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Generalized structured component analysis (GSCA) is a multivariate method for examining theory-
driven relationships between variables including components. GSCA can provide the deterministic com-
ponent score for each individual once model parameters are estimated. As the traditional GSCA always
standardizes all indicators and components, however, it could not utilize information on the indicators’
scale in parameter estimation. Consequently, its component scores could just show the relative standing
of each individual for a component, rather than the individual’s absolute standing in terms of the original
indicators’ measurement scales. In the paper, we propose a new version of GSCA, named convex GSCA,
which can produce a new type of unstandardized components, termed convex components, which can be
intuitively interpreted in terms of the original indicators’ scales. We investigate the empirical performance
of the proposed method through the analyses of simulated and real data.

Key words: generalized structured component analysis, convex component, multivariate analysis, com-
posite index, interpretability.

Generalized structured component analysis (GSCA;Hwang&Takane, 2004; 2014) is amulti-
variate method that allows for specifying and testing path-analytic relationships between observed
variables and components (i.e., weighted sums of observed variables). Observed variables form-
ing components are called composite indicators (Bollen & Bauldry, 2011). Given a theory-driven
model, GSCA constructs components from composite indicators such that the components can
explain the total variances of all dependent variables in the model as much as possible.

As in many component analysis techniques, GSCA has typically assumed that all compo-
nents and indicators were standardized to have zero means and unit variances. This traditional,
standardized version of GSCA shall be called GSCAstd hereafter. GSCAstd begins by standard-
izing indicators prior to estimating parameters and updates component weights in such a way that
they produce standardized components during the estimation process. Such standardization can
be useful for the interpretation and comparison of GSCAstd ’s estimates because the GSCAstd

model is equivalent to a system of multiple regression equations for standardized components
and indicators, indicating that its loadings and path coefficients can be interpreted as standardized
regression coefficients.

Nonetheless, the conventional standardization of components makes it difficult to interpret
component scores in terms of the original indicators’ measurement scales. The standardized
component score for an individual merely shows the individual’s relative location to the other
individuals in the sample and the absolute score itself is not interpretable. This is less attractive
to researchers who are interested in the absolute level of a component for each individual. For
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example, if a standardized component is used to measure the level of life satisfaction, an indi-
vidual’s component score can inform whether s/he has a relatively lower or higher level of life
satisfaction than the others. However, it cannot tell exactly what the level of her/his life satisfaction
is, reflecting whether s/he is satisfied or dissatisfied with her/his life.

Moreover, if indicators for each component are measured on the same scale, which is often
observed in practice, standardizing the indicators may not be recommended because it can elim-
inate “the natural and relevant variability present” (Naik & Khattree, 1996) in each of the
indicators, forcing them to have the same variance, although their variances may not be the same
in reality. For illustration, suppose that we made two versions of test batteries to assess children’s
intelligence, both of which were measured on a 0 to 100 scale. Three children took these tests
and obtained {49, 50, 51} for Test 1 and {0, 50, 100} for Test 2. The results show that Test 1
almost fails to differentiate the children’s intelligence levels, whereas Test 2 differentiates their
intelligence level very well, indicating that the difference in score variability between the two
tests is interpretable and contains meaningful information. However, when we standardize these
scores, such information disappears since both score sets become identical (i.e., {–1, 0, 1} ). If
GSCAstd is applied to the tests, the same standardized weight values (i.e., .5) will be assigned to
the two tests.

To obtain unstandardized component scores from original indicators, GSCAstd applies an
additional rescaling of weight estimates after convergence (Hwang & Takane, 2014, Chapter 2).
As will be discussed in more detail in Sect. 1, each indicator’s weight estimate is rescaled by
dividing it by the indicator’s standard deviation. Subsequently, unstandardized component scores
are obtained by pre-multiplying the rescaled weights by their indicators’ original scores.

However, this rescaling procedure has two issues. Firstly, the procedure is carried out while
keeping the variances of components fixed to one. Thus, the variances of the resultant unstan-
dardized components are likely to be different from those of the original indicators, so that it is
not guaranteed that the unstandardized component scores would vary within the same range of
the original indicators. Secondly, the rescaling procedure tends to have indicators with relatively
small variances influence the construction of their unstandardized component more heavily. In
the above example, as the sample standard deviations of the two test batteries were 1 and 50, the
unstandardized weights obtained from this ad-hoc rescaling procedure would be .5 and .01 for
Tests 1 and 2, respectively. This indicates that Test 1 is 50 times more influential for forming chil-
dren’s unstandardized component scores than Test 2, even though Test 2 differentiates children’s
intelligence levels much better than Test 1. In Sect. 1, we will explain why this issue occurs in the
rescaling procedure.

To address these issues, we propose a different version of GSCA, named convex GSCA
or GSCAcvx for short, which can estimate unstandardized components of original indicators.
Specifically, GSCAcvx obtains an unstandardized component as a convex combination of original
indicators, termed a convex component, if the indicators for the component have the same mea-
surement scale. A convex combination of a set of vectors refers to a special linear combination
whose weights are non-negative and summed up to one (Lay et al., 2015, Chapter 8). As will be
shown in Sect. 1, a convex component’s scores are within the same range of its indicators’ scores.
This property of the convex component facilitates the interpretation of its component scores with
reference to the indicators’ scales. Moreover, GSCAcvx avoids the unnecessary standardization
of indicators when they are on the same measurement scales, allowing for utilizing information
on their variances in parameter estimation.

The remaining sections of the paper are organized as follows. In Sect. 1, we briefly describe
GSCAstd and explain its ad-hoc procedure of computing unstandardized components and the
procedure’s limitation. In Sect. 2, we introduce a convex component and explain its six properties.
In Sect. 3, we present the GSCAcvx model that accommodates convex components and propose
an iterative algorithm for estimating model parameters. We also provide a set of overall goodness-
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of-fit and cross-validation indexes for model evaluation and comparison. In Sect. 4, we conduct
a Monte-Carlo simulation study to examine GSCAcvx ’s parameter recovery. In Sect. 5, we apply
GSCAcvx to real data to demonstrate its practical usefulness. In the final section, we summarize
the previous sections and discuss the method’s implications and prospective extensions.

1. Traditional GSCA with Standardized Variables

1.1. Model and Parameter Estimation

GSCAstd involves three sub-models—weighted relation, componentmeasurement, and struc-
tural models (Hwang & Takane, 2004, 2014) . Let zstd = [zstd,1, zstd,2, · · · , zstd,J ]′ denote a J
by 1 random vector of standardized indicators, where zstd, j is the j th standardized indicator, i.e.,
E(zstd, j ) = 0 and var(zstd, j ) = 1 ( j = 1, 2, · · · , J ). The mean of zstd is a zero vector and the
correlation matrix of zstd is denoted by �std . Let γstd = [γstd,1, γstd,2, · · · , γstd,P ]′ denote a P
by 1 random vector of standardized components, where γstd,p is the pth standardized component,
i.e., E(γstd,p) = 0, var(γstd,p) = 1 (p = 1, 2, · · · , P). Let Wstd denote a J by P matrix con-
sisting of component weights assigned to indicators. Let Cstd denote a P by J matrix of loadings
relating components to indicators. Let Bstd denote a P by P matrix of path coefficients relating
components to each other. Let ξ = [ξ1, ξ2, · · · , ξJ ]′ denote a J by 1 random vector of errors in
the component measurement model, where ξ j is an error for the j th indicator. Let ζ = [ζ1, ζ2,
· · · , ζP ]′ denote a P by 1 random vector of errors in the structural model, where ζp is an error for
the pth component. The three sub-models of GSCAstd are expressed as follows.

γstd ≡ W′
stdzstd (weighted relation model) (1)

zstd = C′
stdγstd + ξ (component measurement model) (2)

γstd = B′
stdγstd + ζ (structural model). (3)

The weighted relation model (1) shows that (standardized) components are defined as a linear
combination of standardized indicators. The component measurement and structural models (2)
and (3) express the directional relationships between the indicators and components and those
among the components, respectively. As (2) and (3) can be seen as systems of linear regression
equations, their model parameters, including loadings and path coefficients, can be interpreted
in the same manner as standardized regression coefficients. The three sub-models are combined
into the following equation,

[zstd ; γstd ] = [Cstd ,Bstd ]
′γstd + [

ξ; ζ
]

↔[IJ ,Wstd ]
′zstd = [Cstd ,Bstd ]′W′

stdzstd + [
ξ; ζ

]

↔V′
stdzstd = A′

stdW
′
stdzstd + e, (4)

where IJ is the identity matrix of order J , Vstd ≡ [IJ ,Wstd ], Astd ≡ [Cstd ,Bstd ], e ≡ [ξ; ζ] and
a semicolon within brackets is an operator to vertically concatenate two vectors in the array. The
equation (4) is called the GSCAstd model.

