
h(ρ) at ρ : H(ρ), and in particular, env (H) ` µ(f:F)λ[ρ1, . . . , ρn](x)b at ρ :{ρ} F .

Only (Exp Fun) can derive env (H) ` µ(f:F)λ[ρ1, . . . , ρn](x)b at ρ :{ρ} F , and

so env (H), f:F, ρ1, . . . , ρn, x:B1 ` b :e
′′
B2 where e′′ ⊆ e′ ⊆ dom(E, ρ1, . . . , ρn). By

Lemma B.3 and B.4, since env (H) ` q :? B1σ and env (H) ` p :? F , we get that

env (H) ` b{f←p}{x←q}σ :e
′′σ B2σ.

By (Config Good), H |= S · (b{f←p}{x←q}σ, h) : A.

By induction hypothesis, since S · (b{f←p}{x←q}σ, h) ⇓ (p′, h′), we get that there

is H ′ with H � H ′ and H + H ′ |= S · (p′, h′) : A, as required.

(Eval Let) Then S · (let x = b in a, h) ⇓ (p′′, h′′) derives from S · (b, h) ⇓ (p′, h′) and

S · (a{x←p′}, h′) ⇓ (p′′, h′′).
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By (Config Good), H |= S · (let x = b in a, h) : A means that env (H) ` let x =

b in a :e A for some e ⊆ S , and that H |= h and S ⊆ dom(H).

Only (Exp Let) can derive env (H) ` let x = b in a :e A and so we have

env (H) ` b :eb B and env (H), x:B ` a :ea A for some eb, ea and B, such that

e = ea ∪ eb. By (Config Good), env (H) ` b :eb B and eb ⊆ S and H |= h and

S ⊆ dom(H) imply that H |= S · (b, h) : B.

By induction hypothesis, since S · (b, h) ⇓ (p′, h′), we get that there is H ′ with

H � H ′ and H + H ′ |= S · (p′, h′) : B. By (Config Good), this means that

env (H+H ′) ` p′ :e′ B for some e′ ⊆ S , and that H+H ′ |= h′ and S ⊆ dom(H+H ′).
Only (Exp x) or (Exp l) can derive this and so it must be that e′ = ?.

By Lemma B.2, since env (H), x:B ` a :ea A, we get that env (H +H ′), x:B ` a :ea A.

By Lemma B.3, since env (H+H ′) ` p′ :? B, we get that env (H+H ′) ` a{x←p′} :ea

A. Therefore, by (Config Good), env (H + H ′) |= S · (a{x←p′}, h′) : A.

By induction hypothesis, since S · (a{x←p′}, h′) ⇓ (p′′, h′′), we get that there is H ′′
such that H +H ′ � H ′′ and (H +H ′)+H ′′ |= S · (p′′, h′′) : A. To complete the case,

note that H � H ′ + H ′′ and H + (H ′ + H ′′) |= S · (p′′, h′′) : A.

(Eval Letregion) Then S ·(letregion ρ in a, h) ⇓ (p′, h′) derives from S∪{ρ}·(a, h+ρ 7→
?) ⇓ (p′, h′) with ρ /∈ dom(h). By (Config Good), H |= S · (letregion ρ in a, h) : A

means that env (H) ` letregion ρ in a :e A and H |= h for some e ⊆ S .

Only (Exp Letregion) can derive this and so we have env (H), ρ ` a :e
′
A with

env (H) ` A and e = e′ − {ρ}. In particular ρ /∈ dom(H).

Let H ′ be the heap typing (ρ 7→ ?). We have H � H ′ and env (H+H ′) = env (H), ρ.

By (Config Good), env (H+H ′) ` a :e
′
A, and e′ ⊆ S∪{ρ} and S∪{ρ} ⊆ dom(H+H ′)

and H + H ′ |= h + ρ 7→ ? imply that H + H ′ |= (S ∪ {ρ}) · (a, h + ρ 7→ ?) : A.

By induction hypothesis, since (S ∪{ρ}) · (a, h+ρ 7→ ?) ⇓ (p′, h′), we get that there

is H ′′ with H +H ′ � H ′′ and (H +H ′) +H ′′ |= (S ∪ {ρ}) · (p′, h′) : A. To complete

the case, note that H � H ′ + H ′′ and H + (H ′ + H ′′) |= S · (p′, h′) : A.

(Eval Case 1) Then S · (case p of nil ⇒ b1 | (y1 :: y2)⇒ b2, h) ⇓ (p′, h′). This derives

from S · (b1, h) ⇓ (p′, h′) with ρ ∈ S and h(ρ)(p) = nil .

By (Config Good), H |= S · (case p of nil ⇒ b1 | (y1 :: y2)⇒ b2, h) : A means that

env (H) ` case p of nil ⇒ b1 | (y1 :: y2)⇒ b2 :e A and H |= h for some e ⊆ S .

Only (Exp Case) can derive this and so we have env (H) ` p :? [B] at ρ and

env (H) ` b1 :e1 A and env (H), y1:B, y2:[B] at ρ ` b2 :e2 A.

By induction hypothesis, since S · (b1, h) ⇓ (p′, h′), we get that there is H ′ with

H � H ′ and H + H ′ |= S · (p′, h′) : A, as required.

(Eval Case 2) Then S · (case p of nil ⇒ b1 | (y1 :: y2)⇒ b2, h) ⇓ (p′, h′). This derives

from S · (b2{y1←q1}{y2←q2}, h) ⇓ (p′, h′) with ρ ∈ S and h(ρ)(p) = q1 :: q2.

By (Config Good), H |= S · (case p of nil ⇒ b1 | (y1 :: y2)⇒ b2, h) : A means that

env (H) ` case p of nil ⇒ b1 | (y1 :: y2)⇒ b2 :e A and H |= h for some e ⊆ S .

Only (Exp Case) can derive this and so we have env (H) ` p :? [B] at ρ and

env (H) ` b1 :e1 A and env (H), y1:B, y2:[B] at ρ ` b2 :e2 A.

Therefore, by hypothesis, h(ρ)(p) = q1 :: q2 and env (H) ` p :? [B] at ρ. Hence, by

(Config Good), env (H) ` (q1 :: q2) at ρ :{ρ} [B] at ρ. Only (Exp Cons) can derive

this and so we have E ` q1 :? B and E ` q2 :? [B] at ρ.
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By Lemma B.3, since env (H), y1:B, y2:[B] at ρ ` b2 :e2 A, we get that env (H) `
b2{y1←q1}{y2←q2} :e2 A.

By induction hypothesis, since S · (b2{y1←q1}{y2←q2}, h) ⇓ (p′, h′), we get that

there is H ′ with H � H ′ and H + H ′ |= S · (p′, h′) : A, as required. q

Next, we show that well-typed configurations avoid the runtime errors of allo-

cation or invocation of a closure in a defunct region. A proof of Proposition 2.2,

an equivalent property for the unextended region calculus, can be obtained by

simplifying the following proof.

Proposition B.6

(1) If H |= S · (v at ρ, h) : A then ρ ∈ S .

(2) If H |= S · (p[ρ′1, . . . , ρ′n](q), h) : A then there are ρ and v such that ρ ∈ S ,

h(ρ)(p) = v, and v is a function of the form µ(f:F)λ[ρ1, . . . , ρn](x)b, where

F is the type (∀[ρ1, . . . , ρn]B
e→ A) at ρ and there is e′ such that e′ ⊆ e ⊆

dom(E, ρ1, . . . , ρn) and env (H), f:F, ρ1, . . . , ρn, x:B ` b :e
′
A.

Proof

For part (1), assume H |= S · (v at ρ, h) : A. By (Config Good) we get that

env (H) ` (v at ρ) :e A for some effect e, with e ∪ fg(A) ⊆ S . Only (Exp Nil), (Exp

Cons) or (Exp Fun) can derive this and so we have e = {ρ}. Hence, ρ ∈ S .

