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Abstract

Radiotherapy (RT) plays a key role in the tumour microenvironment (TME), impacting the
immune response via cellular and humoral immunity. RT can induce local immunity to mod-
ify the TME. It can stimulate dendritic cell maturation and T-cell infiltration. Moreover, B
cells, macrophages and other immune cells may also be affected. Tertiary lymphoid structure
(TLS) is a unique structure within the TME and a class of aggregates containing T cells, B cells
and other immune cells. The maturation of TLS is determined by the presence of mature den-
dritic cells, the density of TLS is determined by the number of immune cells. TLS maturation
and density both affect the antitumour immune response in the TME. This review summar-
ized the recent research on the impact and the role of RT on TLS, including the changes of
TLS components and formation conditions and the mechanism of how RT affects TLS and
transforms the TME. RT may promote TLS maturation and density to modify the TME
regarding enhanced antitumour immunity.

Introduction

Immunotherapy has sparked an unprecedented revolution in clinical cancer treatment due to
its optimistic prognosis (Ref. 1). It has significantly improved the efficacy of treatment in
numerous solid tumours and has been progressively incorporated into various cancer treat-
ment guidelines. However, due to primary and secondary immune resistance, only part of
patients can benefit from immunotherapy (Refs 2, 3). While the combination therapy, such
as immunotherapy combines with other therapies such as radiotherapy (RT), antiangiogenic
drugs and neoadjuvant chemotherapy, can significantly decrease the immune resistance,
according to accumulated clinical studies (Ref. 4). Recent studies showed that combining
immunotherapy with RT can enhance the treatment effect, antitumour response and resistant
prevention development in tumour cells (Ref. 5). RT exhibits a modulating effect on the anti-
tumour immune response, both locally and systemically. It has been intensively observed that
the potential synergistic effect of RT in combination with immunotherapy improved more
cancer control than RT alone in treating many human malignancies (Refs 6, 7, 8).
However, the exact mechanism by which RT enhances the infiltration of local T cells, influ-
ences the aggregation and differentiation of other immune cells to modify the tumour micro-
environment (TME), and indirectly affects systemic antitumour immunity is not fully clear.
TME is inconsistent, dynamics and transformation during tumour initiation, progression
and treatment, and immunosuppressive TME formation are necessary for immunotherapy
resistance.

Tertiary lymphoid structure (TLS) can be formed in certain chronic inflammation, which is
a vague concept first proposed in 2009 (Ref. 9). Schumacher et al. defined the cellular compos-
ition of TLS in cancer, including B cells, T cells, dendritic cells (DCs), follicular dendritic cells
(FDCs), follicular reticular cells (FRCs) and high endothelial vein (HEV) (Ref. 10). Mature TLS
consists of T cells, B cells, DCs and germinal centres, similar to secondary lymphoid organs
(SLOs). TLS is a group of immune cells that locates the tumour’s periphery or centre, and
is being intensively researched. CD4 + and CD8 + T lymphocytes, B cells, fibroblasts, plasma
cells, macrophages and dendritic cells may be present in these structures (Refs 11, 12, 13,
14). Furthermore, TLS contains high endothelial veins (HEVs), which act as a vascular system
to maintain connections with related immune cells. Nonetheless, the existence of immune cells
in the TME is crucial for local RT; therefore, how does RT regulate tumour development via an
antitumour immune function? And how RT influences the TLS remains uncertain. RT affects
the role of TME in anti-tumour immunity, which requires further investigation.

Our knowledge of the local antitumour immune response has much space for expansion.
TLS is a component of the antitumour immune response; however, its function can be influ-
enced by numerous factors, such as local secretion of inflammatory factors, cytokines, other
immune populations, local vascular and epithelial cell signals and therapeutic approaches
like chemotherapy and RT. In this review, we first discussed the synergistic effect of RT on
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antitumour immunity, then we discussed how RT exerts an anti-
tumour effect by reshaping the TME, finally, we discussed TLS as
a unique structure within the TME. More, we discussed the
potential influence of RT on the formation of TLS to reshape
the TME.

Synergistic effect of RT on antitumour immunity

RT may stimulate the systemic immune response by infiltrating
CD8 + T cells and modifying the immunosuppressive microenvir-
onment in unirradiated subcutaneous tumour lesions (Ref. 15).
Most patients with T3/T4 pancreatic cancer receive induction
chemotherapy for a median of only 4 months (0.5–18.4).
The median OS of patients receiving ablative RT was 26.8 months.
Patients with inoperable pancreatic cancer are prone to survive
after receiving ablative RT (Ref. 16). As matter of fact, RT is the
current treatment for glioblastoma. Quetiapine acts as a dopamine
receptor antagonist to reduce the self-renewal of glioma cells
Quetiapine combined with RT can prolong the survival of glioma
mice (Ref. 17). Besides, RT combined with gene-mediated cyto-
toxic immunotherapy for adult glioblastoma demonstrated safety
and potential efficacy, according to a Phase I clinical trial study
(Ref. 18). Compared to untreated animals, RT substantially sup-
pressed the growth of tumours in mice with triple-negative breast
cancer (Ref. 19). Furthermore, immunotherapy combined with
RT can augment the antitumour immune response. Compared
to immunotherapy alone, combining RT and immunotherapy sig-
nificantly reduced tumour growth and prolonged overall survival
(OS) in mice models (Refs 20, 21) Current clinical evidence indi-
cates that RT combined with various immune checkpoint inhibi-
tors (ICIs) can improve patients’ OS (Refs 8, 22, 23). RT
combined with nivolumab can benefit OS and progression-free
survival (PFS) (Ref. 24). In a retrospective study of patients
with late-stage NSCLC, RT coupled with ICIs can enhance PFS
and OS (Ref. 6). One study found that the combination of ICIs
and RT can increase the rate of local control, nevertheless, it
decreases disease-free survival (Ref. 25). Therefore, RT may
improve antitumour immunity.