Let 1Q denote a column vector of Q ones. Let SS(X) ≡ tr(X′ X) for any matrix X. Let
vecdiag() denote an operator that returns a column vector stacking the diagonal elements of a
square matrix one below another. GSCAstd estimates model parameters (Wstd and Astd) by
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minimizing the following objective function

fstd(Wstd ,Astd)

= tr(E(estde′
std))

= E(SS([zstd ; γstd ]′ − z′
stdWstdAstd),

= E(SS(z′
std([IJ ,Wstd ] − WstdAstd))

= tr((Vstd − WstdAstd)′�std(Vstd − WstdAstd)) (5)

subject to vecdiag(W′
std�stdWstd) = 1p. Thus, GSCAstd estimates the model parameters by

minimizing the sum of error variances for all variables in the model given �std . In general,
�std is replaced with the sample correlation matrix of indicators, denoted by Sstd . The objective
function (5) also shows that GSCAstd aims to create components that explain the total variances
of variables in the model rather than their covariances, as with PCA or other component-based
methods. The error terms in the GSCAstd model are not considered independent entities that cause
the variation of indicators but simply treated as residuals that are unexplained by independent
components. Thus, GSCAstd typically makes no assumptions about the correlation structure of
the error terms of indicators, leaving them freely correlated. This is distinct from the common
factor model, where the error terms are typically assumed to be uncorrelated. Nonetheless, no
error covariances between different blocks of indicators may be assumed in some special cases
of GSCA (Cho et al., 2020, 2022) .

Note that (1) defines a component as a weighted sum of indicators, which is also the case in
PCA. However, this equation itself is not identified because there would exist infinitely different
ways of deciding the component weights. Thus, we need a certain rule or criterion to determine
the component weights. PCA’s criterion is one of the most widely used ones in statistics that
the weights are to be determined in such a way that their corresponding components explain the
maximum total variance of the indicators. The regression coefficients of indicators on their com-
ponent are (component) loadings. These relationships between components and their indicators
are expressed in the component measurement model (2). Thus, GSCA can have confirmatory
PCA (Takane, Kiers, & de Leeuw, 1995) as a special case when it considers (1) and (2) only.

As the minimization problem (5) cannot be solved in closed form, an alternating least squares
(ALS) algorithm was developed for iteratively finding the minimum point of (5). In the ALS
algorithm, Wstd and Astd are updated alternately with the other fixed until the difference in (5)
between consecutive iterations decreases beyond a pre-specified tolerance level (e.g., 10−5) (see
Hwang & Takane, 2014, Chapter 2, for a full description of the ALS algorithm). Let ̂�std denote
an N by P matrix of the standardized score estimates of components, Dstd denote an N by J
matrix of the standardized scores of indicators, and N is the number of cases in the sample. Let
us suppose that we obtain the estimates of Wstd and Astd that minimize (5), denoted by Ŵstd

and Âstd . Then, a matrix of standardized component scores is obtained by

̂�std ≡ DstdŴstd . (6)

1.2. Unstandardized Weight Estimates in GSCA std

Let D= 1N μ̂
′ + Dstd ̂�z denote an N by J matrix of the unstandardized scores of indicators,

where μ̂ is a J by 1 sample mean vector and ̂�z is a diagonal matrix whose entries are sam-
ple standard deviations of unstandardized indicators. Conventionally, unstandardized component
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means are subsequently computed by transforming Ŵstd as follows. As it follows from (6) that

̂�std = (D − 1N μ̂
′
)̂�

−1
z Ŵstd

↔ 1N μ̂
′
̂�

−1
z Ŵstd + ̂�std= D̂�

−1
z Ŵstd

↔ 1N μ̂
′Ŵuni + ̂�std= DŴuni , (7)

where Ŵuni ≡ ̂�
−1
z Ŵstd , GSCAstd computes unstandardized component scores, denoted here

by ̂�uni , as ̂�uni ≡ DŴuni (Hwang & Takane, 2014, p. 26).
As shown in the last line of (7), however,̂�uni can be simply seen as a variant of standardized

component scores whose means are only relocated a posteriori by 1N μ̂′Ŵuni in that̂�std remains
standardized irrespective of the sample variances of the original indicators. Consequently, it is not
guaranteed that the scores of ̂�uni are within the same range of the unstandardized scores of their
indicators, which will be empirically shown in Sect. 4. Also, as illustrated in Sect. 1, GSCAstd

tends to assign smaller unstandardizedweights to original indicatorswith relatively large variances
in forming ̂�uni . That is because minimizing (5) involves imposing a relatively large penalty
on an original indicator with a relatively large variance, which is shown in Appendix 1. This
disproportionate penalization for original indicators can inadvertently amplify the influence of an
original indicator with a small variance on GSCAstd ’s parameter estimation. Such an approach
could be deemed unsuitable when one aims to obtain an unstandardized component of original
indicators on a single scale.

1.3. Convex Component and Its Six Properties

Let γp denote the pth component (p = 1, 2, · · · , P) that is assumed to have the mean τp

and variance φp. Let zp denote a Jp by 1 vector of indicators for γp, where Jp is the number of
indicators for γp. We call the vector zp a block of indicators for γp, which is assumed to have
the mean vector μp and covariance matrix � p. Let wp denote a Jp by 1 vector of weights for
zp. Let 0k×l denote a k by l matrix of zeros, where k and l are any scalars. If γp is defined as a
convex component, it can be expressed as

γp ≡ w′
pzp subject to w′

p1J p = 1 and wp ≥ 0J×1. (8)

A convex component has six useful properties as follows.

Proposition 1. A convex component has scores within the range of its indicators’ scores.

Proposition 2. Each score of a convex component corresponds to a component score of an indi-
vidual whose scores for indicators are all the same as the component score.

Proposition 3. The mean of a convex component is not fixed to zero but is determined by weights
within the range of its indicators’ means.

Proposition 4. The standard deviation of a convex component is not fixed to one but is determined
by weights within the range from 0 to the maximum standard deviation of its indicators.

Proposition 5. Given a linearly independent set of indicators’ scores, a set of convex component
scores has a unique set of weights that are nonnegative and summed up to one.

Proposition 6. The path coefficient of a convex component on an outcome variable indicates the
expected amount of change in the outcome variable for a unit change in each indicator of the
convex component while holding other variables fixed.
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We provide proofs for the six propositions in Appendix 2. The first four properties make
a convex component’ scores, mean, and standard deviation interpretable with reference to its
indicators’ scale when its indicators are on the same scale. The fifth property allows interpreting
weight parameters as the contribution rates of indicators to forming their component. The last
property allows for interpreting the path coefficient of a convex component with respect to its
indicators’ scale. We here illustrate these properties with an example of (major) depression.

Let us assume that depression can be represented by a convex component (γ) with three
symptom-related indicators (z1 = depressed affect, z2 = somatic discomfort, and z3 = inter-
personal problem), which are commonly rated on a seven-point Likert scale (0 = “none”,
1 = “minimal”, 2 = “mild”, 3 = “moderate”, 4 = “moderately severe”, 5 = “severe”, and
6 = “extremely severe”). It is generally considered safe to treat ordinal variables with five or
more categories as continuous (Johnson & Creech, 1983; Norman, 2010; Sullivan & Artino,
2013; Zumbo & Zimmerman, 1993). Then, this depression component serves as a summary index
whose score indicates the overall severity level of the three depressive symptoms for each indi-
vidual. Specifically, once weight parameters are estimated, a score set of depression component
is obtained given a dataset of its indicators. Proposition 1 indicates that all individuals’ scores of
depression component will be within the range of the measurement scale of its indicators (e.g.,
[0, 6]). Proposition 2 implies that each individual’s score of depression component within the
range can be interpreted as the depression level of an individual whose indicators’ scores are all
the same as the depression component score. For example, if a patient’s depression component
score is 3, it implies that their depression level can be considered equivalent to that of depression
of a patient whose symptom levels are all moderate (i.e., 3), suggesting that their depression is
generally moderate. By Propositions 3 and 4, the means and the standard deviations of depres-
sion component are determined by weight parameter estimates within the range of its indicators’
original scales (e.g., [0, 6]) as well, which can also be interpreted in relation to those scales. For
instance, if the mean of depression component scores turns out to be 5, it means that the average
depression level of patients in the sample can be considered equivalent to the depression level of a
patient whose symptom levels are all severe, or that the patients’ depression is severe on average.
Also, if the standard deviation of depression component scores turns out to be 1, it implies that
the depression severity levels of patients in the sample were one-unit lower or higher than the
moderate level on average.