For part (2), assume H |= S · (p[ρ′1, . . . , ρ′n](q), h) : A. By (Config Good) we get that

H |= h and that env (H) ` p[ρ′1, . . . , ρ′n](q) :e A for some effects e, with e ∪ fg(A) ⊆ S .

Only (Exp Appl) can derive this and so we have env (H) ` p :? F for some region

ρ, with F = (∀[ρ1, . . . , ρn](B
e′→ A)) at ρ and e = {ρ} ∪ e′{ρ1←ρ′1} · · · {ρn←ρ′n}.

Only (Exp x) can derive env (H) ` p :? F and so there is a region ρ′ such that

H(ρ′)(p) = F . By (Heap Good), ρ′ = ρ and ρ ∈ dom(H) and there is a value v such

that H(ρ)(p) = v. By (Region Good), env (H) ` v at ρ :{ρ} F . Only (Exp Fun) can

derive this. Hence, v is a function of the form µ(f:F)λ[ρ1, . . . , ρn](x)b and there is e′′
such that e′′ ⊆ e′ ⊆ dom(E, ρ1, . . . , ρn) and env (H), f:F, ρ1, . . . , ρn, x:B ` b :e

′′
A. q

B.2 Subject reduction for the π-calculus

We show that reduction in the π-calculus preserves types and effects. As in the

previous section on subject reduction for the λ-calculus, we use intermediate results

whose proofs can be found in a technical report (Dal Zilio & Gordon, 2000b).

Again, we use the symbol J to denote an assertion, that is, either �, a type T , a

channel typing x : T , or a process typing P : H.

Lemma B.7

If E ` P : H then H ⊆ dom(E).

Lemma B.8

If E ` J then fg(J) ⊆ dom(E).

Lemma B.9

If E ` x : T1 and E ` x : T2, where T1 and T2 are channel types of the form

G(H1, . . . , Hm)[T ′1, . . . , T ′n]\H, then T1 = T2.
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Lemma B.10

If E, x1:T1, x2:T2, E
′ ` J then E, x2:T2, x1:T1, E

′ ` J.

Lemma B.11

If E, x:T ,G, E ′ ` J then E,G, x:T ,E ′ ` J.

Lemma B.12

If E, x:T ,E ′ ` J and x /∈ fn(J) then E, E ′ ` J.

Lemma B.13

If E ` J and E, E ′ ` � then E, E ′ ` J.

Lemma B.14

If E, x:T ,E ′ ` J and E ` y : T then E, E ′ ` J{x←y}.
Lemma B.15

If E,G, E ′ ` J and H ∈ dom(E) then we have E, E ′{G←H} ` J{G←H}, where

E ′{G←H} is the result of applying the substitution {G←H} to each of the types in

E ′.

Lemma B.16

If E ` P : H and P ≡ Q then E ` Q : H.

The following is the subject reduction property for our extended π-calculus. A

proof of Proposition 3.2, subject reduction for the unextended π-calculus, can be

obtained by simplifying the following proof.

Proposition B.17

If E ` P : H and P → Q then E ` Q : H.

Proof

By induction on the derivation of P → Q.

(Red Interact) Then P is a parallel composition x〈G′1, . . . , G′m, y′1, . . . , y′n〉 | x(G1, . . . ,

Gm, y1:T1, . . . , yn:Tn).P
′ and Q = P ′σ{y1←y′1} · · · {yn←y′n} where σ is the substitu-

tion {G1←G′1} · · · {Gm←G′m}.
Assume E ` P : H. By Lemma B.7, H ⊆ dom(E). The judgment E ` P : H

must have been derived from (Proc Par), with E ` x〈G′1, . . . , G′m, y′1, . . . ,

y′n〉 : H1, and E ` x(G1, . . . , Gm, y1:T1, . . . , yn:Tn).P
′ : H2 where H = H1 ∪H2. The

former must have been derived from a number of subsumption steps implying

E ` x〈G′1, . . . , G′m, y′1, . . . , y′n〉 : H3, where H3 ⊆ H1, followed by (Proc Output), with

E ` y′1 : T1σ, · · · , E ` y′n : Tnσ, and E ` x : G(G1, . . . , Gm)[T1, . . . , Tn]\G, and:

{G} ∪Gσ = H3 (B 1)

By Lemma B.9, the latter must have been derived from (Proc Input), with E,G1, . . . ,

Gm, y1:T1, . . . , yn:Tn ` P ′ : H4 and (H4 − G) ∩ {G1, . . . , Gm} = ?, followed by

a number of subsumption steps implying {G} ∪ (H4 − G) ⊆ H2 ⊆ dom(E) by

transitivity. In particular, we have that:

(H4 −G)σ = (H4 −G) ⊆ H2 (B 2)
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By Lemma B.8, since E ` x〈G′1, . . . , G′m, y′1, . . . , y′n〉, we have that {G′1, . . . , G′m} ⊆
dom(E). Then, by Lemma B.15 several times, it follows that E, y1:T1σ, . . . , yn:Tnσ `
P ′σ : H4σ. By Lemma B.14, E ` P ′σ {y1←y′1} · · · {yn←y′n} : H4σ.

By definition of set difference, H4σ = (H4 − G)σ ∪ Gσ, and therefore H4σ =

({G} ∪ (H4 − G)σ) ∪ ({G} ∪ G)σ. Using the different inclusions obtained in this

item, and especially equations (B 1) and (B 2), we get that H4σ ⊆ ({G} ∪ (H4 −
G)σ) ∪ ({G} ∪Gσ) ⊆ (H2 ∪H3) ⊆ (H2 ∪H1) = H ⊆ dom(E). Then E ` Q : H.

(Red Par) Then P = P ′ | R and Q = Q′ | R for some P ′, Q′, R such that P ′ → Q′.
Assume E ` P : H. This must have been derived from (Proc Par), with E ` P ′ : H′
and E ` R : H′′ where H = H′ ∪ H′′. By induction hypothesis E ` Q′ : H′. By

(Proc Par), E ` Q′ | R : H′ ∪H′′. Hence, E ` Q : H.

(Red GRes) Then P = (νG)P ′ and Q = (νG)Q′ for some P ′, Q′ such that P ′ → Q′.
Assume E ` P : H. This must have been derived from (Proc GRes), with

E,G ` P ′ : H′ and H = H′ − {G}. By induction hypothesis, E,G ` Q′ : H′. By

(Proc GRes), E ` Q : H.

(Red Res) Then P = (νx:T )P ′ and Q = (νx:T )Q′ for some P ′, Q′ such that P ′ → Q′.
Assume E ` P : H. This must have been derived from (Proc Res), with E, x:T `
P ′ : H. By induction hypothesis, E, x:T ` Q′ : H. By (Proc Res), E ` Q : H.

(Red ≡) Then P ≡ P ′ and Q ≡ Q′ for some P ′, Q′ such that P ′ → Q′. Assume

E ` P : H. By Lemma B.16, E ` P ′ : H. By induction hypothesis, E ` Q′ : H. By

Lemma B.16, E ` Q : H. q

Next, we prove effect soundness for our extended π-calculus, the property that

the group of any barb of a process is included in its effect. This fact correspond to

Proposition 3.3 for the unextended π-calculus.

Proposition B.18

If E ` P : H and P ↓ β with β ∈ {x, x} then there is a type polymorphic channel

type T
∆
= G(G1, . . . , Gm)[T1, . . . , Tn]\G such that E ` x : T and G ∈ H.

Proof

By induction on the derivation of P ↓ β.

(Barb Input) Then P = x(G1, . . . , Gm, y1:T1, . . . , yn:Tn).P
′ and β = x. Assume E `

P : H. This must have been derived from (Proc Input) with E ` P : H1 and

E ` x : G(G1, . . . , Gm)[T1, . . . , Tn]\G and G ∈ H1 followed by a number of

subsumption steps implying H1 ⊆ H. Hence G ∈ H.

(Barb Output) Then P = x〈G′1, . . . , G′m, y′1, . . . , y′n〉 and β = x. Assume E ` P : H.

