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A UNIFORM L* ESTIMATE
OF THE SMOOTHING OPERATORS
RELATED TO PLANE CURVES

KANGHUI GUO

ABSTRACT. In dealing with the spectral synthesis property for a plane curve with
nonzero curvature, a key step is to have a uniform L* estimate for some smoothing
operators related to the curve. In this paper, we will show that the same L*> estimate
holds true for a plane curve that may have zero curvature.

1. Introduction. Let SR") be the space of Schwartz class functions and S(R") be
the dual space of SR"). It is obvious that for 1 < p < oo, we have LP(R") C S(R").
For f € SR"), we definethe Fourier transform of f(x) by f(g) = [ €% (X) dx. Also for
T € S(R"), define T by the formula (T.f) = (T.f). For 1 < p < oo, let FLP(R") = {T
S(R"); T € LP(R")}. For acompact subset E of R", denote

I(E) = {f € FLX(R") ; f(E) = 0}
J(E) ={f € SR"); f(E) =0}
K(E) ={f € SR") ; suppf NE =0}

Obviously K(E) c J(E) C I(E) in FL* norm. We call E a set of spectral synthesisif
K(E) = I(E) and a set of weak spectral synthesisif J(E) = I(E).

It is easy to see that the unit ball of R" is a set of spectral synthesis. For n > 3,
L. Schwartz [11] discovered that the unit sphere S in R" is not a set of spectral
synthesis. Thefirst surprising result is dueto C. Herz [9], who proved that the unit circle
S' of R? is a set of spectral synthesis. Then N. Varopoulos [12] obtained that S*! is a
set of weak spectral synthesis. Y. Domar ([1], [2]) used atotally different approach to
generalize Herz's result to compact smooth plane curves with non-vanishing curvature
and generalize Varopoulos's result to compact smooth (n — 1)-dimensional manifoldsin
R" with non-vanishing Gaussian curvature. Domar’sideawasfollowed by D. Muller [10]
and the author [7], slightly weakening the curvature and the smoothness assumptions on
the manifolds.

Thebasicideain [1] isto prove auniform L estimate for some smoothing operators
related to a curve with nonzero curvature. Motivated from Domar’s work in [3], in this
paper we will show that one could get the same uniform L> estimate for a plane curve
that may have zero curvature, namely, we will prove
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THEOREM A. Let k > 2 be an integer and M = {(x.4(¥)) ; x € [a.b]}, where
Y(X) € CY([a, b)) such that vy®(x) > 0 for all x € [a.b]. Let T € FL®(R?) with
supp(T) C M. Then for all small positive h, there exists a family of smooth measures Ty,
on M such that

(1) limTh(n. €) = T(1.€)
2 [ Thlliee) < ClITllLer)

where C is independent of all small h.

The structure of this paper isasfollows. In Section 2, some preliminary resultswill be
given. Section 3 will state and prove Theorem B, alocal result, from which Theorem A
will be derived in Section 4.

In the rest of this paper, the same letter C will stand for different uniform constants,
but the involvement of parametersin each occurrence of C will be stated explicitly.

We thank Professor Domar for his suggestions and criticism during the preparation
of the current work.

2. Preliminaries. The following lemma can be proved by the Beurling-Pollard
technique (see the proof of Lemmalin[6]).

LEMMA 1.1. Let E be a compact C! curve in R'(n > 2). Let T € FL*®(R") with
supp(T) C Eand f € FLY(R") with f(E) = 0. If f is Lipschitz continuous on a neighbor-
hood of E, then we have (T, f) = 0.

LEMMA 1.2. Let k > 2, %o € [a.b] and f(x) € C¥([a.b]) with f(x) = O. Let
g(x) = %. Then
(i) 909 = (1 — o + tX) o, X € [a,b]
(i1) ll9llongat < Ifllcmiqapy. forall 0 < m<k—1
(iii) infxeqap) (9] = infxcan [F'(] = [Ifllc2ary (0 — @)

PROOF. (i) is obvious if we let u = (1 — t)xo + tx so that dt = & du. (ii) follows
immediately from (i), while (iii) follows from (ii) with m = 1 and the identity f'(x) =
g'()(x — X0) +9(X).

REMARK. One corallary of (jii) isthat if f'(x) > 1for al x € [a,b] and (b — @) <
le([b]), then we have g(x) > 1 for all x € [a. b]. The author thanks Dr. Yibiao Pan for
C4([a,
suggesting the above simple proof of (i) in Lemma1.2.