By Proposition 5, it is guaranteed that once a set of depression component scores is obtained
with a set of weight estimates, any other set of weight estimates does not exist that makes the
same score set of depression component while satisfying the constraint in (8). As these weight
estimates are always non-negative and summed up to one, they can be interpreted as the indicators’
contribution ‘rates’ of forming the convex component. For example, suppose that the weight
estimates for z1, z2 and z3 are .41, .24, and .35, respectively. It indicates that when the severity
level of depression component increases by one unit due to a one-unit increase in all the three
symptom-related indicators, the contribution rates of z1, z2 and z3 to the one-unit increase of
depression severity are 41%, 24%, and 35%, respectively. Such interpretation was not applicable
to weight of standardized components, as their values can be negative and not necessarily summed
up to one. Note that this proposition is satisfied only if a linearly independent set of indicators’
scores is given as a dataset. A set of indicators’ scores being linearly independent means that a
score vector of an indicator cannot be expressed as a linear combination of score vectors of the
other indicators, which further implies that sample covariance matrix of the indicators is positive
definite.

By Proposition 6, the path coefficient of a convex component on an outcome variable can
be interpreted as an aggregate effect of the indicators of the convex component on the outcome
variable, given that the structural model holds. For example, let’s consider a situation where a
path coefficient of a depression component on employment earnings for the year of depression
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reported is identified -$5000 (e.g., Dobson et al., 2021). Thiswould suggest that a one unit increase
across all depression symptoms, such as a shift in all depression symptom levels from mild to
moderate, would be associated with a $5000 loss for the individual experiencing depression. Such
an interpretation was not feasible for path coefficients of standardized components.

2. Convex GSCA

2.1. Model Specification

Convex GSCA (GSCAcvx ) introduces a convex component with original indicators into
the GSCA model. The GSCAcvx model also consists of three sub-models: weighted relation,
component measurement, and structural models (Hwang & Takane, 2004, 2014) . Let γ = [γ1,
γ2, · · · , γP ]′ denote a P by 1 random vector of components. Each component (γp) can be either
a convex or standardized component. If a block of indicators (zp) has the same measurement
unit within the block, γp is defined as a convex component as expressed in (8). Otherwise, γp is
defined as a standardized component, whose indicators (zp) are also assumed to be standardized
such that τp = 0, φp = 1, μp = 0J p×1, and vecdiag (� p) = 1J p. Let W denote a J by P matrix
consisting of component weights assigned to z. Let C denote a P by J matrix of loadings relating
γ to z. Let B denote a P by P matrix of path coefficients relating γ to each other. Let c0 and b0
denote the column vectors of intercepts for the component measurement and structural models,
respectively. The three sub-models of GSCAcvx are expressed as follows.

γ ≡ W′z (weighted relation model) (9)

z = c0 + C′γ + ξ (component measurement model) (10)

γ = b0 + B′γ + ζ (structural model). (11)

In GSCAcvx , the weighted relation model (9) shows that each component is defined as a
weighted sumof standardized or unstandardized indicators. AsGSCAcvx may involve unstandard-
ized variables, intercept terms (c0 and b0) are newly included into the component measurement
and structural model (10) and (11). Each model parameter in (10) and (11)—intercepts, loadings,
and path coefficients—can be interpreted in the same manner as the intercepts and regression
coefficients in linear regression model with unstandardized variables. The three sub-models are
combined into the following equation,

[z; γ] = [c0;b0] + [C,B]′γ + [
ξ; ζ

]

↔ [IJ ,W]′z = [c0;b0] + [C,B]′W′z + [
ξ; ζ

]

↔V′z = a0 + A′W′z + e, (12)

where a0 ≡ [c0; b0], V ≡ [IJ , W], A ≡ [C, B], and e ≡ [ξ; ζ]. The equation (12) is called the
GSCAcvx model. If every indicator and component is standardized, the GSCAcvx model (12)
becomes identical to the GSCAstd model (4)

2.2. Parameter Estimation

Let σp denote a Jp by 1 vector of standard deviations (SD) of zp. If the pth component is
defined as standardized ones, σp is equivalent to 1J p. Let Oz denote a J by J diagonal matrix
whose j th element is J−1

p 1J p′σp if the j th indicator in the pth block is a dependent variable and
zero otherwise. Let Oγ denote a P by P diagonal matrix whose pth element is J−1

p 1J p′σp if the
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Figure 1.
An illustrative GSCAcvx model. Hexagons represent components, squares denote indicators, straight lines indicate
weights, single-headed arrows denote loadings and path coefficients. All intercepts and error terms are omitted to make
the figure concise.

pth component is a dependent variable and zero otherwise. Let O ≡ blkdiag(Oz, Oγ). GSCAcvx

estimates parameters by minimizing the following objective function

fcvx (W,A, a0)

= tr(OE(ee′)O)

= E(SS(([z; γ]′ − (a′
0 + z′WA))O)). (13)

subject to w′
p �′

pwp = 1 or 1J p
′wp = 1 (p = 1, 2, · · · , P). The objective function (13) shows

that components in GSCAcvx are constructed such that they can minimize the “weighted” sum
of error variances for all dependent variables under the constraints. Specifically, the objective
function (13) penalizes each prediction error for dependent variables differentially by dividing it
by the average SD of the corresponding block of indicators. This prevents prediction errors for a
block of indicators with large variances from dominating the estimation of parameters.

To help understand the role of O in (13), we illustrate how O is determined based on the
standard deviations of indicators. This will also explain the characteristic of the objective function
described above. Figure1 presents an illustrative GSCAcvx model involving two convex compo-
nents (γ1 and γ2), each measured by three indicators that share the same scale, while the scales of
two indicator blocks differ. Let us assume that σ1 = [1; 2; 3] and σ2 = [100; 200; 300], indicating
that the differences in the overall magnitude of indicators’ variances between the two blocks arises
from the difference in scale. In this case, without O in (13) (i.e., O = I), the value of (13) would
predominantly rely on the error variances for z2 and γ2, implying that the error variances for z1
would be rarely considered in parameter estimation due to their scale. However, GSCAcvx deter-
minesO= blkdiag(Oz,Oγ), whereOz = blkdiag(2, 2, 2, 200, 200, 200)−1 and Oγ = blkdiag(0,
200−1), and then uses it to penalize the error variances for z2 and γ2 to adjust their effects on (13).
For instance, given A = 0 and a0 = E([z; γ]), there are substantial differences in error variances
between z1 and z2 (i.e., [12; 22; 32] for z1 and [1002; 2002; 3002] for z2), but their error variances
contribute equally to the value of (13) (i.e., (12+ 22+ 32)/22 = [1002; 2002; 3002]/2002). This
suggests that introducing O into (13) enables GSCAcvx to consider prediction errors for both z1
and z2 during the parameter estimation process.

Conversely, as illustrated above, the objective function (13) does not impose different penal-
ties on indicatorswithin the same block to take into account potential differences in their variances.
Furthermore, the objective function (13) is partially scale-invariant, which means that the min-
imum value of (13) does not vary with a linear change of measurement scales of each block of
indicators that share the same scale (e.g., a scale range from 1–10 to 0–100), leading to the same
weight estimates. This property is distinct from a property of (full) scale invariant (Swaminathan
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& Algina, 1978) in that changing the measurement scales of each indicator differentially (e.g.,
standardization) is not considered. The proof for the property is provided in Appendix 3.

As theminimumpoint of (13) cannot be found in closed form,wedeveloped anALSalgorithm
for iteratively finding its minimum point. A detailed description of the ALS algorithm is provided
inAppendix 4.Note thatwedonot constrain theweights for convex components to be non-negative
in (13) to make the method more flexible. In some cases, researchers may wish to examine which
indicators contribute to forming a component in the opposite direction to the other indicators
and may be excluded during model re-specification. The negative weight of an indicator for a
convex component may signify that the indicator is not suitable to form the component along with
other indicators. As discussed in Appendix 4, the ALS algorithm allows for the imposition of the
additional non-negativity constraints on weights, forcing the weights to be always positive.

