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ON THE MODULE STRUCTURE IN A CYCLIC EXTENSION
OVER A p»-ADIC NUMBER FIELD

YOSHIMASA MIYATA

Let p be a prime. Let k be a p-adic number field and o be the ring
of all integers of k. Let K/k be a cyclic totally ramified extension of
degree p™ with Galois group G. Clealy the ring © of all integers of
K is an o[G]-module, and the purpose of this paper is to give a neces-
sary and sufficient condition for the o[G]-module © to be indecompos-
able.

In §§1-2, we shall prepare some lemmas. In §§3-4, we shall ob-
tain the necessary and sufficient condition (Theorem 3).

Throughout this paper, let # be a prime element of £ and e be the
absolute ramification index of k. For a positive rational integer a, we
define a function m(a) by

m(a) = [(p_”‘%?_‘*’i)] .
1.

In this section, we shall obtain some inequalities for ramification
numbers. Let F'/k be a cyclic ramified extension of prime degree p
with the first ramification number b. Let O be the ring of all integers
of F'. Let e, and m(a) be the same as in Introduction. Then it is
well known that

mb) < e
and
@9) trem Op = (@™®),

where try, denotes the trace map from F to k (for example, see [2]).
Let ¢ be a primitive p-th root of 1. Let F” and &’ be the extensions
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F(@©) and k({) respectively. Then the degree d of %’ over k divides p — 1
and k’/k is tamely ramified. As F/k is a cyclic extension of degree p,
so is F’/k'. As is well known, the only one ramification number b’ of
F’'|k is db. Then we have the fqllowing lemma.

LEMMA 1. Let F,F',b and b’ be as stated in the above. Then
m(b) < e if and only if m(d") < de.

Proof. Since the extension F'/F is tamely ramified, try. » Op = Op.
Then, from (1), we have try., Op = (x™®). We can choose a prime
element 7’ of k' such that z’?e k. Clearly tr,.,,2*=0for 1<i<d—1
and try 7’ = dz’?. d is a unit of k. Then we obtain easily that

trp e Opr = oy tpr o Opr = (Im@EY) |

Hence (#™?) = (aI™®"/4), This proves our assertion.

Let K be a cyclic totally ramified extension of degree p™ of k with
the Galois group G. Since K/k is cyclic, we see that there exist n
ramification numbers b,, ---,b,. The b;-th ramification group is a sub-
group <{g?™*> generated by g**"*, where g denotes a generator of G.

LEMMA 2. Let K/k, b, ---,0, be as above. Then if m(b) <e,
m(b,) < pi~le for each 1,1 <1 < n.

Proof. As is easily seen, it is sufficient to prove only for the case
n = 2. From Lemma 1, we can assume that & contains a primitive p-
th root of 1 without any loss of generality of this proof. From a result

of B. F. Wyman ([3], Corollary 26), we have that if b, = ¢ T
p —_—

b2:b1+pe’

and if b, < —¢
p —

2
b, < 5”_‘31 —(p — Db, .

At first, we suppose 0, = ¢ T Then

m(b,) = [(p — 1)(blp+ pe + 1)] ——De + [(p — D, + 1)]

= (p — De + m(b) .
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From the assumption m(b,) < e, it follows that m(b,) < pe.
Next, we suppose b, < —e—l. Put

@=DO+D _ oy I
D p

Then

@~ {5 — @~ vb,+ 1)

D
=pe+P—-1 (@ —Dm —7r.

m(b,) =

From » < p — 1 and m <, it follows m(b,) < pe. Clearly this completes
the proof.

2.

In this section, we study the properties of idempotents of the group
ring k[G]. Let G be a cyclic group of order p” and let g denote a
generator of G. Let 6 be a primitive p™-th root of 1 and let &’ be %’
= k(f). Setting

1
p"

& =

n-1
S, osisp-1,
7

we see that ¢ is an idempotent and ge; = 6%, Let H be H = (g ™.
Obviously H is a subgroup of order p. We denote by T' the idempotent

l(Z h) in k[G]. The canonical map from G onto the factor group

p heH
G/H induces the ring homomorphism ¢ from the group ring k[G] onto
k[G/H]. Then we have the following two lemmas.

LEMMA 3. Let G be a cyclic group of order p". Let ¢ and ¢ be
as stated in the above. Suppose that k contains a primitive p*-th root
6 of 1. Then ¢(e) =0 for 0 < ¢ <p" if and only if (i,p) = 1.