LEMMA 1.3. Givena < x; <X < -+ < Xn-1 < Xm < b, there exist ¢;(x) € C(R),
1 <j < m, suchthat
(i) 0<¢(¥) <1, forallxeR
(i) 053 =1, forall xe R
(iii) [lo109lle~ < 52 and ([0l < =5

19/l < max{52=, 25 hfor2<j<m-1
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(iv) supp(¢1) N[a.b] C [a, X + (X2 — X1)]
supp(¢) C [X—1 + 306 — X-1). % + $0:2 — x)], for 2 <j <m—1
supp(¢m) N [a. b] C [Xm-1 + 2(Xm — Xm-1). b]

Proor.  We define the functions ¢1(x), #m(X) and ¢;j(x), 2 <j < m— 1 asfollows.

1 ifx<x1+%(x2—x1)
2 3 - 1
61(%) = —ﬁ(x— (x1+z(x2—x1))) if X + 206 — xq)
<IX<X+ %(XZ_Xl)

0 if X > %+ 3(% — X1)
0 if X < X1+ 20§ — Xj—1)
= (X— (X-1+ 504 — XH))) if X1+ Z(x — 1)

. < X3< X1+ %(Xj — Xj-1)

1 it X1+ 70§ —%-1)

() = Nt O
_><,+12—x, (X—<Xj+%1(xj+1—Xj))) if X + (41 — %)
<X <X+ (X1 — X))
° if X > % + §0441 — %)
0 if X < Xm-1+ 2(Xm — Xm-1)
dm(X) = ﬁ (X— (le + Zji(xm — le))) if Xm_1+ %(Xm — Xm—1)

<X < X1+ 3(Xm — Xm-1)
1 if X > Xm-1+ 3 (Xm — Xm—1)

The above definitions give (i), (ii) and (iv) directly. It remainsto verify (iii). It is easy
to check that in the distributional sense, <;5j’(x)(2 <j <m-—1)isastep function, taking
the values 0, X‘_—fm 0, ——2—, 0 on the blocks in the definition of ¢;j(x), while ¢/(x)

X+1—X% !
takes the values 0, — 2, 0 and ¢,() takes the values 0, ——2—, 0 respectively. This
verifies (ii).

Xo—X1 ? Xm—Xm-1"

LEMMA 1.4 (CARLSON). Iff, f’ € L2(R), then f can be changed on a set of measure
zerosuchthat f € LY(R), and

Ifll < CCUF el ]2)2

Thefollowing lemmais acorollary of Lemma1.4.

LEMMA 1.5. Let| bean interval and denote |l| thelength of I. Let 7(X) € C(R) such
that supp(r) C | and 7(X) € L*(R). If ||7]|.~ < Cand ||7'||.~ < C|I|7%, then for any
functionf € C}(R), we have

1
It ey < ClUIFllieqy + (TIF i@l leea) 2}

https://doi.org/10.4153/CMB-1997-051-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1997-051-8

436 KANGHUI GUO

Now let theinterval | in Lemma 1.5 becontainedin (—1, 1) and let 1)(x) beafunction
on [—1, 1] to be specified later. For real 1 and £ (¢ #Z 0), let g(x) = gx+ Y(X). For ¢(x),
0(x) € CZ°(—1, 1) and small positive h such that supp(f) + [—h, h] C [—1. 1], define

K(9 = 0(x) [, 0™ 5(y) dy
L0 = 00 /jl ) -909) 5y cly

The proof of the following two technical lemmas follows easily from Lemma 1.5
and some standard cal culations such as changing variables and integration by parts. The
detail computation could be found in [3], where the reader will see that the constant C
in the lemmas does not depend on ), £, hand |.

LEMMA 1.6.

3 Kl < C(L+(17Y?)

@) Irtllece < C(2+ (MIENIG” liqo-nm)?)
LEMMA 1.7. 1f [|g[[qe—nnip |l 7 ll=a+-nmy < C, then we have

1 ) } 3
Leo(l+[—h,h])

L |rer) < C{|€h|_l' g

Loo(I+[—h,h]) (

(5) ' {1+ (“" L°°(|+[—h.h])) E}

3. Thelocal result. Letk > 2 suchthat v(x) € C*1[—1,1] and WX (x) > 1 for all
xe[-11. LetT = {(x¥(¥) ; x € (-1.1)}. Let T € FL™(R?) with supp(T) C T.
Following Domar, we construct a family of smooth measures {T,} on I" for al small
positive h asfollows. Let

g//
g

a:RR— R givenby (xy)— X
B:(—11) —T givenby x— (x1(X).