2.3. Model Evaluation Indexes

GSCAstd provides four overall goodness-of-fit measures, including FIT, AFIT, GFI, and
SRMR, and one overall cross-validation index, out-of-bag prediction error (OPE). The FIT indi-
cates the average explained variance of all variables in the model, whereas the AFIT is an adjusted
version of FIT that takes into account the number of model parameters and sample size (Hwang
& Takane, 2014, pp. 26–29). The GFI and SRMR evaluate the discrepancy between the sample
and implied covariance matrices(Cho et al., 2020). The OPE aims to measure the average out-of-
sample prediction error of the model for all variables via a bootstrapping-based cross validation
and can be used for comparing models in terms of predictive generalizability (Cho et al., 2019).
Whereas the GFI and SRMR can be used for GSCAcvx without modification, the FIT, AFIT,
and OPE need to be modified for GSCAcvx because these measures were developed only for the
condition where all variables are standardized. We revised FIT and OPE such that they can be
applied for the GSCAcvx model with both standardized and unstandardized variables, taking into
account the variances of dependent variables only.

We propose a modified version of FIT, termed FIT for unstandardized dependent variables
(FITUD), as follows.

FITUD = 1 − SS(([D,DŴ] − (1N â
′
0 + DŴÂ))Ô)

SS(([D,DŴ] − 1N μ̂
′[IJ , Ŵ])Ô)

. (14)

The FITUD indicates the proportion of the explained variance of all dependent variables (including
dependent convex components) to their weighted total variance. If every component and indicator
is standardized, FITUD = T

TY
FIT, where T ≡ P + J and TY is the total number of dependent

variables in the model. Also, we provide the following two local fit measures of FITUD

FITUD
M = 1 − SS((D − (1N ĉ

′
0 + DŴĈ))Ôz)

SS((D − 1N μ̂
′
)Ôz)

, (15)

FITUD
S = 1 − SS((DŴ − (1N b̂

′
0 + DŴB̂))Ôγ)

SS((DŴ − 1N μ̂
′Ŵ)Ôγ)

, (16)

where Ôz and Ôγ are sample analogies of Oz and Oγ. We refer to "local fit" as the goodness-
of-fit of GSCA’s sub-models. The FITUD

M and FITUD
S can be used for evaluating the component

measurement and structural models, respectively. The FITUD
M indicates the proportion of the

explained variance of all dependent indicators to their weighted total variance, whereas the FITUD
S
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indicates the proportion of the explained variance of all dependent (convex) components to their
weighted total variance.

Moreover, we propose a revised version of OPE, termed OPE for dependent variables
(OPEUD), to evaluate the predictive generalizability of models involving convex components,
as follows.

OPEUD = 1

K

K∑

k=1

SS(([D∗
k ,D

∗
kŴk] − (1Nk â

′
0 + D∗

kŴkÂk))Ôk)

SS(([D∗
k ,D

∗
kŴk] − 1Nk μ̂

′
k[IJ , Ŵk])Ôk)

, (17)

where Ŵk , Âk , âk , and μ̂k are the parameter estimates obtained from the kth bootstrap sample
(k = 1,2, · · · , K ), Ôk is the penalty term that rescales prediction errors for all dependent variables
in the kth bootstrap sample, D∗

k is the kth test sample consisting of observations that are not
included in the kth bootstrap sample, and Nk is the number of observations in the kth test sample.
As shown in (17), the bootstrap sampling procedure generates pairs of mutually exclusive samples
(bootstrap and test samples), over which a specified GSCAmodel is cross-validated (for a detailed
description of OPE’s computation, refer to Cho et al., 2019). The OPEUD represents the weighted
average out-of-sample prediction error of the model for dependent variables. The value of the
OPEUD ranges from 0 to infinity, where 0 means that a specified model perfectly predicts every
dependent variable, and a value over 1 indicates that the prediction accuracy of a specified model
is worse than that of the null model, where all dependent variables are predicted by their sample
means. Again, when every variable is standardized, OPEUD = T

TY
OPE− (T −TY)

TY
. In addition, we

provide the following two local cross-validation indexes of OPEUD

OPEUD
M = 1

K

K∑

k=1

SS((D∗
k − (1Nk ĉ

′
0,k + D∗

kŴkĈk))Ôz,k)

SS((D∗
k − 1Nk μ̂

′
k)Ôz,k)

, (18)

OPEUD
S = 1

K

K∑

k=1

SS((D∗
kŴk − (1Nk b̂

′
0,k + D∗

kŴkB̂k))Ôγ,k)

SS((D∗
kŴk − 1Nk μ̂

′
kŴk)Ôγ,k)

, (19)

where Ôz,k and Ôγ,k are the penalty terms that rescale prediction errors for dependent indicators
and components, respectively, in the kth bootstrap sample. TheOPEUD

M andOPEUD
S can be used for

evaluating the predictive generalizability of the component measurement and structural models,
respectively.

3. Simulated Data Analysis

We conduct a simulation study to examine the parameter recovery of the proposed method.
Figure2 depicts the population GSCAcvx model used in our simulation study. The population
model involves four convex components, each of which is measured by four composite indicators.
Indicators per block had different mean vectors: the mean vectors of indicators are [6, 5, 4, 3] for
γ1, [5.5, 4.5, 3.5, 2.5] for γ2, [5, 4, 3, 2] for γ3, and [4.5, 3.5, 2.5, 1.5] for γ4, respectively.

We manipulate four experimental factors: the variances of indicators, correlations between
indicators per component, distribution of indicators, and correlations among components. We
consider the variances of indicators because this is a unique piece of information for the proposed
method to use for creating components as compared toGSCAstd . The other three factors have been
frequently considered in testing the performance of GSCA (e.g., Cho et al., 2022; Cho & Choi,
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Figure 2.
The population GSCAcvx model used in the simulation study. Double-headed arrows represent correlations. All intercepts
and error terms are omitted to make the figure concise.

Table 1.
Three conditions of the correlation patterns of four indicators per component in the simulation study.

Condition 1 Condition 2 Condition 3
z1 z2 z3 z4 z1 z2 z3 z4 z1 z2 z3 z4

z1 1 1 1
z2 .24 1 .50 1 .49 1
z3 .24 .20 1 .43 .47 1 .56 .74 1
z4 .17 .21 .13 1 .30 .23 .45 1 .66 .48 .69 1

2020; Hwang, Malhotra, et al., 2010b). Specifically, we consider three levels of the variances
of indicators per component: [1, 1, 1, 1], [1 2, 3, 4], and [1, 4, 9, 16]. We take into account
three correlation matrices of indicators per component, which are provided in Table 1 (Cho &
Choi, 2020). We consider two distributions of indicators: normal and non-normal. The normal
distribution has a skewness of 0 and a kurtosis of 3, whereas the non-normal distribution has a
skewness of 1.25 and a kurtosis of 3.75 as in Hwang et al. (2010a). Lastly, we consider three levels
of correlations among components (0, .2, and .4) as in Cho et al. (2022). In total, we consider
54 population GSCA models with convex components (3 levels of indicators’ variances × 2
types of indicators’ distribution × 3 levels of indicators’ correlations × 3 levels of components’
correlations).

Per population model, we consider five sample sizes (N = 100, 200, 400, 800, and 1500),
for each of which 1000 samples are randomly generated from the multivariate distribution with
the population mean vector and covariance matrix of indicators. The procedure of deriving the
population covariance matrix of indicators from the prescribed parameter values of a population
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GSCAcvx model is explained in Appendix 5. We apply GSCAcvx
1 to each sample and obtain

parameter estimates.
As parameter recovery measures, we empirically compute the absolute bias and root mean

squared error (RMSE) of each parameter estimator. These measures are defined as

Absolutebias =
∣∣∣E(θ̂) − θ

∣∣∣ ≈
∣∣∣∣
∣

1

1000
(

1000∑

i=1

θ̂i ) − θ

∣∣∣∣
∣
, (20)

RMSE =
√
E(θ̂ − θ)2 ≈

√√
√√ 1

1000

1000∑

i=1

(θ̂i − θ)2, (21)

where θ is the value of each parameter, θ̂ is the estimator of θ, and θ̂i is the estimate of θ obtained
from the i th sample. We focus here on reporting the average absolute bias and RMSE values of
the estimators of weights, loadings, intercepts, component means, and component variances over
the population models per sample size, as the sample size is the only factor that substantially
influences the absolute bias and RMSE values of the estimators. The results for each population
model are provided in Supplementary Material.

Table 2 shows the average absolute bias and RMSE values of the estimators per sample size.
In all sample sizes, the absolute biases of the weight, loading, and component mean estimators are
small and close to zero on average. For example, when N = 100, the average absolute biases of
the weight, loading, and component mean estimators are .002, .022, and .008, respectively. They
continue to decrease and approach zerowhen the sample size increases. The average RMSEvalues
of the same estimators show a similar pattern. When N = 100, the average RMSE values are
around .047, .134, and .216, respectively, and becomes close to zero as the sample size increases.
The average absolute bias and RMSE values of the intercept and component variance estimators
are relatively large, compared to those of the other parameter estimators in the same condition.
For instance, when N = 100, the average absolute biases of the intercept and component variance
estimators are .107 and .178, respectively, and their average RMSE values are .668 and .859,
respectively. However, both of them also decrease with the sample size and become close to
zero. Taken together, GSCAcvx estimators are empirically unbiased on average, improving their
parameter recovery as the sample size increases.