Alternatively, RT can induce systemic immune changes via local
immune regulation. RT inhibits the growth of distant malignancies,
a phenomenon known as the abscopal effect. Several studies have
shown that patients with melanoma and renal cell cancer who
receive RT combined with ICIs experience a significant reduction
in distant tumours (Refs 26, 27). One study evaluated 16 patients
with metastatic tumours, including melanoma, non-small cell
lung cancer and renal cell carcinoma. The median time to disease
progression after anti-PD1 treatment alone was 3 months, PFS was
significantly longer after combined RT, and remarkably, one per-
son achieved a significant complete response lasting >6 months.
Three melanoma patients had an abscopal effect, an incidence of
18.7% (compared with 25% of melanoma patients) (Ref. 28). OS
was 10 months when immunotherapy was administered alone
and 19 months when immunotherapy was combined with RT
(P = 0.01). Additionally, the complete response rate for RT and
immunotherapy increased from 6.5 to 25.7% (Ref. 29). This distan-
cing effect depends on the presence of T cells, indicating that RT
can enhance the immunogenicity of tumours and could be used
to improve the efficacy of immunotherapy (Ref. 30).

In conclusion, RT can improve antitumour immunity, and this
effect is amplified when combined with immunotherapy. Local
immune regulation and subsequent induction of systemic
immunity after RT reshaping the TME are primarily responsible
for the control effect of RT on local and distant malignancies.
RT can enhance tumour immunogenicity and modify TME’s effi-
cacy. It may be an essential mechanism for RT-induced immune
synergism.

RT-mediated reshaping of tumour TME

RT may stimulate tumour cells to secrete chemokines, thereby
facilitating the conditions for the recruitment of immune cells.
Several studies indicated that a combination of RT and
anti-PD-L1 antibodies increases CD8 + T cell infiltration in
mice models (Refs 31, 32, 33). RT increases T-cell infiltration at
local tumour sites, and enhances distant effects when combined
with ICIs (Ref. 34). RT increases the release of granulocyte–ma-
crophage colony-stimulating factors (GM-CSF) by stimulating
co-stimulatory molecules in T cells (Ref. 35). RT promotes
tumour cell recognition by cytotoxic T cells by predominantly ele-
vating the expression of major histocompatibility complex I
(MHC class I) (Ref. 36). RT stimulated antigen-specific CTL
lysis of tumour cells by modulating the Fas/Fas pathway
(Ref. 37). RT produces cytokines (IL-6, IL-1B and TNF-α) that
encourage T cell’s function, expansion and differentiation
(Refs 38, 39, 40). Numerous investigations have demonstrated
that RT can induce T cell homing and infiltration into the
TME (Refs 34, 41, 42, 43). RT can increase natural killer (NK)
cells’ cytotoxicity of tumours and promote their entry into TME
(Refs 44, 45). B cells play an essential role in humoral immunity
and antigen presentation. Studies have demonstrated that B cell
activation and humoral immunity are the primary mediators of
the antitumour effects of RT combined with immunotherapy
(Refs 46, 47). Existing clinical data also suggested that the number
of B cells in TME elevated considerably following RT (Ref. 48).
RT assists the infiltration of CD8 + T cells in esophageal squa-
mous cell carcinoma, which may depend on type I IFN, and
increases the expression of CXCL10 and CCL5 by stimulating
the intrinsic cGAS-STING pathway in tumour cells (Ref. 49).

Moreover, RT may induce immunosuppressive alterations in
the TME, including increased inhibitory cells, such as Tregs
and TAMs. RT could activate immunosuppressive signalling path-
way by the induction of HIF-1a, which stimulates PD-L1 expres-
sion in tumour cells, tumour-associated macrophages and
dendritic cells (Ref. 50). The expression of IDO after RT correlates
with the increase of TAMs or MDSCs, and inhibiting IDO can
improve the effectiveness of RT (Ref. 51). Some studies have
demonstrated a negative correlation between macrophages and
the survival of solid malignancies (Refs 52, 53, 54). This macro-
phage phenotype is mainly M2 macrophages. The number and
function of T, B, NK and antigen-presenting cells can be increased
by RT, it can induce immunogenic cell death or MHC upregula-
tion via immune cells’ interferon and toll-like receptor signalling
(Refs 55, 56, 57). RT can stimulate the release of tumour antigens,
allowing for the presentation of APCs and activation of CD8 +
cells (Refs 57, 58). In malignancies, RT can induce an antitumour
immune response. Local and systemic responses constitute this
antitumour immunity.

The TME undergoes dynamic changes during antitumour
therapy, with RT primarily causing TME remodelling via its
impact on cellular components, cytokines and specific pathways.
Numerous indicators suggest that RT reshaped TME. However,
the internal precise mechanism is not yet well-defined, as we
can only observe that RT modulates particular components of
TME, and it is unidentified how these components play a syner-
gistic role.