This must have been derived from (Proc Output) with E ` P : H1 and E `
x : G(G1, . . . , Gm)[T1, . . . , Tn]\G and H1 = {G} ∪ Gσ, where σ is the substitution

{G1←G′1} · · · {Gm←G′m}, followed by a number of subsumption steps implying

H1 ⊆ H. Hence, G ∈ H.

(Barb GRes) Then P = (νG′)P ′ for some P ′ such that P ′ ↓ β. Assume E ` P : H.

This must have been derived from (Proc GRes) with E ` P : H1 and E,G′ ` P ′ :
H2 and H1 = H2 − {G′}, followed by a number of subsumption steps implying

H1 ⊆ H. By induction hypothesis, there is a type W
∆
= G(G1, . . . , Gm)[T1, . . . , Tn]\G

such that E ` x : W and G ∈ H2. Hence, G ∈ H.
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(Barb Res) Then P = (νy:T )P ′ for some y, P ′ such that x 6= y and P ′ ↓ β. Assume

E ` P : H. This must have been derived from (Proc Res) with E ` P : H1 and

E, y:T ` P ′ : H1, followed by a number of subsumption steps implying H1 ⊆ H.

By induction hypothesis, there is a type W
∆
= G(G1, . . . , Gm) [T1, . . . , Tn]\G such

that E, y:T ` x : W and G ∈ H1. Hence G ∈ H. By Lemma B.12, E ` x : W .

(Barb Par) Then P = (P ′ | P ′′) with P ′ ↓ β. Assume E ` P : H. This must have

been derived from (Proc Par) with E ` P : H1, and E ` P ′ : H′, and E ` P ′′ : H′′,
and H1 = H′ ∪H′′, followed by a number of subsumption steps implying H1 ⊆ H.

By induction hypothesis, there is a type W
∆
= G(G1, . . . , Gm) [T1, . . . , Tn]\G such

that E ` x : W and G ∈ H′. Hence, G ∈ H.

(Barb ≡) Then P ≡ P ′ for some P ′ such that P ′ ↓ β. Assume E ` P : H. By

Lemma B.16, E ` P ′ : H.

By induction hypothesis, there is a type W
∆
= G(G1, . . . , Gm) [T1, . . . , Tn]\G such

that E ` x : W and G ∈ H. q

B.3 Correctness of type erasure

In this section, we study the relations between the typed and untyped versions of the

π-calculus defined in this paper. We prove Proposition B.22, which gives a simple

correspondence between the reductions of a typed process, P , and the reductions of

the untyped process obtained by erasing all type information from P . The benefit

of this result is that it allows us to use the labelled transition semantics given in

Appendix A.3 to reason about typed processes. This is particularly useful because,

in contrast with a labelled transition, a reduction tells us nothing about the possible

interactions of a process with an arbitrary environment. Moreover, it is simpler to

enumerate the possible transitions of a process than its possible reductions.

Lemma B.19

For all typed processes P and Q, if P ≡ Q then erase(P ) ≡ erase(Q).

Lemma B.20

For all typed processes P , P ↓ β if and only if erase(P ) ↓ β.

Lemma B.21

If E ` P and erase(P )
τ−→ R then there exists a typed process, Q, such that P → Q

and erase(Q) = R.

The following asserts that the reductions of a typed process, of our extending

π-calculus, according to the typed operational semantics are equivalent to the

reductions of the untyped erasure of the process according to the untyped operational

semantics. A proof of Proposition 3.1, a similar property for the unextended π-

calculus, can be obtained by simplifying the following proof.

Proposition B.22

For all typed processes P and Q, if P → Q then erase(P )→ erase(Q). If E ` P and

erase(P )→ R then there is a typed process Q such that P → Q and R ≡ erase(Q).
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Proof

The first implication is proved by a simple induction on the derivation of P → Q,

with appeal to Lemma B.19.

Assume E ` P and erase(P )→ R. By Proposition A.1, there is an untyped process

S such that erase(P )
τ−→ S and S ≡ R. By Lemma B.21, there exists a typed process

Q such that P → Q and erase(Q) = S . By (Struct Trans), erase(Q) ≡ R, as required.

q

Using Proposition B.22, it is possible to prove that two typed processes with equiv-

alent erasures, according to the untyped barbed congruence defined in Appendix A.4,

are barbed congruent.

Proposition B.23

If E ` P and E ` Q and erase(P ) ≈ erase(Q) then E ` P ≈ Q.

B.4 Properties of Barbed Congruence

In this section we study some properties of typed barbed congruence. We prove that

structurally equivalent processes of the extended π-calculus are barbed congruent.

This fact corresponds to Proposition 3.4(4) for the unextended π-calculus. We

also prove Proposition B.27, that barbed congruence is indeed a compositional

equivalence relation. The proof of this property relies on Lemma B.26, that barbed

congruence is preserved by arbitrary substitutions of groups for groups. It also relies

on the fact that, by definition, barbed congruence is preserved by E-renamings, that

is, substitution of names for names that respect the type information.

Lemma B.24

If P ≡ Q and E ` P then E ` P ≈ Q

Proof

Let S be the smallest relation on typed processes that contains ≈ and such that

E ` P S Q if P ≡ Q and E ` P . The relation S is a well-defined relation on typed

processes since ≈ is a relation on typed processes and if P ≡ Q and E ` P then, by

Proposition B.17, E ` Q. Note that S is symmetric. We prove that S is a barbed

bisimulation. The only interesting case is when E ` P and P ≡ Q.

(1) Assume P ↓ β. By rule (Barb ≡), Q ↓ β, as required.

(2) Assume P → P ′. By (Red ≡), Q → P ′ and, since ≈ is reflexive, P ′ S P ′, as

required.

Therefore S is a barbed bisimulation and for all processes P ,Q such that E ` P

and P ≡ Q, we get that E ` P •≈ Q.

Assume E ` P and P ≡ Q. Let R be an arbitrary typed process, σ be an arbitrary

E-renaming and E ′ be an environment such that E, E ′ ` R. By Lemma B.14 several

times and rule (Struct Par), Eσ, E ′ ` Pσ | R and Pσ | R ≡ Qσ | R. Therefore,

Eσ, E ′ ` Pσ | R •≈ Qσ | R. Hence, E ` P ≈ Q, as required. q

We show that barbed congruence for the extended π-calculus is closed by E-

renamings, that is, substitutions of names for names that respect types. This fact

corresponds to Proposition 3.4(3), for the unextended π-calculus.
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Lemma B.25

If E ` P ≈ Q and σ is an E-renaming then Eσ ` Pσ ≈ Qσ.

Proof

Assume E ` P ≈ Q and σ is an E-renaming. By definition, Eσ, E′ ` Pσ | R ≈ Qσ | R
for any process R such that Eσ, E ′ ` R. Since Eσ ` 0, we get that Eσ ` Pσ | 0 ≈
Qσ | 0. By Lemma B.24 and transitivity of ≈, since Pσ | 0 ≡ Pσ and Qσ | 0 ≡ Q, we

get that Eσ ` Pσ ≈ Qσ. q

We introduce some new notations to simplify the presentation of the following

properties. If E is a type environment G1, . . . , Gm, y1:T1, . . . , yn:Tn, let x(E).P be

the process x(G1, . . . , Gm, y1:T1, . . . , yn:Tn).P . In particular, x(?).P = x().P . If σ is

a substitution of groups for groups, the environment Eσ is defined as follows:

?σ
∆
= ?; (E ′, x:T )σ

∆
= E ′σ, x:Tσ; (E ′, G)σ

∆
= E ′σ, σ(G) if σ(G) /∈ dom(E ′σ), and E ′σ

otherwise. We have:

Lemma B.26

If E ` P ≈ Q and σ is a substitution of groups for groups then Eσ ` Pσ ≈ Qσ.

Next, we prove that barbed congruence for the extended π-calculus satisfies the

congruence property. This fact corresponds to Proposition 3.4(2), for the unextended

π-calculus.

Proposition B.27

(1) Let E ′ be the environment G1, . . . , Gm, y1:T1, . . . , yn:Tn. If E, E ′ ` P ≈ Q then

E ` x(E ′).P ≈ x(E ′).Q.