4. Illustration with Empirical Data

To illustrate its empirical utility, we apply GSCAcvx to American customer satisfaction index
(ACSI) data. TheACSImodel (Fornell et al., 1996) is built on the established theories andhas been
used to produce index scores for customer satisfaction in the United States since 1994. The present
ACSI data are comprised of 774 customers’ responses for fourteen items: z1 = expectation for
overall quality, z2 =expectation for reliability, z3 = expectation for customization, z4 = overall
quality, z5 = reliability, z6 = customization, z7 = price given quality, z8 = quality given price,
z9 = perceived overall satisfaction, z10 = fulfilment of expectations, z11 = distance to the ideal,
z12 = complaint behavior, z13 = repurchase intention, z14 = price tolerance. Twelve of the items
(z1,z2, z3, z4, z5, z6, z7, z8, z9, z10, z11, and z13) are measured on a 10-point Likert scale (e.g., 1
= “very negative” and 10 = “very positive”). Within the interval [1, 5], a smaller point reflects a
stronger negative response, whereas within the interval [6, 10], a larger point indicates a stronger
positive response. On the other hand, z12 is a binary variable (1 = formally complained and 0

1 The MATLAB code is available at https://osf.io/y75kg/?view_only=0d02aea6aaaa4aa29d405172544aae7d.
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Figure 3.
The ACSI model. The dashed line labeled b10 signifies an incorrectly specified path coefficient. All weights and error
terms are omitted to make the figure concise. CE= customer expectations, PQ= perceived quality, PV= perceived value,
CS = customer satisfaction, CC = customer complaints, CL = customer loyalty.

= otherwise) and z14 is a composite of two price tolerance measures in different metrics, which
is expressed as a percentage ranging from 0 to 50 (the higher, the more tolerant). The means,
covariances, minimums, and maximums of the items are provided in Table 3. Refer to Fornell et
al. (1996) for more detailed information on the items.

Figure 3 depicts the relationships among the six components and their indicators. The 14 items
are used as composite indicators of the following six components: γ1 = customer expectations
(CE), γ2 = perceived quality (PQ), γ3 = perceived value (PV), γ4 = customer satisfaction (CS),
γ5 = customer complaints (CC), and γ6 = customer loyalty (CL). We represent all the constructs
by convex components with unstandardized indicators except for the customer loyalty. As two
indicators (z13 and z14) for customer loyalty are not measured on the same scale, we set this
component as a standardized one with the indicators standardized.

We use 4000 bootstrap samples for computing the standard error and 95% confidence interval
of each parameter estimate. For comparison, we also applyGSCAstd to the same data and compute
unstandardized weight estimates and unstandardized component scores based on the procedure
discussed in Sect. 1. As customer satisfaction is the focal component in the ACSI model, we
concentrate on interpreting the scores of customer satisfaction, its statistics, and the relevant
model parameters.

The model fitted by GSCAcvx shows FITUD =.714, indicating that the ACSI model accounts
for 71.4% of the weighted total variance of all dependent variables in the model. It also provides
GFI = .987 and SRMR = .022, pointing to an acceptable level of model fit (Cho et al., 2020).
In addition, it provides that FITUD

M = .802 and FITUD
S = .438. This indicates that the component

measurement model explains 80.2% of the weighted total variance of all dependent indicators,
whereas the structural model explains 43.8% of the weighted total variance of all dependent
components.

Table 4 provides the weight and loading estimates, and their standard errors and 95% confi-
dence intervals obtained from GSCAcvx , along with the intercept estimates in the measurement
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Table 4.
The weights, loading, and intercept estimates of the fourteen indicators in the ACSI model and their standard errors (SE)
and 95% confidence intervals (CI) obtained from GSCAcvx , along with the unstandardized weight estimates obtained
from GSCAstd (Ŵ̂ŴWuni ).

Indicator Component Weights Ŵ̂ŴWuni Loadings Intercepts(ĉ̂ĉc0)
Estimate SE 95% CI Estimate SE 95% CI

z1 CE .345 .013 [.320, .372] .180 1.008 .025 [.957, 1.054] .018
z2 .337 .014 [.309, .366] .188 .982 .027 [.925, 1.033] .616
z3 .317 .013 [.292, .343] .128 1.011 .036 [.937, 1.077] –.674
z4 PQ .387 .018 [.353, .425] .184 .979 .013 [.953, 1.004] .260
z5 .342 .017 [.307, .374] .170 1.043 .013 [1.018, 1.071] –.303
z6 .271 .007 [.257, .285] .101 .976 .024 [.927, 1.021] .012
z7 PV .404 .010 [.384, .423] .154 .960 .020 [.921, .997] –.427
z8 .596 .010 [.577, .616] .293 1.027 .013 [1.002, 1.051] .289
z9 CS .422 .015 [.393, .454] .188 1.004 .011 [.982, 1.025] .433
z10 .254 .013 [.229, .279] .107 .965 .016 [.933, .996] –.052
z11 .324 .012 [.300, .348] .131 1.022 .016 [.990, 1.053] –.524
z12 CL 1.000 .000 [1.000, 1.000] 2.909 1.000 .000 [1.000, 1.000] .000
z13 CC .610 .015 [.579, .639] .206 .956 .004 [.949, .963] .000
z14 .453 .016 [.424, .484] .029 .920 .007 [.906, .932] .000

model. The unstandardized weight estimates obtained from GSCAstd are also provided for com-
parison. Overall, all the weight and loading estimates obtained from GSCAcvx are large and
statistically significant, indicating that all the indicators contribute to forming their components,
which in turn, explain the variances of their indicators well. Among the three indicators (z9, z10,
and z11) for customer satisfaction, z9 (perceived overall satisfaction) are the largest contributor
(w9 = .422, SE = .015, 95% CI = [.393, .454]). This indicates that when each of the three
indicators equally increases, leading to an increase in customer satisfaction, the contribution rate
of z9 for the increase in customer satisfaction was 42.2%, which is greater than those of the
two others (z10 = 25.4% and z11 = 32.4%). Similarly, the unstandardized weight estimate of z9
obtained from GSCAstd is the largest among the three (w9 = .188, w10 = .107, and w11 = .131).
In contrast, it is uncertain how to interpret the unstandardized weight estimates obtained from
GSCAstd .

Table 5 presents the path coefficient estimates and their standard errors and 95% confidence
intervals obtained from GSCAcvx . Overall, the patterns of all the path coefficient estimates are
consistentwith those fromprevious studies (e.g., Hwang&Takane, 2014, Chapter 2). For instance,
perceived quality and perceived value have statistically significant influences on customer satis-
faction (b5 = .723, SE = .033, 95% CI = [.659, .786]; b6 = .275, SE = .035, 95% CI = [.204,
.344]). Customer satisfaction have statistically significant effects on customer complaints (b7 =
–.059, SE = .006, 95% CI = [–.072, –.047]) and customer loyalty (b8 = .252, SE = .015, 95%
CI = [.222, .279]). Each individual path coefficient estimate is indicative of the expected change
of the dependent component for a one-unit change in indicators of a predictor component. For
instance, the estimate of the path coefficient, b8 = .252, implies that a one-unit increase in z9
(perceived overall satisfaction), z10 (expectation fulfillment), and z11 (distance to the ideal) would
be associated with an increase of .252 unit in customer loyalty. The R2 value is .331 for perceived
quality, .511 for perceived value, .812 for customer satisfaction, .164 for customer complaints,
and .404 for customer loyalty. Also, the intercept estimates for the dependent components in the
same order as above are 3.014, .793, –.501, .558, and −1.756.

https://doi.org/10.1007/s11336-023-09944-3 Published online by Cambridge University Press

https://doi.org/10.1007/s11336-023-09944-3


G. CHO, H. HWANG 257

Table 5.
The path efficient estimates and their standard errors (SE) and 95% confidence intervals (CI) obtained from GSCAcvx .

Estimate SE 95% CI

b1 CE → PQ .626 .037 [.551, .696]
b2 CE → PV .134 .039 [.058, .209]
b3 PQ → PV .646 .038 [.573, .721]
b4 CE → CS .045 .026 [–.005, .095]
b5 PQ → CS .723 .033 [.659, .786]
b6 PV → CS .275 .035 [.204, .344]
b7 CS → CC –.059 .006 [–.072, –.047]
b8 CS → CL .252 .015 [.222, .279]
b9 CC→ CL –.267 .104 [–.471, –.064]

Table 6.
The means, standard deviations (SD), and ranges of the unstandardized component scores estimated from GSCAcvx and
GSCAstd . The last component (CL) is defined as a standardized component in GSCAcvx .