TLS is a unique structure of TME with immune modulating
component

Definition and components of TLS

Numerous cytokines, growth factors, extracellular matrix and dif-
ferent types of cells including endothelial cells, immune cells, etc,
are present in tumour immune microenvironments. They
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surround tumour cells and are nourished by blood vessels. It has a
substantial effect on the therapeutic effectiveness of tumours.
Immune cell aggregates in non-lymphoid tissues and generate
TLS. Presently, they are associated with chronic inflammation,
including autoimmunity, chronic infections and cancer. TLS is
prevalent in the inner regions of B cells and T cells in the periph-
ery. HEVs are speculated to promote lymphocyte recruitment as
the particular vascular system in TLS. Dendritic cells, macro-
phages and other immune cells may also be incorporated. T
cells in TLS are primarily CD3 + T cells, including CD4 + T
cells and CD8 + T cells. In 2011, L de et al. showed that most T
cells were CD62L + , primarily CD4 +memory phenotype in
TLS in human lung cancer (Ref. 59). Furthermore, TLS contains
CD103 + T cells (Refs 60, 61). Germain et al. demonstrated that
the density of follicular B cells and mature dendritic cells can
assess a patient’s optimal clinical prognosis (Ref. 62). TLS com-
position may differ based on location. It was found that the super-
ficial layer of TLS contained substantially more T helper cells and
early TLS than the deep layer (Ref. 14).

TLS has been found in various human tumours including
lung, melanoma, breast and colorectal cancers, however, it is
uncommon in mouse tumour models. In patients with grade 1
or 2 non-functional pancreatic neuroendocrine tumours, TLS
consists primarily of B cell follicles and T cell regions with den-
dritic cells (Ref. 63). A study revealed that CD3 + T cells, CD20
+ B cells, CD8 + T cells, CD208 + dendritic cells and CD21 + fol-
licular dendritic cells located in TLS of hepatocellular carcinoma
(Ref. 12). Moreover, some studies implied that antitumour plasma
cells may be located in TLS (Ref. 64). TIM4 +macrophages (MΦ)
are present in the cancer-associated T-cell region of TLS.
TLSTIM4 +MΦ is enriched in tumours with elevated CD8 + T
cell infiltration, associated with antitumour immunity (Ref. 65).
A TLS-related immune cell infiltration study found that CD3 +
T, CD8 + T and CD20 + B cell infiltration elevates in patients
with gastric cancer, whereas CD68 + cell infiltration is limited
(Ref. 66). TLS rich in CD20 + B cells, CD8 + T cells, CD4 + T
cells and CD38 + plasma cells are found in endometrial carcin-
oma (Ref. 13). TCF1/TCF7 + T cells showed a significant associ-
ation with TLS in a model of oral cancer (Ref. 67). CD20 +
CD22 + ADAM28 + B cells are present in various tumour-
associated TLS (Ref. 68). The density of CD8 + T cells and
CD20 + B cells was high in TLS-positive tissues (Ref. 69).
TGF-β-mediated SATB1 inhibition promotes T cell differenti-
ation to Tfh and further promotes TLS formation in ovarian
tumours (Ref. 70). TLS mainly comprises B cells, T cells, macro-
phages, DCs, FDCs (follicular dendritic cells), and HEVs.

TME refers to the surrounding microenvironment in which
tumour cells exist, including surrounding blood vessels, lympha-
tics, immune cells, fibroblasts, MDSC, various signalling mole-
cules and extracellular matrix (ECM). TME is a complex
environment that assists in the survival and development of
tumour cells, particularly the immune cells. As a cluster of
immune cells, TLS is an essential immune modulating compo-
nent of the TME (Fig. 1). TLS regulation may play a significant
role in TME reconfiguration.

Role of TLS in tumour progression and prognosis

Reduced TLS formation in ALK + lung adenocarcinoma is closely
correlated with tumour progression and may account for reduced
immunotherapy response (Ref. 71). The high-density of Treg cells
in TLS correlates with decreased survival in NSCLC patients
(Ref. 72). Relapsed patients with advanced colorectal cancer
have substantially elevated levels of Th (T helper)-type TLS
(Ref. 73). One study revealed that breast cancer patients with peri-
tumoral TLS had worse DFS and OS than those with TLS (-)
(Ref. 74). TLS was associated with a poor prognosis in kidney
clear cell carcinoma, however, it showed an improved prognosis
in bladder cancer, according to a comparative analysis (Ref. 75).
Early liver cancer can result in immature TLS formation and
local immune activation, while promotes immune evasion and
tumour progression (Ref. 76). Particular reasons require further
investigation. Although there are few studies on TLS and tumour
progression, TLS may play numerous functions in various cancer
types, particularly in genetic mutations or advanced tumours,
which may be one of our future research directions.