(2) If E ` P ≈ Q and E ` R then E ` P | R ≈ Q | R.

(3) If E, x:T ` P ≈ Q then E ` (νx:T )P ≈ (νx:T )Q.

(4) If E,G ` P ≈ Q then E ` (νG)P ≈ (νG)Q.

(5) If E ` P ≈ Q then E ` !P ≈ !Q.

Proof

For the sake of brevity, we only prove the case for input prefix, which is the

most difficult case. The proofs for the other cases are similar. As in the proof of

Lemma B.24, the property follows by defining a candidate barbed bisimulation, S,

that is closed by renamings and parallel composition. Let S be the smallest relation

on typed processes that contains ≈ and such that E ` x(E′).P | R S x(E ′).Q | R for

all processes P ,Q, R such that E, E ′ ` P ≈ Q and E ` R. Note thatS is a symmetric

relation on typed processes. We prove that S is a barbed bisimulation. The only

interesting case is when E ` x(E ′).P | R S x(E ′).Q | R, where E, E ′ ` P ≈ Q.

(1) Assume x(E ′).P | R ↓ x. By Lemma B.20, Proposition A.2 and inspection of

the possible transitions, it must be the case that R ↓ x. By (Barb Par) and

(Barb ≡), since R ↓ x, we get that x(E ′).Q | R ↓ x, as required.

(2) Assume x(E ′).P | R → P ′. Suppose E ′ is the type environment G1, . . . , Gm,

y1:T1, . . . , yn:Tn. By Propositions B.22 and A.1 and inspection of the possible

transitions, either (1) R → R′ and P ′ ≡ x(E ′).P | R′, or (2) R ≡ (νE ′′)(x〈H1, . . . ,

Hm, z1, . . . , zn〉 | R′) and P ′ ≡ (νE ′′)(PσGσy | R′) with σG = {G1←H1} · · ·
{Gm←Hm} and σy = {y1←z1} · · · {yn←zn}.
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For (1), by (Red Par), x(E ′).Q | R → x(E ′).Q | R′. By Proposition B.17, E ` R′.
Hence, E ` x(E ′).P | R′ S x(E ′).Q | R′, as required.

For (2), let Q′ be the process (νE ′′)(QσGσy | R′). By (Red Interact), (Red Par)

and (Red ≡), x(E ′).Q | R → Q′. By Lemma B.26, since E, E ′ ` P ≈ Q, we get

that (E, E ′)σG ` PσG ≈ QσG. Since the names in E ′ and E ′′ are bound, we

can assume that dom(E ′) ∩ dom(E ′′) = ?. By Lemma B.13 several times and

since E, E ′′ ` x〈H1, . . . , Hm, z1, . . . , zn〉 | R′, we get that E ′′′ ` PσG ≈ QσG, where

E ′′′ is the type environment E, E ′′, y1:T1σG, . . . , yn:TnσG. Since E ` x(E ′).P | R,

E ` x(E ′).Q | R and E, E ′′ ` x〈H1, . . . , Hm, z1, . . . , zn〉 | R′, the substitution

σy is an E ′′′-renaming. By Lemma B.25, since (E, E ′)σG ` PσG ≈ QσG and

zi ∈ dom(E, E ′′) for each i ∈ 1..n, we get that E, E ′′ ` PσGσy ≈ QσGσy .

Therefore, using laws (2), (3) and (4), we get that E ` (νE ′′)(PσGσy | R′) ≈
(νE ′′)(QσGσy | R′). Hence, since the relation ≈ (and then also ≡) is in S, we

get that E ` P ′ S Q′, as required.

Therefore S is a barbed bisimulation and if E, E ′ ` P ≈ Q then E ` x(E ′).P |
R

•≈ x(E ′).Q | R for any process R such that E ` R. Assume E, E′ ` P ≈ Q.

Let R be an arbitrary typed process, σ be an arbitrary E-renaming and E ′′ be an

environment such that E, E ′′ ` R. Since the names in E ′ are bound we can assume

that dom(E ′) ∩ dom(E ′′) = ?. Therefore, by Lemmas B.13 and B.14, Eσ, E′′,
E ′ ` Pσ ≈ Qσ, and then Eσ, E ′′ ` x(E ′).Pσ | R •≈ x(E ′).Qσ | R. Hence,

E ` x(E ′).P ≈ x(E ′).Q, as desired. q

B.5 Garbage collection for the π-calculus

In this section we prove Theorem B.30, the garbage collection principle used to prove

the soundness of the region analysis. This property follows from several intermediate

lemmas that prove that processes with non-intersecting effects cannot interact. For

example, Lemma B.28 shows that these processes cannot synchronize. In the sense

that their parallel composition do not introduce new silent transitions. This property

is essential in the proof of Lemma B.29, an equivalent of the garbage collection

property for the barbed bisimilarity relation.

Lemma B.28

For any processes P and R such that E,G, E ′ ` P : H and E,G, E ′ ` R : {G} and

G /∈ H, if erase(P | R)
α−→ A then there is an agent A′ such that erase(P )

α−→ A′

and A = A′ | erase(R), or such that erase(R)
α−→ A′ and A = erase(P ) | A′.

Lemma B.29

For any processes P , R such that E,G, E ′ ` R : {G} and E,G, E ′ ` P : H and G /∈ H,

we have: E ` (νG)(νE ′)(P | R)
•≈ (νG)(νE ′)P .

The following is the garbage collection principle for our extended π-calculus. A

proof of Theorem 4.3, garbage collection for the unextended π-calculus, can be

obtained by simplifying the following proof.

https://doi.org/10.1017/S0956796801004270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004270


Region analysis and a π-calculus with groups 281

Theorem B.30

Suppose E,G, E ′ ` P : H and E,G, E ′ ` R : {G} where G /∈ H. Then E `
(νG)(νE ′)(P | R) ≈ (νG)(νE ′)P .

Proof

To show that (νG)(νE ′)(P | R) and (νG)(νE ′)P are barbed congruent, and hence

prove the theorem, we consider an arbitrary process Q, type environment E ′′ and

E-renaming σ such that Eσ, E ′′ ` Q, and show that Eσ, E ′′ ` (νG)(νE ′)(P | R)σ |
Q

•≈ ((νG)(νE ′)P )σ | Q.

Assume Eσ, E ′′ ` Q : G. Since the names in dom(G,E ′) are bound, we may

assume that dom(G,E ′) ∩ (dom(E ′′) ∪ dom(σ) ∪ ran(σ)) = ?. Hence, since fn(Q) ⊆
dom(Eσ, E ′′) and G ⊆ dom(Eσ, E ′′), we get that fn(Q) ∩ dom(G,E ′) = ? and G /∈ G.

By Lemma B.14 several times, and since E,G, E ′ ` P : H, we get that Eσ, E ′′, G, E ′ `
Pσ : H. By Lemma B.13, Eσ, E ′′, G, E ′ ` Q : G. By (Proc Par), Eσ, E ′′, G, E ′ ` (Pσ |
Q) : G ∪H with G /∈ G ∪H. Since dom(G,E ′) ∩ (dom(E ′′) ∪ dom(σ) ∪ ran(σ)) = ?,

we get that:

(νG)(νE ′)(P | R)σ | Q ≡ (νG)(νE ′)(Pσ | Q | Rσ)

((νG)(νE ′)P )σ | Q ≡ (νG)(νE ′)(Pσ | Q)

By Lemma B.29, Eσ, E ′ ` (νG)(νE ′)(P | R)σ | Q •≈ ((νG)(νE ′)P )σ | Q, as required.

q

B.6 Properties of the encoding

In this section we prove the soundness of the region analysis for the extended region

calculus. For the sake of clarity, this proof is divided into simpler goals as follows.

In section B.6.1, we prove that our encoding of the extended region calculus in

the extended π-calculus preserves the static semantics given in section 6.1.

In section B.6.3, we prove Theorem B.35, a similar result for the dynamic semantics.