Proof. From easy computations, we can obtain ker ¢ = k[G](1 — T).
Then e, ekere if and only if T =0. From g7 = 07", T,

- -1
- l{pzl 07"~} We note that 57 @) = 0 if and only if (i,p) = L.
p G=o j=0
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Clearly this completes the proof of the lemma.

LEMMA 4. Suppose that k does not contain a primitive p™-th root
0 of 1. Let G be a cyclic group of order p™ and let S be a subgroup
{g?*>. Let ¢ be an idempotent of kIG] such that ¢(e) = 0. Then, if
n = 2, ¢ € k[S].

Proof. From our assumption, the extension k(6)/k(6?) is a cyclic
extension of degree p with the Galoig group V. It is easily seen that
there exists an element ¢ of V such that ¢(@) = ¢**?"~*. We can consider
¢ as an automorphism of k¥[G] in the usual way. Now for 0 <1 <p?,
ee; =¢ or 0. If ee; =¢;, then eef = ¢f because ¢* =e. Hence ¢ (3 225¢f’)
= >prcter. Put >2liey’ = 30 a,9° in K/[G]. Then

p-l N (21 . .
a[ - Z: (ﬁ—w)u — 0—@8(2 (0—w)pn—1j) .
j=0 j=0

Therefore, if (4,p) =1 = (4,p), we have a, = 0. Since ¢() =0, it fol-
lows from Lemma 3 that if e; = ¢;, then (i,p) =1. Let e = > 2";'b,¢¢
in k[G]. The fact which we have just shown implies b, =0 for 0 < ¢
< p™ with (4,p) = 1. This completes the proof.

3.

In this section, we treat the case that the extension K/k is a
Kummer extension. We use the same notations as in previous two sec-
tions. Let K/k be a cyclic totally ramified extension of degree p~».
Throughout this section, we suppose k contains a primitive p”th root
6 of 1. Then we see that there exists an element A of K such that

K =Fk(A) and AP =gz"u,

where 0 <m <n and u is a unit of k. Furthermore, we may take the
unit « such that 4 — 1 € (z) since the degree of the extension is a power
of p. Let b, .--,b, be the sequence of the ramification numbers of
K/k as in §1. Let K; = k(A*"™") for 0 <¢ < n. Then the degree of
the extension K;/k is p?.

LEMMA 5. Let A, m and u be as stated in the above. Then, if
m=0, or m>0 and u— 1& (), we have m(b,) = e.

Proof. By the hypothesis, K, = k(¥zu) or K, = k(¥w). From a

https://doi.org/10.1017/50027763000018328 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000018328

p-ADIC NUMBER FIELD 65

result of B. F. Wyman ([3], Corollary 13), we have b, = ppel or

P9 __ 1. Then m(, = e.
p—1

Now we consider the case that m > 0 and v — 1e(z?). Write » in
the form u« = 1 4 =*u,, where u, is an integer of k. For 1 <17 < p"!
with (4,p) = 1, we define an element B; of K by

Bom AL AT (A
P P
where j = [—?’ﬂ] +1.
p’ﬂ,
LEMMA 6. Suppose that m > 0 and w — 1 e (z?). Let B, be as stated
in the above. Then B, is an element of O.

Proof. We denote the valuation of K by val. Clearly valz = p~.
From m >0, K, = k¥uw). Put Vu=1+U. A+ U7 =1+ nu,
Therefore we have val U = 2p™~1.

(2) urt =1+ Uy — 1 = U(”z a+ U)f) .

Now we evaluate the valuation of the sum >22{(1 + U)/. By the formula

i (&) = (;’;1%), we obtain

r=m

RV

Clearly from valU = 2p"~', it follows that val >722{(1 4+ U)’ = p". By
(2), we have

(3) valU < p* + valu, .

Here we note that A?"™* = z?"'¥u. Therefore

B,= A 4 Vu+ @w + - + @)
T

At uw—1

o Yu—1"

Hence
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val B, = ip™ + 2p™ + valu, — jp* — val U .
By the definition of j, ip™ + p® — jp* = 0, and we obtain
valB, = p" + valu, —val U .

From (3), val B, = 0. Then B, belongs to £.
We are now ready to prove the following theorem which is the
main aim of this section.