Previous research showed that TLS is an immune cell aggrega-
tion in the TME. Schumacher summarized that TLS possesses
multiple advantages over peripheral circulation lymphocytes or
tumour infiltration lymphocytes in the context of antitumour
immunity (Ref. 10). First speed: priming T and B cells at the
TLS may shorten the time required to generate immune responses
because it bypasses the immune cells to and from the SLOs.
Second efficiency: the formation of local germinal centres can
enhance the efficiency of immunotherapy by initiating both
humoral and cellular immune responses. Third control: direct
exposure of TLS-associated immune cells to the TME may alter
immune response reception of particular output signals. Fourth
survival: the interaction between TLS-associated effector T cells
and APCs promotes patients’ survival. Some studies suggested a
connection between profuse TILs and TLS (Refs 77, 78).
Researchers also noted that mature TLS may activate lymphocytes

Figure 1. TLS is a special structure in TME. TLS is mainly composed of B cells (native, mature, memory), T cells (CTL, native, Tfh), macrophage (M1, M2), DCs, FDCs
and HEVs.
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to perform an antitumour immune role (Refs 79, 80). A higher
TILs number in TLS was associated with a better prognosis
(Refs 81, 82, 83). The number of TLS in a breast cancer metastatic
site is proportional to the number of TILs (Ref. 84). Thus, TILs
were substantially correlated with TLS and had a favourable prog-
nosis. When examining the relationship between various therapies
and TLS, we can also investigate the relationship between TILs
and multiple treatments.

Numerous studies examined the association between TLS and
good tumour prognosis in melanoma, lung cancer and colorectal
cancer. TLS is essential for initiating and maintaining local and
systemic T and B cell antitumour responses, stimulating cellular
and humoral immunity channels and increasing antitumour
immune response. Currently, TLS has been identified in nearly
all solid tumours and has been associated with clinical outcomes
in patients with non-small cell lung cancer (Refs 80, 85, 86), pan-
creatic neuroendocrine tumours (Ref. 63), breast cancer (Ref. 87),
gastric cancer (Refs 60, 78), esophageal squamous cell carcinoma
(Ref. 88), early oral tongue squamous cell carcinoma (Refs 89, 90,
91), cutaneous angiosarcoma (Ref. 92), epithelioid pleural meso-
thelioma (Ref. 93), hepatocellular carcinoma (Refs 94, 95, 96),

perihilar cholangiocarcinoma (Ref. 97) and endometrial cancer
(Ref. 98), displayed in Table 1. Simultaneously, the prognosis of
tumour patients changes according to the presence, maturity,
location, and high or low TLS signature (Table 1). Most studies
have found that TLS is associated with a favourable prognosis;
however, TLS may play distinct roles in various regions of hepa-
tocellular carcinoma. In intra-tumoral tissue, the prognosis of
DFS in the TLS + group was better. However, in peritumoral tis-
sues, the TLS-group had better OS and DFS outcomes than the
TLS + group (Ref. 96). Another study demonstrated that intra-
tumour TLS is substantially associated with improved RFS and
DFS (Refs 94, 95). Another study revealed that TLS did not affect
the OS of patients with liver cancer but significantly affected RFS
(Ref. 81).

TLS can be categorized as mature TLS, immature TLS and
negative TLS. Compared to immature TLS, the proportion of pro-
liferating B cells, and CD4 + T cells increased in mature TLS, and
B memory cells and Th17 cells increased in mature TLS.
In esophageal cancer patients, mature TLS in conjunction with
elevated CD8 + T cell infiltration is correlated with optimal sur-
vival, and the prevalence of mature TLS is an independent

Table 1. Initial studies discerning the effect of TLS on various cancer patients’ outcomes

Tumour types TLS markers Outcomes TLS classification
No. of
patients References

Lung cancer TMB、CXCL13、CCL19、CCL21 Better RFS TLS +、TLS- 112 (Ref. 86)

Gastric cancer CD20 + B、CD3 + T、CD21 + FDCs Better OS TLS +、TLS- 846 (Ref. 78)

Early oral tongue squamous
cell carcinoma

NA Better OS、disease-specific
survival

TLS +、TLS- 310 (Ref. 89)

Cutaneous angiosarcoma CD20, CD3 and PD-1 Better disease-specific survival TLS +、TLS- 31 (Ref. 92)

Epithelioid pleural
mesothelioma

CD20、CD3 Long OS TLS +、TLS- 129 (Ref. 93)

Hepatocellular carcinoma Increase: CD3 + , CD8 + , CD20 +
Decrease: Foxp3 + and CD68 + cells、
PD1 + , TIM3 + and LAG3 +

Decrease early tumour
recurrence，OS-independent

TLS +、TLS- 462 (Ref. 95)

Pancreatic neuroendocrine
tumours

CD4 + T cells, CD8 + T cells, CD20 + B
cells and CD45RO +memory T cells

Better OS、RFS TLS +、TLS- 307 (Ref. 63)

Esophageal squamous cell
carcinoma

CD45 + leucocytes, CD20 + B cells, CD4
+ and CD8 + T cells, and CD11c +
dendritic cells

Better DFS、OS TLS +、TLS- 185 (Ref. 88)

Hepatocellular carcinoma NA Better OS、DFS、RFS Intra-tumoral (iTLS)
TLS + and iTLS-

364 (Ref. 94)

Lung cancer CD8 +、Foxp3 + cells Better OS、DFS Mature TLS、immature
TLS

218 (Ref. 80)

Endometrial cancer Bcl6、CD20、CD4、CD8、L1CAM Lower recurrence，Lower
5-year risk of recurrence

Mature TLS 660 (Ref. 98)

Early oral tongue squamous
cell carcinoma

CD3, CD20, CD21, Bcl2 and Bcl6 Better DFS、OS High-mature TLS、
Low-maturity

97 (Ref. 91)