GSCAcvx GSCAstd
Mean SD Range Mean SD Range

CE 7.265 2.014 [1.000, 10.000] 3.633 1.000 [.496, 4.961]
PQ 7.564 2.194 [1.000, 10.000] 3.444 1.000 [.455, 4.546]
PV 6.652 2.223 [1.000, 10.000] 3.008 1.000 [.448, 4.475]
CS 7.125 2.353 [1.000, 10.000] 3.037 1.000 [.425, 4.253]
CC 0.137 0.344 [0.000, 1.000] .398 1.000 [.000, 2.909]
CL 0.000 1.000 [–2.311, .998] 2.518 1.000 [.206, 3.516]

Table 6 presents the estimated means, standard deviations, and ranges of unstandardized
component scores obtained from GSCAcvx and GSCAstd . As expected, the individual scores of
each convex component obtained from GSCAcvx are within the range of their indicators’ scores.
The individual scores of customer expectation, perceived quality, perceived value, and customer
satisfaction all range from 1 to 10 and those of customer complaint were between 0 and 1,
which are equivalent to the ranges of their indicators’ measurement scales. The mean of customer
satisfaction from GSCAcvx is 7.125, indicating that the average satisfaction level in the sample
is moderately positive or equivalent to the satisfaction level of a customer whose indicator scores
are all 7.125. This mean of customer satisfaction appears to be congruent with the means of its
original indicators (7.585, 6.824, and 6.760). The standard deviation of customer satisfaction is
2.353, suggesting that the scores of customer satisfaction are somewhat widely spread out from
the mean. This standard deviation value also seems to conform to those of its original indicators
(2.489, 2.504, and 2.632).

On the contrary, unstandardized components’ scores obtained from GSCAstd are not always
within the range of their indicators’ scores. Some scores of customer expectation, perceived
quality, perceived value, and customer satisfaction are smaller than 1, which is the minimum
value of their indicators on the scale. Moreover, the means of unstandardized components are also
far from those of their original indicators. For instance, themean of customer satisfaction obtained
fromGSCAstd is just 3.037, even though its indicators’ means are around 7 as stated above. Thus,
it is questionable whether the mean of customer satisfaction obtained from GSCAstd can be a
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good representation of the average level of customer satisfaction in the sample. Furthermore, all
the standard deviations of unstandardized components are fixed to one, even though none of their
indicators have standard deviations being around 1.

To illustrate the usage of OPEUD as a model comparison criterion, we additionally contem-
plate two misspecified models of the ACSI model, while assuming the original ACSI model as
the true model (denoted by Model 1). One misspecified model (Model 2) is an under-specified
one, where a path coefficient (b6) is omitted fromModel 1. The other misspecified model (Model
3) is an over-specified one that includes an additional path coefficient from customer expectation
to customer loyalty in Model 1, as displayed in Fig. 3. We apply GSCAcvx to fit the three models
to the data and compute their OPEUD values based on 4000 bootstrap samples. Model 1 provides
the smallest OPEUD value (Model 1= .2883, Model 2= .2901, andModel 3= .2887), indicating
that the original ACSI model has the highest predictive generalizability among the three models.
The OPEUD value of Model 2 is larger than that of Model 1 (.2901 >.2883), suggesting that
excluding a path coefficient (b6) from Model 1 rather decreases the prediction accuracy of the
model. On the other hand, the OPEUD value of Model 3 is larger than that of Model 1 (.2887
>.2883), indicating that specifying an additional path coefficient (b10) to Model 1 is not helpful
to improve the predictive generalizability of the model.

5. Concluding Remarks

We proposed convex GSCA that can accommodate a new type of unstandardized compo-
nents, named convex components. A convex component is defined as a convex combination of
original indicators whose weights are all non-negative and summed up to one. Every individual
score of a convex component is always within the range of its indicators’ scores and can be inter-
preted as a construct’s specific level of a person who has the same score for all its indicators as
his/her component score. Moreover, the means and standard deviations of convex components
are estimated along with other parameters through a single optimization procedure, which can
also be interpreted in terms of indicators’ scales. Thus, introducing convex components to the
GSCA model will enhance the practical utility of component scores and their summary statistics,
for instance, in investigating individuals’ levels of a construct or comparing the average levels of
a construct between groups.

We developed an alternating least squares (ALS) algorithm for estimating parameters of the
convex GSCA model, which does not require standardizing blocks of indicators that have the
same measurement scales within the blocks. The algorithm not only enables information on the
variances of each block of indicators to be additionally utilized in parameter estimation, but also
prevents indicators with small variances from influencing more heavily the construction of an
unstandardized component than those with large variances. Furthermore, its objective function
is partially scale-invariant, indicating that the minimum value of the objective function remains
unchanged with a linear change in the measurement scale of each block of indicators, giving rise
to the same weight estimates.

We evaluated the parameter recovery of the proposedmethod in a simulation study and further
illustrated the merits of the proposed method via a real data analysis. In the simulation study,
the proposed method empirically produced unbiased parameter estimates on average under nine
GSCA models with convex components and its accuracy was further improved with large sample
size. In the real data analysis, the patterns of the parameter estimates were consistent with those
from previous studies, and the benefits of convex components were pronounced, compared to the
unstandardized components obtained from the conventional ad-hoc procedure of rescaling weight
estimates. Unlike these unstandardized components, convex components’ weight estimates were
interpretable, all their individual scores fell within the range of indicators’ measurement scales or
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their scores, and their estimatedmeans and standard deviations were congruous with those of their
indicators. Therefore, we are confident to recommend that researchers employ the method when
they are interested in the GSCA model with unstandardized components of original indicators.

Note that as an anonymous reviewer pointed out, researchers may still want to consider stan-
dardizing observed variables that aremeasured on the same scale.We recommend considering this
option only if researchers are not interested in unstandardized component scores. If researchers
apply GSCA to estimate the scores of unstandardized components after standardizing indicators
of the same scale, an indicator with a small variance can be assigned a relatively large unstan-
dardized weight, leading to a potentially inflated influence of the indicator on the estimation of
the component scores, as shown in Sect. 1. This issue does not occur when researchers keep the
original scales of indicators and apply convex GSCA with convex components.

In future research, wemay consider incorporating convex components into various extensions
of GSCA, which deal with more complex analyses, for instance, those of involving higher-order
components (Hwang & Takane, 2014, Chapter 3), missing observations (Hwang & Takane, 2014,
Chapter 3), multilevel components (Hwang et al., 2007), components with categorical indicators
(Hwang & Takane, 2010), component interaction terms (Hwang et al., 2021a, 2010a), or factors
(Hwang et al., 2021b). Such additional extensions will improve the usefulness of GSCA, placing
components on their indicators’ scales while having their means and variances free parameters to
be estimated along with others.
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Appendix 1. A Proof of Disproportional Penalty Imposition on Indicators During the
Minimization of the Objective Function (5)

Let z = μ + �zzstd is a random vector of original indicators, where μ, �, and �z denote
a column mean vector of z, the covariance matrix of z, and a diagonal matrix consisting of
each indicator’s standard deviation, respectively. Let γuni ≡ W′

uniz denote a random vector of
unstandardized components, where Wuni is a matrix of unstandardized weight parameters and
vecdiag(W′

uni�Wuni ) = 1P . Let euni is a random vector of prediction errors for [z; γuni ]. Let� ≡
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blkdiag(�z, IP ) is a diagonal matrix of penalty parameters for euni , where blkdiag() is an operator
to convert input matrices into a block-diagonal matrix. Here, the penalty parameters refer to the
parameters that rescale prediction error for each dependent variable in the model. LetAuni denote
a matrix of unstandardized loading and path coefficients in GSCAstd . Let a0,uni denote a column
vector of the unstandardized intercepts in GSCAstd . When Wuni = �−1

z Wstd , Auni = Astd�,
and a0,uni = ([IJ ,Wuni ] −WuniAuni )

′ μ, (5) is equivalent to the following objective function,

funi (Wuni ,Auni , a0,uni )

= tr(�−1E(eunie′
uni )�

−1) (A.1)

subject to vecdiag(W′
uni�Wuni ) =1P , which can be proved as follows.

fstd(Wstd ,Astd)

= tr(E(estdestd
′))

= E(SS(z′
stdVstd − z′

stdWstdAstd )))

= E(SS((z − μ)′�z
−1

(Vstd − WstdAstd )))

= E(SS((z − μ)′([�−1
z ,�−1

z Wstd ] − �−1
z WstdAstd��−1)))

= E(SS((z − μ)′([IJ ,Wuni ]�
−1 − WuniAuni�

−1)))

= E(SS((z − μ)′(Vuni − WuniAuni )�
−1))

= E(SS((z′Vuni − (z′WuniAuni + a0,uni
′))�−1)),

= tr(�−1E(eunieuni
′)�−1)

= fstd(Wuni ,Auni , a0,uni ), (A.2)

whereVuni ≡ [IJ ,Wuni ]. The equivalence between (5) and (A.1) indicates thatGSCAstd ’s param-
eters are actually the standardized versions of Wuni and Auni that are obtained by minimizing
the sum of penalized error variances for the original indicators and unstandardized components.
While minimizing (A.1), a relatively large penalty will be imposed on an indicator with a rela-
tively large variance, potentially inflating the influence of an indicator with a small variance on
GSCAstd ’s parameter estimation.