Wefirst defineadistribution ~ € S(R) by
(2,9)=(T.go) forge SR).

This makes sense since supp(T) is compact. From the construction of Z, it is obvious
that supp(Z) C (—1,1). It follows that one can find §(x) € C3°(—1, 1) such that = = 6.
Let o(x) € C3°(—1.1) with Jgp(x) dx = 1. Denote ¢n(x) = +o(f) and Hn(¥) = dn(—X).
LetU = (—1.1), thenfor 0 < h < 3 dist(3 U, supp(c)) (we shall call such h small), we
see that supp(Z * ¢r) C (—1.1). Now we define Ty, € S(R?) by

(Thf) = (Zx gn.fop) forf e SRD).

It is easy to check that for all small h, T}, are mass measureson I'. Our local result is
the following estimate.
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THEOREM B. Let (1, £) be any point in R? and let T and Ty, be as above. Then one

has
(6) mfh(n &) =T(.9)
() Thlloo < Cl[T]loos

where C is independent of all small h.

For (1.€) € Rx R\ {0} and (x,y) € Rx R, let X(x.y) = €Y, Then from the
construction of Ty,, we have

Th(1.€) = (Th. X) = (6Z. (X0 B) * ¢n)
(8) = {T.009 [ oo o) do)

Let g(x), K(x) and L(X) beasin Lemma 1.6 and Lemma1.7. Then (8) implies

(9) Ta(. &) < ClIK el Tl
And Lemmal.1 and (8) yield
(10) T ) < ClILllre@ I Tllere)

We notice that in (9) and (10), K(x), L(xX) depend on 5, £ and h, but the constant C is
independent of 1, £ and h.

REMARK. If the curve I' has nonzero curvature, then one can use (10) alone to get
(7) (see[1], or [7]), that is, one can control ||L||g 1g uniformly for al 7, £ and small
h. When a curve has zero curvature at some points, Gustavsson [8] gave an example,
showing that in this case ||L||r 1, is not uniformly bounded for all #, £ and small h.
Following the ideain [3], in this paper we divide the set of », £, h into two subsets S;
and S, so that a uniform estimate of ||K||g, 1z on S; and auniform estimate of [|L g yg)
on S, could be obtained. The inequality (7) follows from these two estimates.

PROOF OF THEOREM B. The identity (6) follows from the construction of Ty, so it
remains to verify (7). Let M = maXye—1,11 |1 (X)|. We divide our discussion into two
Ccases.

Casel. |n] > 2M[¢].

From the definition of L(x), we have L(x) = €™4(x) fr Mo* 2= 45) do =
&1 (X), where Ly(X) = 0(X) fr @M= 4(5) do. So it is enough to control
[LallFLawy since [|Ll g = [ILallriw-

Integrating by parts for L(x) yields that ||L||.= < C(Jhn|)~* with C independent of
n. € and h. Alsoitistrivial to seethat ||L}|.> < Clhé| < o5 |hn| with C independent of
n, & and h. Thus (7) follows from Lemma 1.4 and (10).
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CasE2. |n] < 2MI¢|.

In this case, when |¢h| < 1, (7) follows from the argument given in Case 1, so from
now on we assumethat |¢h| > 1. Let P, ¢(x) = £ + ¢/(X). Then P, <(x) € C[~1, 1] and
PED() = v (x).

Letubeanonnegativeinteger andletay, a, . .. , a, bethezerosin[a, b] of P, ((x) with
multiplicity Iy, 12, ..., I, respectively. From Rolle’s theorem, we see that k; = ZJ-“:l i <
k — 1. Thuswe have

(11) P09 = +(x— an)*(x — )% - - (x — @) Q. (¥,

where Q, ¢(X) is a C<~% function on [a. b] such that Q, ¢(x) > O for all x € [a. b]. We
emphasizethat what makesthe argument complicated isthat theroots g aredependingon
nand&. If Q, ¢(X) > C; > Owith Cy independent of n, £ andx € [a, b] (wekeepin mind
that |1&4| < 2M), then we say that P, ((x) has alevel 1 structure (11). If there is no such
Cy, letc = infycrap Q,,¢(X) (weknow that ¢ > 0) and let ay+1, aysa. - - . ay+v bethe zeros
of Q,.¢(X) — ¢ with even multiplicity |1, luso, . . ., lusy respectively (it is possible that
g = g forsomej,iwithl <j <u,u+1 <i <u+v).Thenk, = Z}Q‘&Ql [ <(k-1)—-k
and we have

Pc(¥) = (X — @) (x — 3)"? - - - (X — @) “[(X — as1)"
(12 (X — au)v? - (X — au+v)|“*VS,,~g(X) +cJ,

where S, ¢(X) is a C<~(a*ka) function on [a. b] such that S, ¢(X) > O for al x € [a.b].
Againif S, ¢(x) > C, > 0 with C; independent of i, £ and x € [a. b], then we say that
P,.¢(X) has alevel 2 structure (12).