Lung cancer NA（not applicable） Better OS、PFI
（progression-free interval）

TLS signature high、
TLS signature Low

515 in TGCA
cohort

(Ref. 85)

Breast cancer NA Better DFS、OS High-TLS signature、
low-TLS

3893 in
TGCA

(Ref. 87)

Gastric cancer CD103 + T、CD20 + cell Better OS TLS high、TLS low 19 (Ref. 60)

Early oral tongue squamous
cell carcinoma

IL7、LTB、CXCL13 Better OS、DFS Intra-tumoral TLS and
peritumoral TLS

65 (Ref. 90)

Hepatocellular carcinoma CD15，CCL2,CCL4,CCL5,CCL8,CCL18,
CCL19,CCL21,CXCL9, CXCL10, CXCL11
and CXCL13

Peritumoral：worse OS、DFS
Intra-tumoral：better DFS

Peritumoral 、
Intra-tumoral TLS

170 (Ref. 96)

Perihilar
cholangiocarcinoma

CD20, CD21, CD8 and PNAD Better OS、RFS Intra-tumoral
secondary follicle-like
TLS

93 (Ref. 97)
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prognostic factor (Ref. 99). In contrast, patients with mature TLS
had prolonged survival, activated CD4 +memory cells, primitive
B cells and NK cells than those with early-stage TLS (Ref. 100).
Similarly, patients with esophageal squamous cell carcinoma
who received neoadjuvant chemotherapy had a superior progno-
sis in the mature TLS high-density group than in the mature TLS
low-density group (Ref. 101). In colorectal cancer, Helicobacter
hepaticus-specific Tfh cells may facilitate TLS maturation, and
further enhance antitumour immunity by promoting TLS matur-
ation. This antitumour effect is surprisingly dependent on CD4 +
T cells, B cells and natural killer cells, rather than CD8 + T cells
(Ref. 102). The analysis of 33 cases of colorectal cancer revealed
that the expression of IL-36γ was correlated with the infiltration
of CD4 + T cells and the enhancement in B cell density in TLS
(Ref. 103). It has been found that low-dose RT combined with
PD-1 inhibitors increased both the quantity and maturity of
TLS in patients with lung adenocarcinoma (Ref. 104).

TLS can be classified as A, B and C grades based on the density
of immune cells. The OS of patients with grades C or B improved
significantly. TLS and CD20 + B cells were considerably higher in
triple-negative breast cancer patients with high-density plasma
cells than those with low-density plasma cells (Ref. 105). TLS
can also be divided into internal and peripheral tumours based
on location. It has been revealed that intra-tumour TLS may
have a better OS (Ref. 106). Another study also showed that
tumour-associated B cells are predominantly present in TLS
(Ref. 107). Both T follicular helper cells and regulatory T cells
were significantly elevated in intra-tumoral TLS relative to the
peritumoral area, and patients with intra-tumoral intrahepatic
cholangiocarcinoma had a better prognosis (Ref. 108).

TLS has the potential to stimulate antitumour immunity. TLS
can improve the immune response in many solid tumours, and
the level of TLS may be a predictor of immunotherapy efficacy.
It has been suggested that B cells in TLS can act as APC to prompt
cytotoxic T cells (Ref. 109). In rhabdomyosarcoma, T cells in TLS
may increase antitumour response (Ref. 110). Intra-tumoral TLS
was linked to a decreased risk of early recurrence in HCC patients
undergoing surgery. It is suggested that TLS in tumours may indi-
cate sustained and effective antitumour immunity (Ref. 111).
Studies also demonstrated that in hepatocellular carcinoma, peri-
tumoral TLS showed significantly higher immune infiltration and
positive immune response. Patients with a high peritumoral TLS
density have excellent clinical outcomes (Ref. 112). Intra-tumour
TLS is associated with the response to antitumour immunity in
renal cell carcinoma (Refs 64, 113).

In summary, the presence of TLS in TME has a significant
association with the clinical prognosis in solid tumours. We can
see better OS, RFS and DFS in numerous solid tumours when
TLS appears. These outcomes are based on the function of TLS
in the TME. Similarly, the location, density and maturation of
TLS also influence the outcomes. The relevant results need to
be further studied.

RT Modulates TLS to reshape TME in regulating antitumour
immunity

RT primarily modulates cellular components such as a tumour,
vascular endothelial and immune cells to reshape TME.
Furthermore, RT activates the NF-κB signalling pathway and
simulates the release of immune-stimulating factors, such as
CXCL10, IL-1β, IL-6, IL-18, TNF and type I interferon
(Ref. 114). Type I interferons can promote the polarization of
tumour-associated macrophages from M2 to M1 (Ref. 115).
Moreover, other cytokines can stimulate T cell recruitment,
thereby playing an immunostimulatory role. Meanwhile,
M2-TAMs release cytokines (including IL-1, IL-6, IL-10 and

TGF-β), and cancer-associated fibroblasts secrete CXCL12 to
attract immunosuppressive cells (Treg and MDSCs), which
enables immunosuppressive cells recruitment and effector cells
exclusion (Ref. 115). TLS is the primary immune cell colony of
the TME. Consequently, based on the above review results, we
hypothesized that RT might modulate immune cells in TLS and
modify the quantity and function of TLS, to remodel TME
from cold to hot (Fig. 2).