Results of dynamic adequacy are often difficult to prove directly when the source

calculus is defined with a big-step semantics. To circumvent this difficulty, we follow

a standard method and define an equivalent small-step semantics for the region

calculus. This semantics is given in section B.6.2 where we also prove Theorem B.33,

which relates the small-step and big-step semantics.

In section B.6.4, we prove that defunct regions make no difference to the behaviour

of a well-typed program. This result is essentially based on the garbage collection

theorem proved in section B.5, which is used to prove that the encoding of a well-

typed configuration is behaviourally equivalent to the process obtained by erasing

from the heap all the references stored in defunct regions.

B.6.1 Proof of static adequacy

We prove Theorem B.32, that the encoding of the extended region calculus in our

extended π-calculus preserves the static semantics. This fact corresponds to Theo-

rem 4.1 for the unextended calculi. The proof of this property uses an intermediate
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result, Lemma B.31, that the encoding of a well-typed value stored in region ρ is a

well-typed process with effect {ρ}.
Lemma B.31

If H |= h and h(ρ)(p) = v then [[env (H)]] ` [[p 7→ v]] : {ρ}.
Theorem B.32 (Static Adequacy)

(1) If E ` � then [[E]] ` �.
(2) If E ` A then [[E]] ` [[A]].

(3) If E ` a :e A and k /∈ dom([[E]]) then [[E]], k:K[[[A]]] ` [[a]]k : e ∪ {K}
(4) If H |= h and ρ ∈ dom(H) then [[env (H)]] ` [[h(ρ)]] : {ρ}
(5) If H |= S · (a, h) : A and k /∈ [[env (H)]] then

[[env (H)]], k:K[[[A]]] ` [[a]]k | [[h]] : dom(H) ∪ {K}
and also [[?]], S , k:K[[[A]]] ` [[S · (a, h)]]k : S ∪ {K}

Proof

Parts (1) and (2) follow easily by induction on the structure of E. We prove part (3)

by induction on the derivation of E ` a :e A. Recall that G[T1, . . . , Tn] is a shorthand

for the type G()[T1, . . . , Tn]\?.

(Exp x) Then a = x and E = E1, x:A,E2 and e = ?. Assume k /∈ L∪ dom(E). Then

[[E]] ` x : [[A]]. By (Proc Output) and Lemma B.13, [[E]], k:K[[[A]]] ` k〈x〉 : {K},
as required.

(Exp l) Then a = l, where l ∈ L and A = Lit . By definition, [[E]] ` l : Lit[]. Assume

k /∈ L ∪ dom(E). By (Proc Output) and Lemma B.13, [[E]], k:K[[[A]]] ` k〈l〉 : {K},
as required.

(Exp Appl) Then a = x[ρ′1, . . . , ρ′n](y) and e = {ρ} ∪ e′σ, with E ` x :? F and

E ` y :? B1σ and F = (∀[ρ1, . . . , ρn]B1
e′→ B2) at ρ and σ = {ρ1←ρ′1} · · · {ρn←ρ′n}

and A = B2σ and {ρ′1, . . . , ρ′n} ⊆ dom(E). Then [[E]] ` x : [[F]] and [[E]] ` y : [[B1σ]].

Assume k /∈ L ∪ dom(E). By (Exp Unfold) and Lemma B.13:

[[E]], k:K[[[A]]] ` x : ρ(ρ1, . . . , ρn)[[[B1]], K[[[B2]]]]\(e′ ∪ {K})
By (Proc Output), [[E]], k:K[[[A]]] ` x〈ρ′1, . . . , ρ′n, y, k〉 : e′σ ∪ {K}, as required.

(Exp Let) Then a = (let x = bB in c) and e = e′ ∪ e′′, with E ` b :e
′
B and

E, x:B ` c :e
′′
A. Assume k /∈ L ∪ dom(E). By induction hypothesis:


[[E]], k′:K[[[B]]] ` [[b]]k′ : e′ ∪ {K}
[[E]], x:[[B]], k:K[[[A]]] ` [[c]]k : e′′ ∪ {K}

By (Proc Input) and Lemmas B.12 and B.10:

[[E]], k:K[[[A]]], k′:K[[[B]]] ` k′(x:[[B]]).[[c]]k : {K} ∪ (e′′ ∪ {K})
By (Proc Par) and (Proc Res):

[[E]], k:K[[[A]]] ` (νk′:K[[[B]]])([[b]]k′ |
k′(x:[[B]]).[[c]]k) : (e′ ∪ {K}) ∪ (e′′ ∪ {K})

Hence, [[E]], k:K[[[A]]] ` [[a]]k : e ∪ {K}, as required.
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(Exp Letregion) Then a = letregion ρ in b and e = e′ − {ρ}, with E, ρ ` b :e
′
A

and E ` A. Assume k /∈ L ∪ dom(E). By induction hypothesis, [[E]], ρ, k:K[[[A]]] `
[[b]]k : e′ ∪ {K}. By part (2), [[E]] ` [[A]]. Therefore, since ρ /∈ dom(E), we have

that ρ /∈ fg(K[[[A]]]) and, by Lemma B.11, [[E]], k:K[[[A]]], ρ ` [[b]]k : e′ ∪ {K}. By

(Proc GRes), [[E]], k:K[[[A]]] ` (νρ)[[b]]k : (e′ ∪ {K})− {ρ}, as required.

(Exp Case) Then a = case x[B]atρ of nil ⇒ b1 | (y1 :: y2)⇒ b2 and e = {ρ} ∪ e1 ∪ e2,

with E ` x :? [B] at ρ and E ` b1 :e1 A and E, y1:B, y2:[B] at ρ ` b2 :e2 A.

Assume k /∈ L ∪ dom(E). By induction hypothesis:


[[E]] ` x : [[[B] at ρ]]

[[E]], k:K[[[A]]] ` [[b1]]k : e1 ∪ {K}
[[E]], y1:[[B]], y2:[[[B] at ρ]], k:K[[[A]]] ` [[b2]]k : e2 ∪ {K}

By (Exp Unfold), [[E]] ` x : ρ[ρ[], ρ[[[B]], [[[B] at ρ]]]]. By Lemma B.13 and (Proc

Output):


[[E]], k:K[[[A]]], z1:ρ[], z2:ρ[[[B]], [[[B] at ρ]]] ` x〈z1, z2〉 : {ρ}
[[E]], k:K[[[A]]], z1:ρ[], z2:ρ[[[B]], [[[B] at ρ]]] ` z1().[[b1]]k : e1 ∪ {K}
[[E]], k:K[[[A]]], z1:ρ[], z2:ρ[[[B]], [[[B] at ρ]]] `

z2(y1:[[B]], y2:[[[B] at ρ]]).[[b2]]k : e2 ∪ {K}
By (Proc Par) and (Proc Res), [[E]], k:K[[[A]]] ` [[a]]k : {ρ}∪ (e1∪{K})∪ (e2∪{K}),
as required.

(Exp Fun) Then a = v at ρ and e = {ρ} and A = (∀[ρ1, . . . , ρn]B1
e→ B2) at ρ, where

v is the function (µ(f:A)λ[ρ1, . . . , ρn](x)b) and E, f:A, ρ1, . . . , ρn, x:B1 ` b :e
′
B2

and e′ ⊆ e ⊆ dom(E, ρ1, . . . , ρn). Assume k /∈ L ∪ dom(E) ∪ {p}. Since f and p are

bound names, we can also assume that k /∈ {f, p}. By induction hypothesis and

Lemma B.13:

[[E]], p:[[A]], f:[[A]], ρ1, . . . , ρn, x:[[B1]], k:K[[[B2]]] ` [[b]]k : e′ ∪ {K}
By Lemma B.14:

[[E]], p:[[A]], ρ1, . . . , ρn, x:[[B1]], k:K[[[B2]]] ` [[b{f←p}]]k : e′ ∪ {K}
By (Exp x) and (Exp Unfold):

[[E]], p:[[A]] ` p : ρ(ρ1, . . . , ρn)[[[B1]], K[[[B2]]]]\(e ∪ {K})
By (Proc Input), [[E]], p:[[A]] ` [[p 7→ v]] : {ρ}. By (Proc Output) and Lemma B.13,

[[E]], k:K[[[A]]], p:[[A]] ` k〈p〉 : {K}. By (Proc Par) and (Proc Res), [[E]], k:K[[[A]]] `
(νp:[[A]]) ([[p 7→ v]] | k〈p〉) : {K, ρ}, as required.