Appendix 2. Proofs of the Six Propositions that Characterize a Convex Component

Let us suppose that the pth component (γp) is a convex component defined with Jp indicators
(zp), indicating that the sum of weights assigned to the indicators is equal to one (i.e., 1′

J pwp =
1) and all the weights are non-negative (i.e.,wp ≥ 0J p×1). Let zi,p denote the i th random variable
in zp (i = 1, 2, · · · , Jp), which takes a value in zi,p ⊂ R. Let wi,p denote the i th element of wp

(i = 1, 2, · · · , Jp).

Proposition 1. A convex component has scores within the range of its indicators’ scores.

Proof. Let m1 ≡ inf {inf z1,p, inf z2,p, · · · , inf z J p,p} and m2 ≡ sup{sup z1,p, sup z2,p, · · · ,
sup z J p,p}. Then, m1 = m1

Jp∑

i=1
wi,p =

Jp∑

i=1
m1wi,p ≤ γp =

Jp∑

i=1
zi,pwi,p ≤

Jp∑

i=1
m2wi,p =

m2

Jp∑

i=1
wi,p = m2.
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Proposition 2. Each score of a convex component corresponds to a component score of an indi-
vidual whose scores for indicators are all the same as the component score.

Proof. Let g ∈ Gp denote a value of γp, where Gp ⊂ R is the set of all possible values γp can
take in R. If zp = [g, g, · · · , g]′ = g1J p, then γp = wp

′g1J p = g.

Proposition 3. The mean of a convex component is not fixed to zero but is determined by weights
within the range of its indicators’ means.

Proof. E(γp) = wp
′E(zp) = wp

′μp. Thus, E(γp) varies depending on wp unless μp = 0. Let
μi,p denote the i th element of up. Let m3 ≡ inf {μ1,p, μ2,p, · · · , μJ p,p} and m4 ≡ sup{μ1,p,

μ2,p, · · · , μJ p,p}. Then, m3 = m3

Jp∑

i=1
wi,p =

Jp∑

i=1
m3wi,p ≤ E(γp) = wp

′μp =
Jp∑

i=1
μi,pwi,p ≤

Jp∑

i=1
m4wi,p = m4

Jp∑

i=1
wi,p = m4.

Proposition 4. The standard deviation of a convex component is not fixed to one but is determined
by weights within the range from 0 to the maximum standard deviation of its indicators.

Proof. var(γp)
1/2 = (wp

′var(zp)wp)
1/2 = (wp

′� pwp)
1/2, indicating that the standard devia-

tion of γp depends on wp. Let σk,l,p denote the (k,l)th element of � p. Let m5 ≡ sup{σ1,1p,

σ2,2,p, · · · , σJ p,J p,p}. Then, var(γp)
1/2 = (wp

′ � pwp)
1/2 = (

Jp∑

k=1

Jp∑

l=1
wk,pwl,pσk,l,p)

1/2 ≤

(
Jp∑

k=1

Jp∑

l=1
wk,pwl,pm5)

1/2 = (m5

Jp∑

k=1

Jp∑

l=1
wk,pwl,p)

1/2 = (m5

Jp∑

k=1
wk,p(

Jp∑

l=1
wl,p))

1/2 = (m5

Jp∑

k=1

wk,p)
1/2 = m1/2

5 . Therefore, 0< var(γp)
1/2 ≤ m1/2

5 .

Proposition 5. Given a linearly independent set of indicators’ scores, a set of convex component
scores has a unique set of weights that are nonnegative and summed up to one.

Proof. Let Dp = [d·1,p,d·2,p, · · · , d·J p,p] denote a N by Jp data matrix of zp, where N is the
total number of individuals and d·i,p is the score set of zi,p (i = 1, 2, · · · , Jp). Then, the score set
of the pth convex component for N individuals, denoted by g·p, can be expressed as g·p =Dpwp.
Suppose that there exists a different set of weights, wp+ = [w1,p+, w2,p+, · · · , wJ p,p+]′, such
that g·p =Dpwp+ ′ andwp+ �= wp. Then, 0 = g·p−g·p = Dpwp −Dpwp+ = Dp(wp −wp+) =
d·1,p(w1,p −w1,p+)+d·2,p(w2,p −w2,p+)+· · ·+d·J p,p(wJ p,p −wJ p,p+). By the assumption
that {d·1,p, d·2,p, · · · , d·J p,p} is linearly independent, w1,p = w1,p+, w2, p = w2,p+, · · · ,
wJ p,p = wJ p,p+, which contradicts the assumption. By the definition of a convex component,
wp

′1J p = 1 and wp ≥ 0J p×1.

Proposition 6. The path coefficient of a convex component on an outcome variable indicates the
expected amount of change in the outcome variable for a unit change in each indicator of the
convex component while holding other variables fixed.

Proof. Let γq = b0,q+ bp,qγp+ α′x+ ζq denote a structural model equation of the outcome
variable γq on γp and a vector of covariates x for γq , where b0,q is an intercept for γq , bp,q is
the path coefficient from γp to γq, α is a vector of path coefficients of x, and ζq is an error term
for γq . As this model equation can be re-expressed as γq = b0,q+ bp,q wp

′zp+ α ′x+ ζq , an
expected change of γq for a one-unit change in every element of zp with the values of x fixed
can be expressed as E((b0,q+ bp,qwp

′(zp+ 1p)+ α ′x + ζq) − (b0,q+ bp,qwp
′zp+ α ′x + ζq)),

which is equivalent to E(bp,qwp
′(zp+1p)− bp,qwp

′zp) = E(bp,q (wp
′1p)) = E(bp,q) = bp,q .
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Appendix 3. A Proof that the Optimization Function of Convex GSCA is Partially
Scale-Invariant

Suppose that for each block of indicators that are on the same scale, the measurement scales are
linearly transformed arbitrarily. Let znew =�z(z+ λ) denote a vector of rescaled indicators,where
λ is a J by 1 constant vector for relocation and �z is a diagonal matrix for scalar multiplication
for each indicator. This linear transformation of the measurement scales of indicators does not
change the minimum value of the objective function (13) and the corresponding weight values,
which can be proven as follows. Let γnew = W′znew denote a vector of components defined with
rescaled indicators. Let enew denote a vector of prediction errors for [znew; γnew]. LetAnew denote
a matrix of unstandardized loading and path coefficients for znew. Let a0,new denote a vector of
unstandardized intercepts for znew. Let Onew denote a diagonal matrix of penalty parameters
for prediction errors given znew. Let ωp is the scalar multiplier that is applied the pth block of
indicators. Let �γ ≡ blkdiag(ω1, ω2, · · · , ωP ) and � ≡ blkdiag(�z, �γ).

When Anew = �−1
γ A�, a0,new = (λ′(V – WA)+ a0)�, and Onew≡ �−1O, the objective

function (13) can be re-written as

fcvx (W,A,a0)

= tr(OE(ee′)O)

= E(SS((z′V − (z′WA + a0′))O)

= E(SS((z′(V − WA) − a0′)O)

= E(SS((z′ + λ′ − λ′)�z�
−1
z (V − WA) − a0′)��−1O)

= E(SS((z + λ)′�z(�
−1
z V−�−1

z WA)� − (λ′(V − WA) + a0′)�)�−1O)

= E(SS(z′
new([�−1

z ,�−1
z W]� − �−1

z WA�) − a0,new
′))Onew)

= E(SS(znew
′([IJ ,W]�−1� − W�−1

γ A�) − a0,new
′))Onew)

= E(SS(znew
′(V − WAnew) − a0,new

′))Onew)

= E(SS(znew
′V − (znew

′WAnew + a0,new
′))Onew)

= tr(Onew E(enewenew
′)Onew)

= fcvx (W,Anew, a0,new). (A.3)

The seventh equality in (A.3) holds because �−1
z W = W�−1

γ .