RT regulates non-immune cells in TME

When tumour cells die following exposure to RT, they can change
from non-immunogenic to immunogenic, prompting an antitu-
mour immune response referred to as immunogenic cell death
(ICD). ICD can produce new antigenic epitopes from dead
tumour cells, generate damage-associated molecular patterns
(DAMPs), and recruit antigen-presenting cells (APC). APC iden-
tifies antigens associated with tumour cells, presents them to T
cells, activates adaptive immune responses, and produces durable
antitumour immunity. RT induces the formation of reactive oxy-
gen species (ROS), which facilitate the release or exposure of
DAMPs (Ref. 116). RT can induce ICDs and change surface mar-
kers of tumour cells, including ATP, CALR, HMGB1, Type 1 IFN
and IL-1β (Ref. 117). Extracellular ATP links to the purinergic
receptor P2Y2 (P2RY2) to serve as a ‘find-me’ signal for dendritic
cell precursors and macrophages, thus encouraging myeloid cell
recruitment to the active ICD site (Ref. 118). In addition, ampli-
fying the ‘eat me signal’ during ICD is crucial for cancer immuno-
therapy. Some treatments such as radiation therapy and
photodynamic therapy can initiate or promote ICD and activate
an antitumour immune response (Ref. 119). CALR stimulates
LDL receptor-associated protein 1 (LRP1, also known as CD91)
on phagocytes to activate antigen-producing cells such as DC
and macrophages that promote the clearance of tumour cells
(Ref. 120). Extracellular HMGB1 can bind to numerous PRRs
expressed by myeloid cells, with the most common mode being
Toll-like receptor 4 (TLR4), which stimulates the release of
pro-inflammatory cytokines (Refs 121, 122). The immunogenicity
of radiation induced ICDs relies on type I IFN signalling
(Ref. 123). Anthracyclines induce the endothelial cell pattern rec-
ognition receptor TLR3 to activate tumour cells to rapidly gener-
ate type I interferon and stimulate the release of CXCL10
(Ref. 124). When ICD arises, the above DAMPs are released,
APC (macrophages, DC) are activated and matured, and the
secretion of IL-6, IL-1β, TNF-α and IFN-γ by mature DC pro-
motes the differentiation of T cells into CD8 + phenotypes
(Ref. 125). Cross-presentation of antigens by DC activates and
transforms CD8 + T cells into cytotoxic T lymphocytes. TLS is
considered ‘mature’ when at least one CD23 + dendritic cell is
present (Ref. 126). RT can promote the development of immature
DC into mature DC, so we speculate that RT can also promote the
development of immature TLS into mature TLS (Fig. 2A).

Different radiation dose caused varying degrees of damage to
tumour vessels. At lower doses (6 or 12 Gy), the vascular bed
recovered approximately six days after exposure. When a higher
dose of 18 Gy was administered, the tumour’s response time
was substantially prolonged, and recovery did not commence
until the 10th day (Ref. 127). Another study found that irradiation
higher than 10 Gy /F may cause significant vascular damage,
resulting in decreased blood perfusion, and damage to the micro-
environment within the tumour (Ref. 128). High-dose radiother-
apy (HDRT) promotes Notch1 signalling pathways and Notch1
expression, and Notch1 activation might defend tumour vessels
from HDRT-induced damage (Ref. 129). RT can promote the
death of vascular endothelial cells, producing chemokines such
as TNF-α and HMGB-1 (Ref. 130). RT upregulates adhesion
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Figure 2. Mechanism of radiation (RT) modulates TLS to reshape TME in regulating antitumour immunity. (A) RT acts on tumour cells via ICD, tumour cell releases
DAMPs, which can promote immature DC to mature DC and present associated antigens to cytotoxic T cell. After RT stimulation, immature TLS transforms into
mature TLS. (B) RT changes hypoxic, acidic environment and promotes immune cells recognition and survival. It can modulate TLS density and maturity. RT can
increase immunostimulating factors such as CXCL10, IL-1J3, IL-6, IL-18, TNF, Type 1 IFN and decrease immunosuppressive factors (CXCL 12, TGF-J3, IL-10, IL-1).
Finally realizing the remodelling of TME from cold to hot.
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molecules (VCAM-1/ICAM-1 and p/e selection), normalizing the
aberrant vascular system and facilitating the recruitment of circu-
lating immune cells (Ref. 115). RT might help initiate and main-
tain vascular normalization in TME (Refs 41, 131). However,
lactic acid accumulation in hypoxia/HIF-1α-driven TME can
inhibit T cell proliferation, tumour infiltration and cytokine pro-
duction, suppress the cytotoxic activity of NK and CD8 + T cells,
and enhance the number of MDSCs (Refs 132, 133, 134).

RT and various immune cells in the TLS

RT eliminates tumour cells and induces the release of
pro-inflammatory molecules. Necrotic tumour cells generate anti-
gens associated with the tumour. APCs acquire tumour-associated
antigens, migrate to draining lymph nodes, and present these
antigens to specific T cells via MHC Class I molecules, enhancing
T cell activation and proliferation. CD8 + T cells that have been
activated can prevent the production of immunosuppressive
cells, produce perforin and granzyme, and exert an antitumour
effect. What impact does RT have on various immune cell types?