(Exp Nil) Then a = nil at ρ and e = {ρ} and A = [B] at ρ, where E ` [B] at ρ. By

part (2), [[E]] ` [[[B] at ρ]]. By Lemma B.13:

[[E]], p:[[A]], z1:ρ[], z2:ρ[[[B]], [[[B] at ρ]]] ` z1〈〉 : {ρ}
By (Exp x) and (Exp Unfold):

[[E]], p:[[A]], z1:ρ[], z2:ρ[[[B]], [[[B] at ρ]]] ` p : ρ[ρ[], ρ[[[B]], [[[B] at ρ]]]]
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By (Proc Input), [[E]], p:[[A]] ` [[p 7→ nil [B]atρ]] : {ρ}. Assume k /∈ L∪ dom(E)∪{p}.
By (Proc Output) and Lemma B.13, [[E]], k:K[[[A]]], p:[[A]] ` k〈p〉 : {K}. By (Proc

Par) and (Proc Res), [[E]], k:K[[[A]]] ` (νp:[[A]])([[p 7→ nilA]] | k〈p〉) : {K, ρ}, as

required.

(Exp Cons) Then a = (x1 :: x2) at ρ and e = {ρ} and A = [B] at ρ, where

E ` x1 :? B and E ` x2 :? [B] at ρ. By part (1), [[E]] ` x1 : [[B]] and

[[E]] ` x2 : [[[B] at ρ]]. By (Exp x), (Exp Unfold) and Lemma B.13:

[[E]], p:[[A]], z1:ρ[], z2:ρ[[[B]], [[[B] at ρ]]] ` p : ρ[ρ[], ρ[[[B]], [[[B] at ρ]]]]

By (Proc Output):

[[E]], p:[[A]], z1:ρ[], z2:ρ[[[B]], [[[B] at ρ]]] ` z2〈x1, x2〉 : {ρ}
By (Proc Input), [[E]], p:[[A]] ` [[p 7→ (x1 :: x2)A]] : {ρ}. Assume k /∈ L ∪ dom(E) ∪
{p}. By (Proc Output) and Lemma B.13, [[E]], k:K[[[A]]], p:[[A]] ` k〈p〉 : {K}. By

(Proc Par) and (Proc Res), [[E]], k:K[[[A]]] ` (νp:[[A]])([[p 7→ (x1 :: x2)A]] | k〈p〉) :

{K, ρ}, as required.

We prove part (4) by case analysis. Assume H |= h and ρ ∈ dom(H). The judgment

H |= h must have been derived from (Heap Good) with env (H) ` h(ρ) at ρ : H(ρ).

This must have been derived from (Region Good) with h(ρ) = (pi 7→ vi)
i∈1..n and

H(ρ) = (pi:Ai)
i∈1..n and env (H) ` vi at ρ :{ρ} Ai for all i ∈ 1..n. By (Exp x),

since H(ρ) = (pi:Ai)
i∈1..n, we get that env (H) ` pi :? Ai for each i ∈ 1..n. Then

[[env (H)]] ` pi : [[Ai]]. By Lemma B.31, [[env (H)]] ` [[pi 7→ vi]] : {ρ} for each i ∈ 1..n.

By (Proc Par), [[env (H)]] `∏i∈1..n[[pi 7→ vi]] : {ρ}. Hence, [[env (H)]] ` [[h(ρ)]] : {ρ}.

We prove part (5) by case analysis. Assume H |= S · (a, h) : A and k /∈ dom2(H)∪L.

Only (Config Good) can derive this judgment and so env (H) ` a :e A, e∪ fg(A) ⊆ S ,

H |= h, and S ⊆ dom(H). By part (3), [[env (H)]], k:K[[[A]]] ` [[a]]k : e ∪ {K}.
By part (4) and (Proc Par), [[env (H)]] ` [[h]] :

⋃
ρ∈dom(H){ρ}. By (Proc Par) and

Lemma B.13, [[env (H)]], k:K[[[A]]] ` [[a]]k | [[h]] : dom(H)∪e∪{K}. Since e ⊆ dom(H),

we get that [[env (H)]], k:K[[[A]]] ` [[a]]k | [[h]] : dom(H) ∪ {K}, as desired.

By (Proc Res) and (Proc GRes), since env (H) = dom(H), ptr(H), we get that

[[?]], S , k:K[[[A]]] ` (ν(dom(H) − S))(ν[[ptr(H)]])([[a]]k | [[h]]) : S ∪ {K}, that is,

[[?]], S , k:K[[[A]]] ` [[S · (a, hH )]]k : S ∪ {K}. q

B.6.2 An auxiliary small-step semantics

This section defines an auxiliary small-step semantics for the region calculus. We

prove Theorem B.33, that relates small-step reductions to evaluations in the big-step

semantics.

Continuations and Control Stack:

c ::= continuations

popregion ρ marker to deallocate region ρ

(x:A)b continuation with argument x

C ::= [c1, . . . , cn] stack of continuations
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The reduction relation, S · (a, h, C) → S ′ · (a′, h′, C ′), may be read: in an initial

heap h, with control stack C and live regions S , the expression a reduces to a′ with

updated heap h′, control stack C ′, and live regions S ′.

Reduction: S · (a, h, C)→ S ′ · (a′, h′, C ′)
(Red Alloc)

ρ ∈ S p /∈ dom2(h)

S · (v at ρ, h, C)→ S · (p, h + (ρ 7→ (h(ρ) + (p 7→ v))), C)

(Red Appl)

ρ ∈ S h(ρ)(p) = µ(f:A)λ[ρ1, . . . , ρn](x)b

S · (p[ρ′1, . . . , ρ′n](q), h, C)→ S · (b{f←p}{ρ1←ρ′1} · · · {ρn←ρ′n}{x←q}, h, C)

(Red Let)

S · (let x = aA in b, h, C)→ S · (a, h, (x:A)b :: C)

(Red Pop Let)

S · (p, h, (x:A)b :: C)→ S · (b{x←p}, h, C)

(Red Letregion)

ρ /∈ (S ∪ dom(h))

S · (letregion ρ in a, h, C)→ (S ∪ {ρ}) · (a, h + ρ 7→ ?, C)

(Red Pop Letregion)

ρ ∈ S

S · (p, h, popregion ρ :: C)→ (S − {ρ}) · (p, h, C)

(Red Case 1)

ρ ∈ S h(ρ)(p) = nil

S · (case p of nil ⇒ b1 | (y1 :: y2)⇒ b2, h, C)→ S · (b1, h, C)

(Red Case 2)

ρ ∈ S h(ρ)(p) = q1 :: q2

S · (case p of nil ⇒ b1 | (y1 :: y2)⇒ b2, h, C)→ S · (b2{y1←q1}{y2←q2}, h, C)

The static semantics defines new heap judgments used to type the elements in the

control stack.
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Heap Judgments:

~B ::= [A1, . . . , An] stack of types

H |= S · C : ~B the control stack C has type ~B

H |= S · (a, h, C) : A in H , the configuration (a, h, C) returns A

Region and Heap Rules:

(Control Good Empty)

env (H) ` A fg(A) ⊆ S

H |= S · [] : [A]

(Control Good Mark)

H |= S · C : ~B ρ /∈ S

H |= (S ∪ {ρ}) · (popregion ρ :: C) : ~B

(Control Good Cont)

env (H), x:A ` b :e B fg(A) ∪ e ⊆ S H |= S · C : (B :: ~B)

H |= S · ((x:A)b :: C) : (A :: B :: ~B)

(Small Config Good)

H |= S · (a, h) : A H |= S · C : (A :: ~B)

H |= S · (a, h, C) : last(A :: ~B)

Theorem B.33

Suppose H |= S · (a, h) : A. Then S · (a, h) ⇓ (p′, h′) if and only if S · (a, h, []) →∗
S · (p′, h′, []).