THEOREM 1. Suppose k contains o primitive p*-th root of 1. Let
K|k be a cyclic totally ramified extension of degree p*. Then the ring
O of all integers in K is an indecomposable o[Gl-module if and only if
m(b,) < e.

Proof. First, suppose m(b,) = ¢. Then, from Lemma 2, we have
m(b,) = p*'e. Let T be the idempotent l(%l (gp"")‘) as in §2. Then
P \¢é=0

it follows from (1) that TO C O, and so O posseses a direct sum decom-~
position

O=TO21 -DO.

Therefore © is not indecomposable, and we have proved that if O is
indecomposable, then m(b;) < e.

Next suppose m(b,) < e. We use induction on the length »n of a
tower of intermediate fields

k=K, CcK c...cK,=K.

As a immediate consequence of Theorem 1 of [1], we obtain the result
for » = 1. Assume the result holds for the extension whose length is
fewer than n. Let E be an o[G]-endomorphism of © such that E* =F
(i.e. a projection). Then we can consider E as an idempotent of k[G].
Let O, be the ring of all integers in K, so O, is an o[Gl-submodule of O.
Then EO,_, T O, ;. ¢ denotes the canonical map from k[G] to k[G/H]
as in §2, where H is the Galois group of the extension K/K, ,. For
any element « of K,_;, we have Ea = ¢(E)a. From our inductive as-
sumption, ©,_, is an indecomposable o[G/H]-module, so that ¢(F) =1
or 0. Without loss of generality, we may assume ¢(E) = 1. Since T is
the identity map of ©,_,, F —~ Tekero. Put E=T + E,. Let I be the
set defined by
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I=(30i<p"@p =1}.

Then, from Lemma 3, there exists a subset I, of the set I such that
E, = > ic1,€, Where ¢; is the primitive idempotent of k[G] defined as in
§2. For 1<i<p"' with (4, p)=1, let I, be I,={i,¢+ p,---,¢
+ (p — Dp™'}. Now suppose I; NI, xI;. Let » be the number of ele-
ments in I, N I,, From the hypothesis, I, N I, % I;, (r,p) = 1. For the
integer B, defined before, it is easy to see that

val (EB;) = val {( > el)B,} = val (r Az) .

¢€IoNIy bt

By the definition of 7, val (.47) <0. Sinee (r,p) =1, val () =0. There-
T

fore we have val (EB;) < 0, which is a contradiction. Thus we have

obtained I, D I, for each ¢ with 1 <¢<p**' and (4,p) = 1. This implies

I, = 1. Then it follows from Lemma 3 that £, =1 — T. Hence £ =1,

and which completes the proof.

4,

In this section, we treat the case that & does not contain any
primitive p™-th root of 1. We use the same notations as in the previous
sections. Then we have

THEOREM 2. Suppose k does not contain any primitive p"-th root
6 of 1. Let K|k be a cyclic totally ramified extension of degree p™.
Then the ring O of all integers in K is an indecomposadble o[Gl-module
if and only if m(b) < e.

Proof. Precisely from the same arguments as in the proof of
Theorem 1, it is sufficient to prove that if m(b) <e, then O is inde-
composable. Now we assume m(b) < e. We also use induction on n
as in the proof of Theorem 1. From Theorem 1 of [1], we obtain at
once the result for » = 1. Assume the result holds for the fewer length
than n. Then, we can write £ =T + E, and E, = > ;& in E@OI[GI.
Let S be S = {g*) as before. Since ¢k, it follows from Lemma 4 that
E, e k[S]. Therefore E belongs to k[S]. Clearly S is the Galois group
of the extension K/K,, which contains (n — 1) intermediate fields. We
see that b, is the first ramification number for K/K, (for example, see
[2D). From Lemma 2 and our assumption m(b,) < e, we have m(b,) < pe.
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Then, by the inductive assumption and Theorem 1, we can see that O
is an indecomposable ©,[S]-module. Thus we obtain E =1, and this
completes the proof.

Finally, from Theorem 1 and Theorem 2, we have the following
theorem which is the main aim of this short paper.

THEOREM 3. Let K/k be a cyclic totally ramified extension of degree
p*. Let b, be the first ramification number for K/k. Then the ring O
of all integers in K is an indecomposable o[G]-module if and only if
m(b,) < e. '
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