T Cells
Numerous studies have demonstrated that RT can promote the
infiltration of local T cells for enhanced antitumour effects. RT
increased CD45RO +memory T cells and CD4 + regulatory T
cells (Ref. 135). Following RT for rectal cancer, the proportion
of CD4 + T cells and memory T cells was higher in the response
group than in the non-response group, while the proportion of
CD8 + T cells and M2 was lower (Ref. 136). RT amplified the per-
centage of antigen-experienced T cells and effector memory T
cells. RT upregulates the tumour-associated antigen-MHC com-
plex, improves antigen-cross-presentation, and numerous studies
demonstrate that RT increases T-cell infiltration in tumours
(Refs 34, 46, 137, 138).

RT may stimulate T-cell infiltration in many solid tumours
such as glioma, pancreatic adenocarcinoma, triple-negative breast
and cervical cancers (Refs 139, 140, 141, 142). T cells and macro-
phages enhanced after RT for melanoma (Refs 143, 144). RT can
also increase the intra-tumoral invasion of eosinophilic granulo-
cytes, thereby improving intra-tumoral T cell invasion
(Ref. 145). In mouse lung tumour models, RT can initiate and
activate antitumour immunity by improving the infiltration of
CD8 + and CD4 + T cells (Ref. 146). In RCC patients treated
with SBRT, the expression of calreticulin and TAA and the pro-
portion of proliferating T cells increased (Ref. 147). WBRT pro-
motes the expression of the MHC Class I complex and
enhances T-cell infiltration in glioma cells (Ref. 148).
Ultimately, RT may facilitate the infiltration of T cells into the
TME, specifically CD8 + and CD4 + T cells, which are positive
prognostic immune cells.

B Cells
Lymphocytes contain numerous B cells in antitumour immunity
in addition to T cells. Numerous researchers are investigating B
cells’ function in antitumour immunity, and they speculate that
B cells may play a more significant role than is currently believed.
Thus, what is the relationship between RT and B cells? Different
RT regimens have distinct immune impacts (Ref. 149). Studies
have demonstrated that stereotactic body radiotherapy (SBRT)
induces tumour infiltration of CD8 + T cells, B cells and macro-
phages significantly better than large-field RT therapy. RT influ-
ences the development of B cells in bone marrow, increasing early
and late pro-B cells (Ref. 150). Lower levels of naive and
double-negative B cells were observed. However, after hypo-
fractionated stereotactic RT, the proportions of MZ-like B cells,
transitional B cells, and plasma cells were increased (Ref. 151).

In irradiated mice, bone marrow progenitor cells were reduced,
however, RT did not affect the development of B-1a cells
(Ref. 152). In patients with cervical cancer, the function of B
cells was unaffected by RT, which is more radiation-tolerant
than other lymphocyte subsets (Ref. 153). In early-stage
NSCLC, SBRT may cause immunosuppression and decrease
CD3 + , CD4 + , CD8 + , CD19 + , and CD56 + cell counts
(Ref. 154). All lymphocytes decreased following RT, and in uni-
variate analysis, lower total B cell counts were linked to≥ grade
2 RT pneumonia (Ref. 155). Ki67-/DNMT3a + naive B cells, as
the largest subgroup of B cells after RT, enhance T-bet expression,
related to phosphorylation of p90RSK expression. In vitro,
p90RSK activation was also found to upregulate naive B cells
(Ref. 156). B cells recovered 180 days after RT, while CD4 + and
CD8 + immature T cells remained substantially lower than base-
line (Ref. 157). The number of CD19 + B cells decreased after
RT and recovered gradually after two months (Ref. 158). B cells
are radio-resistant to radiation-induced apoptosis (Ref. 159).
Nonetheless, RT encourages the development of memory B cells
and antigen-specific B cells (Ref. 160). RT can induce CD20
expression, a common surface antigen on B cells (Ref. 161). In
summary, the majority of B cells diminish following RT. Some
research suggests that RT stimulates the development of memory
B cells and antigen-specific B cells. It can stimulate humoral
immunity with antitumour properties.

Dendritic Cells
Cross-presentation is a crucial function of dendritic cells in anti-
tumour immunity. Consider the connection between RT and den-
dritic cells (DC). In RT-tolerant tumours, consumption of Treg
can stimulate CD103 + DC activation and increase CD8 + T
cells (Ref. 162). Tumour irradiation improves the capacity of
DC to acquire tumour antigens, migrate to lymph nodes and
deliver treated antigens to T cells (Refs 163, 164). The accumula-
tion of ROS in the RhoA/ROCK1 signalling pathway regulates this
homing ability. RT upregulates CD86, CD40, CD80, CXCR4 and
CCR7 expression in DC (Ref. 165). It was speculated that RT
mediated by ATM/NF-KB increased IL-12 and CCR7 expression
and DC migration (Ref. 166). By inducing apoptotic bodies, via
the STAT5/Zbttb46 pathway, RT enhances the immune activation
potential of DC (Ref. 167). RT can activate derived DC in a mouse
lung cancer model (Ref. 168). Briefly, RT may facilitate the acti-
vation and homing of DC to lymphoid tissue and initiate an anti-
tumour response.