B.6.3 Proof of dynamic adequacy

• The length of a control stack, length(C), is the number of continuations

contained in C , that is, length([]) = 0, and length(popregion ρ :: C) = length(C),

and length((x:A)b :: C) = length(C) + 1.

• The types of a control stack, types(C), is the sequence of types induc-

tively defined from C by the following rules, types([]) is the empty sequence,

types(popregion ρ :: C) = types(C), and types((x:A)b :: C) = A, types(C).

Translation Rules:

Let ~k be a stack, [k1, . . . , kn], of n pairwise distinct names.

[[(x:A)b :: C]]~k
∆
= k1(x:K[[[A]]]).[[b]]k2 | [[C]][k2, . . . , kn]

[[popregion ρ :: C]]~k
∆
= [[C]]~k

[[[ ]]]~k
∆
= 0
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Let {~ρ} = dom(H)− S , and n = length(C), and [A1,. . . ,An] = types(C),

and k1, . . . , kn+1 be a sequence of n + 1 pairwise distinct names.

[[S · (a, hH , C)]]kn+1
∆
= (ν~ρ)(ν[[ptr(H)]])(νk1:K[[[A1]]]) · · · (νkn:K[[[An]]])

([[a]]k1 | [[h]] | [[C]][k1, . . . , kn+1])

In the case of an empty control stack, C = [], the translation of a small-step

configuration, S · (a, hH , C), equals the translation of the big-step configuration

S · (a, hH ). That is, we have [[S · (a, hH , [])]]k = [[S · (a, hH )]]k.

Lemma B.34

If H |= S · (a, h, C) : A and S · (a, h, C) → S ′ · (a′, h′, C ′), then there is a heap typing

H ′, with H � H ′, such that H + H ′ |= S ′ · (a′, h′, C ′) : A and that, for all channel

k with k /∈ (dom2(H + H ′) ∪ L), we have [[?]], S , k:K[[[A]]] ` [[S · (a, hH , C)]]k ≈
[[S ′ · (a′, h′H+H ′ , C

′)]]k.

The following asserts that the encoding of the extended region calculus preserves

the dynamic semantics. A proof of Theorem 4.2, dynamic adequacy for the un-

extended calculi, can be obtained by defining an auxiliary (unextended) small-step

semantics for the region calculus and simplifying the following proof.

Theorem B.35

If H |= S · (a, h) : A and S · (a, h) ⇓ (p′, h′) then there is H ′ such that H � H ′ and

H + H ′ |= S · (p′, h′) : A and for all k /∈ dom2(H + H ′) ∪ L, [[?]], S , k:K[[[A]]] `
[[S · (a, hH )]]k ≈ [[S · (p′, h′H+H ′ )]]k.

Proof

Assume H |= S · (a, h) : A and S · (a, h) ⇓ (p′, h′). By Theorem B.33, we have

S · (a, h, []) →∗ S · (p′, h′, []). By rule (Control Good Empty) and (Small Config

Good), we have H |= S · (a, h, []) : A. By Lemma B.34, there is a heap typing

H ′, with H � H ′, such that H + H ′ |= S · (p′, h′, []) : A and that, for all channel

k with k /∈ (dom2(H + H ′) ∪ L), we have [[?]], S , k:K[[[A]]] ` [[(H, S, a, h, [])]]k ≈
[[(H + H ′, S , p′, h′, [])]]k.

Since for all big-step configuration S ·(a, hH ) we have [[S ·(a, hH , [])]]k = [[S ·(a, hH )]]k,

it follows that [[?]], S , k:K[[[A]]] ` [[S · (a, hH )]]k ≈ [[(S,H + H ′, p′, h′)]]k. q

B.6.4 Proof of garbage collection for the λ-calculus

The following property asserts that defunct regions make no difference to the

behaviour of a program. It corresponds to Theorem 4.4 for the unextended calculi.

Theorem B.36

Suppose H |= S · (a, h) : A and k /∈ dom2(H) ∪ L. Let {~ρdefunct} = dom(H)− S . Then

[[?]], S , k:K[[[A]]] ` [[S · (a, h)]]k ≈ (ν~ρdefunct)(ν[[ptr(H)]])([[a]]k |∏ρ∈S [[H(ρ)]]).

Proof

Let ~ρ be a sequence of groups, ρ1, . . . , ρm, such that {~ρ} = S . Let ~ρdefunct be a

sequence of groups, ρ′1, . . . , ρ′n, such that {~ρdefunct} = dom(H) − S . For the sake of
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brevity, we use the symbol ~ρ× instead of ~ρdefunct in the remainder of this proof. In

particular ({~ρ} ∪ {K}) ∩ {~ρ×} = ?. Let:

h = ~ρ 7→~r,~ρ× 7→~r×
H = ~ρ 7→ ~R,~ρ× 7→ ~R×

env (H) = ~ρ,~ρ×,~r at ~ρ,~r× at ~ρ×

By (Config Good), H |= S · (a, h) : A implies env (H) ` a :e A and e ∪ fg(A) ⊆ S and

H |= S · h. By Theorem 4.1, we have that:

[[?]],~ρ,~ρ×, [[~r at ~ρ]], [[~r× at ~ρ×]], k:K[[[A]]] ` [[a]]k : e ∪ {K}
[[?]],~ρ,~ρ×, [[~r at ~ρ]], [[~r× at ~ρ×]], k:K[[[A]]] ` [[~ρ 7→~r]] : {~ρ}
[[?]],~ρ,~ρ×, [[~r at ~ρ]], [[~r× at ~ρ×]], k:K[[[A]]] ` [[~ρ× 7→~r×]] : {~ρ×}

Let P = [[a]]k | [[~ρ 7→~r]]. By an exchange lemma, we get:

[[?]],~ρ, k:K[[[A]]],~ρ×, [[~r at ~ρ]], [[~r× at ~ρ×]] ` P : {~ρ,K}
[[?]],~ρ, k:K[[[A]]],~ρ×, [[~r at ~ρ]], [[~r× at ~ρ×]] ` [[~ρ× 7→~r×]] : {~ρ×}

By Theorem B.30 several times, we get:

[[?]], S , k:K[[[A]]] ` (ν~ρ×)(ν[[~r at ~ρ]])(ν[[~r× at ~ρ×]])

(P | [[~ρ× 7→~r×]]) ≈ (ν~ρ×)(ν[[~r at ~ρ]])(ν[[~r× at ~ρ×]])P

But this is:

[[?]], S , k:K[[[A]]] ` [[S · (a, h)]]k ≈ (ν~ρdefunct)(ν[[ptr(H)]])([[a]]k |∏ρ∈S [[H(ρ)]])

q

B.7 An equational theory

We now prove that the equational theory for the region calculus is sound with

respect to our encoding in the π-calculus with groups. This property is given by

Theorem 5.2, that the encoding of equivalent expressions are (barbed) equivalent

processes. In this appendix we consider the simple region calculus introduced in

section 2. For the sake of brevity we have not considered the details of how to

extend this theory to the polymorphic region calculus.

We start by proving Lemma B.37, that the encoding of an expression obtained

by substituting an allocation v at ρ for a variable x in an expression b is equivalent

to the process obtained by substituting for x in [[b]] a private link to a replicated

copy of the process [[v]]. This property is used in the proof of Theorem 5.2. More

precisely, it is needed to show that the encoding of β-equivalent terms are equivalent

processes.

Lemma B.37 is the only result of this article that directly depends on the locality

restriction imposed on the π-calculus.

Lemma B.37
Consider two expressions a and b such that a is an allocation, v at ρ, with E ` a :{ρ} A
and E, x:A ` b :e B. If p /∈ fn(v) ∪ fn(b) and k /∈ dom(E) ∪ L then:

[[E]], k:K[[[B]]] ` [[b{x←a}]]k ≈ (νp:[[A]])([[p 7→ v]] | [[b{x←p}]]k)
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Proof of Lemma 5.1 If E ` a1 ↔ a2 : A then there are e1, e2 such that for each

i ∈ 1..2, ei ⊆ dom(E) and E ` ai :ei A.