Appendix 4. A Description of GSCA cvx ’s ALS Algorithm

The objective function (13) can be re-written as

fcvx (W,A, a0)

= E(SS((z′(V − WA) − a0′)O))

= E(SS((z − μ)′LO − (a′
0 − μ′L)O))

= E(tr(((z − μ)′LO − (a0′ − μ′L)O)′((z − μ)′LO − (a′
0 − μ′L)O)))

= tr(OL′�LO) − 2tr(O(a′
0 − μ′L)′E(z − μ)′LO)+ SS((a′

0 − μ′L)O))

= tr(OL′�LO)+ SS((a′
0 − μ′L)O)), (A.4)
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where L ≡ V – WA. Let S denote the positive definite sample covariance matrix of indicators
and Ô denote the sample analogy of O. As �, μ, and O are typically not available, GSCAcvx

replaces �, μ, and O in (A.4) with S, μ̂, and Ô, respectively, as follows,

f ∗
cvx (W,A, a0)

= tr(ÔL′SLÔ) + SS((a0′ − μ̂
′L)Ô), (A.5)

and applies the ALS algorithm to find the minimum point of (A.5) with respect to W, A, and a0
subject to wp

′Spwp = 1 or 1J p
′wp = 1 (p = 1, 2, · · · , P), where Sp is an Jp by Jp sample

covariance matrix of zp.
The proposed ALS algorithm begins by assigning random initial values to A and repeats

two steps until convergence. In the first step, W and a0 are updated with A fixed. By solving
1
2

∂ f ∗
cvx

∂a0
= 0, the least square estimates of a0 given W and A can be obtained as

â0 = μ̂(V − WA) (A.6)

This implies that the least squares estimate of a0 can be expressed as a function of W and A. In
other words, if we can find the least square estimate of W given A under the constraint (A.6), we
can obtain â0 as well by (A.6). Inserting (A.6) into (A.5) makes (A.5) be simplified as

f ∗
cvx (W,A)

= tr(Ô(V − WA)′S(V − WA)Ô)

= N−1SS(Dct (V − WA)Ô), (A.7)

where Dct ≡ D – 1N μ̂
′. Let ÔY denote a T by TY matrix consisting of all nonzero columns of

Ô, where T ≡ P + J and TY is the number of dependent variables in the model. Let I0 ≡ [IJ ,
0J×P ] and AI ≡ A – [0P×J , IP ]. Let W−p denote a J by (P – 1) matrix formed by the columns
of W except for its pth column. Let AI,–p denote a (P – 1) by T matrix formed by the rows of AI
except for its pth row and ap denote a row vector whose entries are the non-zero elements of the
pth row of AI,–p corresponding to wp. Let vec() denote an operator that returns a column vector
obtained by stacking the columns of input matrix vertically. Given A, (A.7) can be re-expressed
as

f ∗
cvx (wp;A,W−p)

= N−1SS(Dct (V − WA)ÔY)

= N−1SS(Dct (
[
IJ , 0J×P

] +[0J×J ,W] − WA)ÔY)

= N−1SS(Dct (I0 − WAI)ÔY)

= N−1SS(Dct (I0 − W−pAI,−p −wpap)ÔY)

= N−1SS(vec(Dct (I0 − W−pAI,−p)ÔY) − ((apÔY)′ ⊗Dct )wp))

= N−1SS(ψ1 − �1wp)), (A.8)

where ψ1 ≡ vec(Dct (I0 –W−pAI,−p)ÔY) and �1 ≡(apÔY)′ ⊗ Dct .
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If γp is standardized component, the unstandardized least square estimate of wp is obtained
by

ŵp∗= (�′
1�1)

−1
�1ψ1. (A.9)

Then, the standardized least square estimate of wp is obtained by ŵp = (ŵp∗ ′Spŵp∗)1/2 such
that ŵp can satisfy ŵp

′Spŵp = 1. If every element of ŵp is forced to be positive, finding ŵp

that minimizes (A.8) becomes a well-known nonnegative least squares problem (NNLS; Lawson
& Hanson, 1974, Chapter 23), which should be solved numerically. For instance, the function
lsqnonneg in MATLAB or the nnls package in R can be utilized under this condition.

If γp is a convex component, the ALS algorithm finds the solution for (A.8) subject to
1J p

′wp = 1. This minimization is a linearly constrained least squares problem (Boyd & Van-
denberghe, 2018, Chapter 16). As the product of the ranks of two matrices equals to the rank of
the Kronecker product of the two matrices and apÔY has one row, (apÔY)′ ⊗ Dct has linearly

independent columns, thereby having the columns of

[
�1
1′

J p

]
are also linearly independent. Thus,

there exists δ satisfying

[
�1

′�1 1J p

1J p
′ 0

] [
wp

δ

]
=

[
�1

′�1
1

]
, (A.10)

where

[
�1

′�1 1J p

1J p
′ 0

]
is invertible. Let �2 ≡

[
�1

′�1 1J p

1J p
′ 0

]
and ψ2 ≡

[
�1

′�1
1

]
. Then, ŵp can

be obtained by the first Jp entries of �−1
2 ψ2, from which Ŵ is updated. If wp is forced to be

positive, minimizing (A.8) becomes a quadratic programming problem with a linear constraint
and an inequality constraint (e.g., Floudas & Visweswaran, 1995; Frank & Wolfe, 1956). This
problem does not have closed-form solution. Instead, it can be solved numerically via interior
point methods (e.g., Altman & Gondzio, 1999; Vanderbei & Carpenter, 1993). For instance, the
function lsqlin in MATLAB or the quadprog package in R can be utilized to minimize (A.8)
numerically. This process repeats for every wp (p = 1, 2, · · · , P). Then â0 is updated by (A.6).

In the second step, A and a0 are updated with W fixed. Given W, (A.8) can be re-expressed
as

f ∗
cvx (A;W)

= N−1SS(vec(DctVÔY) − (ÔY
′ ⊗ (DctW))vec(A))

= N−1SS(vec(DctVÔY) − �3ρ), (A.11)

where �3 is the matrix formed by the columns of(ÔY
′ ⊗ (DctW)) corresponding to the nonzero

elements in vec(A), and ρ is the column vector of the nonzero elements of vec(A). Then, the value
of ρ that minimizes (A.11) is obtained by

ρ = (�′
3�3)

−1�′
3vec(DctVÔY) (A.12)

from which the non-zero elements of Â are updated. Then â0 is updated by (A.6).
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Appendix 5. A Procedure for Deriving the Population Covariance Matrix of Indicators from the
Prescribed Parameter Values of the GSCA Model with Convex Components

The proposed procedure imitates the one suggested by Cho and Choi’s (2020) one, while simply
replacing standardized components and correlation matrix of indicators with convex components
and covariance matrix of indicators, respectively. Let cp is a Jp by 1 vector of loadings for zp

Let ξp is a Jp by 1 vector of error terms for zp. Let 	std denote a P by P correlation matrix of
components. Let � denote a P by P diagonal matrix whose pth entry is the standard deviation
of γp, denoted by φp. Let 
 = blkdiag(
1, 
2, · · · , 
P ) denote a J by J covariance matrix of
errors in the measurement model, where 
p is a Jp by Jp covariance matrix of errors for the pth
block of indicators. Let τ = [τ1, τ2, · · · , τP

′] denote a P by 1 vector of component means.
Given the prescribed values of � p, μp, and 	std(p = 1, 2, · · · , P), wp is obtained by

wp = (�−1/2
p u1p) / (1p

′ �
−1/2
p u1p), where u1p is the eigenvector corresponding to the largest

eigenvalue of � p, indicating that wp maximizes the sum of explained variances of zp given � p

subject to 1p
′wp = 1. Then, τp and φp are calculated as τp = wp

′ μp and φp = wp
′ � pwp,

respectively, based on which cp are obtained by cp = φ−2
p � pwp, implying that cp is a vector of

least-square loading values of zp on γp. In turn, 
p is obtained by 
p = (IJ p – cpwp
′) � p(IJ p

–wpcp
′). Then, all the block-diagonal elements of W,C, and
 can be filled in with wp, cp, and


p(p = 1, 2, · · · , P), respectively. Also, τ is computed by τ = W′ μ and then, c0 is calculated
as c0 = μ – C′ τ. Next, 	 is derived by 	 = �	std�. Finally, we obtain � by � = C′ 	C + 
.
A more detailed explanation on each step of this procedure can be found in Cho and Choi (2020).
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