Other immune cells
TME contains numerous immune cells. RT can induce macro-
phage recruitment in the TME (Refs 169, 170, 171, 172).
In liver cancer, RT can recruit macrophages into the tumour
(Ref. 173). Nevertheless, it has been suggested that reducing the
entrance of macrophages into the TME, and resulting macro-
phage rejection is a promising strategy for enhancing the tumour’s
response to RT (Ref. 174). After high-dose irradiation, tumour-
associated macrophages were predominantly M2 polarized, and
Arg-1, and COX-2 levels were elevated (Refs 175, 176). Another
study demonstrates that low-dose RT helps macrophage differen-
tiation towards the iNOS+M1 phenotype (Ref. 42). Tumour-
associated macrophages are a crucial component of TME, which
can be polarized into M1 and M2 types. M1 promotes antitumour
activity, while M2 encourages tumour growth. The kind of macro-
phage infiltration following RT must be investigated further, con-
cerning the cancer treatment prognosis. Additionally, RT
decreases the infiltration of immunosuppressive cells including
Treg and MDSCs (Ref. 31). Conclusively, RT can transform
immunosuppression into immunostimulation.
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Numerous studies have demonstrated, as is common knowl-
edge, that RT can enhance the efficacy of immunotherapy. RT
combined with immunotherapy can produce a double effect, as
the two sensitize and achieve each other. In the era of immuno-
therapy, the aforementioned studies indicated that TLS in TME
enhance antitumour immunity. RT is an essential component
of cancer treatment and immunotherapy sensitization. TME is
among the significant determinants of antitumour immunity.
Consequently, what is the mechanism through which RT influ-
ences antitumour immunity? TLS is a unique structure in TME,
its numerous components are affected by RT, and RT can pro-
mote the local infiltration of immune cells to produce TLS, as
described in the preceding section.

First, RT can stimulate the infiltration of T cells into the TME,
particularly CD8 + T and CD4 + T cells. Further research is
required to determine whether these T cells’ aggregation can pro-
mote T cell regions’ formation in TLS. Second, the alterations in B
cells during RT are distinct from those infiltrating T cells. The
majority of B cells are reduced after RT. However, some studies
show that RT promotes the development of memory B cells
and antigen-specific B cells. It might induce humoral immunity
to play an antitumour role. Further investigation is required to
determine whether RT can boost humoral immunity.
Researchers have gradually shifted their attention from antitu-
mour immunity to humoral immunity, and B cells have accom-
plished specific antitumour immunity effects (Refs 177, 178).
Therefore, it remains debatable whether RT can promote the for-
mation potential of B-cell regions in TLS and further discussion is
needed. In the end, RT can affect other immune cells other than

lymphocytes. RT, for instance, can promote the activation and
homing of DC to lymphoid tissue, thereby activating antitumour
immunity. We can therefore hypothesize that RT promotes the
activation and presentation of DCs in TLS. Additionally, RT
can enhance macrophage infiltration, although whether M1 or
M2 is unclear.

Irradiated tumour cells can result in ICD. The dead tumour
cells secrete DAMPs. These signals recruit antigen-presenting
cells, including NK cells, to cross-present antigens to CD8 + T
cells, and CTL plays an antitumour immune role. RT facilitates
the infiltration of various immune cells into the TME, and nor-
malizes tumour blood vessels. These immune cells assemble to
create a particular structure called TLS, which acts more quickly
and efficiently against tumours. It is plausible that RT may medi-
ate TLS to reshape the TME, and enhance the antitumour
immune environment. The immunogenic effects of RT can trans-
form a ‘cold’ into a ‘hot’ environment, thus sensitizing non-
responsive tumours to immunotherapy (Fig. 2B).

Conclusion and prospect

RT can reshape TME and mobilize the immune response to per-
form a local and systematical role in the tumour. Overall, we
believe that the modulation of RT on TLS is a crucial mechanism
for reshaping the synergistic immune effect of TME. RT plays an
essential role in activating the immune system via humoral
immunity, cellular immunity and other ways, which may be con-
sistent with the local immune activation response formed by TLS,
thereby influencing the efficacy of cancer treatment. This review

Figure 3. The future perspectives in TLS formation. Effects of different RT dose, segmentation, time and location on TME and TLS. Effect of RT combined with
immunotherapy on TLS. Effect of maturity, density and location of TLS on antitumour immunity.
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demonstrates that RT mainly affects the formation of TLS, and the
formation of TLS can influence systemic immunity via humoral
and cellular immunity. Based on preclinical data, TLS may open
up new opportunities for more effective immunotherapies; how-
ever, we must determine which factors promote TLS.

As an aggregate of immune cells that infiltrate tumours, TLS
may be an immune-related therapeutic target that leads to the
next ‘breakthrough’. The specific pathway of RT regulation on
TLS and the endpoint of TLS regulation by RT with distinct
doses, segmentation modes, positions and times still require clari-
fication. The various segmentation techniques demonstrate that
RT can be subdivided into SBRT, CRT and FLASH. Following
the treatment’s purpose, RT can be classified as radical or pallia-
tive, primarily based on dose. According to RT interval time and
ray properties, it can be classified into photons, electron lines,
protons and heavy ions. Furthermore, the RT dose is distinct
around the tumour and in the centre, and the patient’s prognosis
of intra-tumour TLS and peritumoral TLS is also variable. TLS
has varying species specificity in various tumours, and some
solid TME are predisposed to produce this unique structure.
The probable effect of RT on TLS can be used as a new research
strategy for cancer treatment. In future studies, we need to explore
further the following issues: (1) Effects of varying RT time, dose,
position and segmentation on the development of TLS; (2) the
impact of TLS location, density and maturity on the prognosis
of antitumour immunity; (3) RT combined immunotherapy,
such as sequential and synchronous, impacts on the regulation
of TLS (Fig. 3).
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