Similarly one candefineastructure of level 3, level 4 and so on. CombiningLemmal.2
and an induction argument (if necessary one can divide the interval [—1, 1] into finite
many subintervals), one can follow the remark after Lemma 1.2 to see that there are at
most k— 1levels. To simplify the notation, we only give the proof of Case2 whenP, ¢(x)
has a structure of level 2 since the proof for other levels follows the sameline.

Now assumethat P,  hasthe expression (12). Weremark that |g| < C, 1 <j <u+v
with C independent of 1, £&. From the choice of 6(x), one can find asmall ¢ > 0 such that
supp(d) C [—1+¢, 1 —¢€]. Based on whether the points g are all containedin [—1 + %e,
1-—- %e] or not, we have the following two subcases.

Case 2.1. All g arecontainedin theinterval [—1+ Z¢, 1 — 3e].

PROOF OF CASE 2.1. From the argument below we will seethat we may assume that
a 7 g ifi #]. Alsowewill seethat the order of g is not important, so let us assumethat
“l<ay<a<  <gy<agn<- - <aw<l

Applying Lemma 1.3form=u+v,a= -1, x = &, b =1, onecanfind ¢j(x) asin
Lemma 1.3 so that (if some a; are the same, then only the distinct & will be used in the
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partition of unity)
Ta(n. ©) = (T.009 [ &0y (g)do)

<
(7.2 6160060 [ 1m0 0) o)

<T, d’j (X)@(X) /R ei[r/(xfh0)+£@/;(xfh0)]¢(o_) d0'>

"
3 M3

1j(n. &)

1l
[N

AsinLemmal.5 welet g(x) = gx+ ¥(x) so that g'(X) = P,, ¢(X). Then using the product
rule, we seethat g”(x) hasu + v+ 1 terms (if §x) is aconstant, then g”(x) hasonly u+v
terms). For each term, we take the absolute value and then sum all the u + v + 1 terms
together to get a new function denoted by g(x), which contains all factors as shown in
(13). Foré > 0andeachj, 1 <j <u+v,let G_j((S) be the function of § obtained from
g(x), replacing S(x), S(x) by 1, (x—&) by 6, and (x — &) by |a —g]| +4 if i #]. Similarly
let F_j(é) be the function of 6 obtained from g'(x), replacing S(x) by 1, (x — &) by ¢, and
(x—a&) by |ay —a| +0if i #]. Itiseasy to see that 5,»(5) is an increasing function of &
and that 6G;(6) < CF;(6) for 0 < < 1 with Cindependent of n, £ and h.
For I;(n, £), we define0 < 4; < 1(since|¢h| > 1) by the equation

(13) |ehlo Gi(65) = 1

Set d; = max{h,¢;}. Sincehissmall, we seethat 0 < d; < 1. It should keep in mind
that d; does depend on 1 and £ since; does. Thanksto the similarity of the argument for
each |j, we will only show
(14) Ml < Cl T,

where C isindependent of 1, £ and h.

Find L, N suchthat a; +1 = 2-d; and 3(a; —as) = 2d,. Denotetheinteger part of L, N
by [L], [N] respectively. WhenL > 0and N > 0, wecut theinterval [—1, a1+§1(a2—a1)]
by the points {a; — 2'd; ; 1 < | < [L]} and {a; +2"d; ; 1 < n < [N]}. WhenN > 0
and L < 0, we cut the same interval by the points {a; + 2"d; ; 1 < n < [N]}. When
N < OandL > 0, we cut the interval by the points {a; — 2'd; ; 1 < | < [L]}. Finally
if L<0andN < 0, weleave the interval alone. To simplify the notation and show the
idea, we restrict ourselvesto the casewhen N > 0 and L < O (if N is an integer, then
weuse {a; +2"d; ; 1 < n < N — 1} to cut the interval). The treatment for other cases
issimilar. In therest of this section, the letter C will stand for the constants independent
of i, ¢ and h.