Proof

By induction on the derivation of E ` a1 ↔ a2 : A.

(Eq Refl), (Eq Symm) and (Eq Trans) Trivial.

(Eq Fun) Then E, x : A′ ` bi :e
′
i B′ for each i ∈ 1..2 and A

∆
= (A′ e′→ B′) at ρ, where

ai
∆
= (λ(x:A′)bi at ρ) and e′i ⊆ e′ and E ` A. Take e1 = e2 = {ρ}. By (Type →),

since E ` A, we get that ei ⊆ dom(E) for each i ∈ 1..2. By (Exp Fun), E ` ai :ei A

for each i ∈ 1..2, as required.

(Eq Fun β) and (Eq Let β) Then a1
∆
= let y = (λ(x:B)b at ρ) in y(a) and a2

∆
=

b{x←a} where a is a name or an allocation, and y /∈ fn(a), and E ` a :e1 B, and

E, x:B ` b :e2 A, and E ` b{x←a} :e3 A (that is, E ` a2 :e3 A), and ρ ∈ dom(E). By

(Exp Appl) and (Exp Let), we get that E ` a1 :e1∪{ρ} A, as required. The case for

(Eq Let β) is similar.

(Eq Let) and (Eq Letregion Let) Then a1
∆
= let x = a in b and a2

∆
= let x = a′ in b′

where E ` a ↔ a′ : B and E, x : B ` b ↔ b′ : A. By induction hypothesis, there

are e1
1, e

1
2, e

2
1, e

2
2 ⊆ dom(E) such that E ` a :e

1
1 B, E ` a′ :e

1
2 B, E, x : B ` b :e

2
1 A

and E, x : B ` b′ :e2
2 A. Take ei = ei1 ∪ ei2 for each i ∈ 1..2. By (Exp Let), we get

that E ` ai :ei A and ei ⊆ dom(E) for each i ∈ 1..2, as required. The case for (Eq

Letregion Let) is similar.

(Eq Let Assoc) Then a1
∆
= let x = a in (let y = b in c) and a2

∆
= let y = (let x =

a in b) in c where E ` a :ea A and E, x : A ` b :eb B and E, y : B ` c :ec C . In

particular, since x /∈ dom(E, y : B), we get that x /∈ fn(c) and E, y:B, x:A ` �. Take

e1 = e2 = ea ∪ eb ∪ ec. By (Exp Let) and Lemma B.1, we get that E ` ai :ei C for

each i ∈ 1..2, as required.

(Eq Letregion) and (Eq Swap) Then ai = (νρ)bi for each i ∈ 1..2 where E, ρ `
b1 ↔ b2 : A and ρ /∈ fr(A). By induction hypothesis, there are f1, f2 such that

fi ⊆ dom(E, ρ) and E, ρ ` bi :fi A for each i ∈ 1..2. Take ei = fi − {ρ} for each

i ∈ 1..2. By (Exp Letregion), E ` ai :ei A for each i ∈ 1..2, as required. Case (Eq

Swap) is similar.

(Eq Drop) Then a1 = (νρ)a2 where E ` a :e A and ρ /∈ dom(E). Take e1 = e2 = e.

Since e ⊆ dom(E), we get that e = e − {ρ} and ρ /∈ fr(A). By (Exp Letregion),

E ` a1 :e A, as required. q

Proof of Theorem 5.2 Suppose E ` a ↔ b : A and k /∈ dom(E) ∪ L. Then

[[E]], k:K[[[A]]] ` [[a]]k ≈ [[b]]k.

Proof

By induction on the derivation of E ` a ↔ b : A. By Lemma 5.1, there are e1,

e2 such that ei ⊆ dom(E) for each i ∈ 1..2 and E ` a :e1 A and E ` b :e2 A.

Let k /∈ dom(E) ∪ L. By Theorem 4.1(3), [[E]], k:K[[[A]]] ` [[a]]k : e1 ∪ {K} and

[[E]], k:K[[[A]]] ` [[b]]k : e2 ∪ {K}. Hence, [[E]], k:K[[[A]]] ` [[a]]k, [[b]]k.

For the sake of brevity, we omit the type annotations in the encoding of region

calculus terms in the remainder of this proof.
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(Eq Refl), (Eq Symm) and (Eq Trans) Trivial, since ≈ is an equivalence relation.

(Eq Fun), (Eq Let) and (Eq Letregion) Trivial, since ≈ is a congruence.

(Eq Fun β) and (Eq Let β) Then a
∆
= let y = (λ(x:B)b′ at ρ) in y(a′) and b

∆
=

b′{x←a′} where a′ is a name or an allocation, and y /∈ fn(a′). Hence, [[a]]k
∆
= (νk′)

def p(x, k) = [[b′]]k in (k′〈p〉 | k′(y).[[y(a′)]]k) where k′ and p are fresh names. By

Lemma A.4, [[E]], k:K[[[A]]] ` [[a]]k ≈ def p(x, k) = [[b′]]k in [[p(a′)]]k. We have two

possible cases depending on the shape of a′.
Assume a′ is a name, say q. Hence, [[E]], k:K[[[A]]] ` [[a]]k ≈ def p(x, k) = [[b′]]k in

p〈q, k〉. By Proposition A.6(5):

[[E]], k:K[[[A]]] ` [[a]]k ≈ def p(x, k) = [[b′]]k in [[b′{x←a′}]]k
By Proposition A.6(1), since p /∈ fn(b{x←a′}), we get that:

[[E]], k:K[[[A]]] ` [[a]]k ≈ [[b′{x←a′}]]k
Assume a′ is an allocation, say (λ(y)c at ρ′). Hence:

[[E]], k:K[[[A]]] ` [[a]]k ≈ def p(x, k) = [[b′]]k in

(νk′)(def q(y, k) = [[c]]k in

(k′〈q〉 | k′(y).p〈y, k〉))
(By Lemma A.4)

≈ def p(x, k) = [[b′]]k in

(def q(y, k) = [[c]]k in p〈q, k〉)
(By Proposition A.6(5))

≈ def p(x, k) = [[b′]]k in

(def q(y, k) = [[c]]k in [[b′{x←q}]]k)
(By Lemma B.37)

≈ def p(x, k) = [[b′]]k in [[b′{x←a′}]]k
Case (Eq Let β) is similar.

(Eq Let Assoc) Then a
∆
= let x = a′ in (let y = b′ in c′) and b

∆
= let y = (let x =

a′ in b′) in c′ where E ` a′ :e1 A and E, x : A ` b′ :e2 B and E, y : B `
c′ :e3 C . In particular, since x /∈ dom(E, y : B), we get that x /∈ fn(c′). Hence,

[[a]]k
∆
= (νk1)([[a

′]]k1 | k1(x).(νk2)([[b
′]]k2 | k2(y).[[c

′]]k)) and [[b]]k ≡ (νk1)([[a
′]]k1 |

(νk2)(k1(x).[[b
′]]k2 | k2(y).[[c

′]]k)), where k1, k2 are two fresh names.

By Lemma A.5(1), [[E]], k:K[[[A]]] ` [[a]]k ≈ (νk1)([[a
′]]k1 | (νk2)k1(x).([[b

′]]k2 |
k2(y).[[c

′]]k)). By Lemma A.5(3), we get that [[E]], k:K[[[A]]] ` [[a]]k ≈ [[b]]k, as

desired.

(Eq Drop), (Eq Swap) and (Eq Letregion Let) In each of this cases we have the

following three relations: erase([[a]]k) = erase([[b]]k), and [[E]], k:K[[[A]]] ` [[a]]k

and [[E]], k:K[[[A]]] ` [[b]]k. By Proposition B.23, [[E]], k:K[[[A]]] ` [[a]]k ≈ [[b]]k.

q
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