From Lemma 1.3, there exist functions z,(x) € C(R), 1 < n < [N] such that

(i) 0<z(x) <1fordlxeR

(i) Y™ z,(x) =1, foral xR

(i) 100l < &, and[|Z0)llL < kg, for2< n<[N]
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(iv) supp(z1) N[~1.a + (a2 —a)] C [~1,& + fdi]
SUpp(z,) C [ag + 32" Mdp. &g + £2°dy], for2<n < [N] —1
supp(zng) M [—1. a1 + (a2 — a1)] C [an + 52N ~1dy, &y + (a2 — )]
From the construction of z,(x), we have

[N] .
1401 €) = 3 T 2096200009 [, &L (0)dor)

n=1
[N]
=2 (1. §)
n=1
To prove (14), it is sufficient to show that
(15) 9nllee < €270 Tl

Let a(X) = Za(X)¢1(¥), then | supp(rn)] < C2'dy and [|7(x)|[L~ < C(2'd1)~*. Let
K(x), L(x) beasin Lemma1.6. It is easy to seethat

(16) [nllLe < C||TnKHFLl(R)||-T_||Lw(R2)
Let B(x.y) € CF(R?) such that 3 = 1 on aneighborhood of . For fixed n, & and h,
define

F(xy) = B0¢ Y)E D eI — 1)700 0(9) [ %M 3(0) o

We observethat f (x. y) € C(R?) suchthat f is Lipschitz continuous on aneighborhood
of I and f(I') = 0. Also using Lemma 3.1 in [10], one can verify that f € FLY(R?).
Evoking Lemma 1.1, one has

(17) [[3n[L= < CHTnL”FLl(R)|m|Lw(R2)

First we control Ji(n, £). When d; = h, (15) (n = 1) follows from (3) of Lemma 1.6
and (16). So assumethat d; = 6;. In thiscaseit is easy to seethat || || L (supp(ry)+—ht)) <
CG1(61). Thus from the definition of 61, one obtains (15) (n = 1) by using (4) of

Lemmal.6 and (17).

Now we prove (15) for n > 2. The formula ‘%%2’1%)‘ < ZT‘%‘ leads us to the
. . 1
inequality
(18) 909 c(‘g(x) iyt )

g~ US| Tix—a
From (18), one easily has (since h < d;)
hg/l

19 — <
(49 H 9’ L (supp(ro)+—hh))

Since 2Md; < 3(a — &) forall 2 <j <u+v,itiseasy to seethat
(20) 19 llo(suppirmy+(—ny < CF1(2"d)

1 - -1

21 = < C(F1(2"d

@) ‘g’ Loo(supp(m)+[—h.h]) (Fi@'dy)
Moreover F1(2"d;) > C2"dyG1(2"d;) > C2"6,G1(61), so (15) follows from the

definition of 41, (17), (19), (20), (21) and Lemma 1.7.
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CASE 2.2. Some g are not contained in theinterval [—1 + Ze, 1 — 1e].

PROOF OF CASE 2.2. Without loss of generality, let us assume that only a; is not
contained in the interval [—1 + €. 1 — 1¢]. Inthis case, we only use a. . . . , ausy to cut
the interval [—1, 1] and obtain {¢j(X).2 < j < u+ v} in the partition of unity. Since
X —as] > %e if x € supp(#), a minor modification of the argument for Case 2.1 yields
the proof for this case.

The proof of Theorem B is now complete.

4. Proof of Theorem A. Let the compact curve M and the distribution T be asin
Theorem A. For any open ball U, denote by U* the projection of U onto the x-axis.
There exist three open balls Uj with Uf* = (&, byj), 1 <j < 3, functions oj(x) € CP (R,
1 <j < 3suchthat

(i) M c Uy,

(i) v4( >c>O0on[a.by]
(iii) supp(ey) C U
(iv) 3 ;(x) = 1in aneighborhood of M

Since supp(T) C M, weseethat T = >3(oyT) = 3 T;. We may assume (az. bp) C
(a b), (a1, by) containsthe point a and (as, bs) containsthe point b. For T,, one can apply
Theorem B directly, so it remainsto control T; and Ts.

For T4, following the proof of Theorem B, wefirst defineX; andlet 6(x) € C3°(ay, by)
sothat 31 = 6%;. Then let ¢(x) € CP(—1,0) (Jr #(X) dx = 1) so that supp(én) < (0. h).
Thisimplies that for all small h, supp(E; * én) C [a. by) since supp(Z1) C [a. by). Now
we define Ty, € S(R?) by

(Tin.T) = (Z1 % dn.f o B) forf € SR).

This construction guarantees (1) when T, Ty, are replaced by Ty, Ty, respectively. The
verification of (2) is the same as the proof of Theorem B.
Thetreatment for T3 is similar. This finishesthe proof of Theorem A.
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