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The relationship between crowd majority and accuracy for binary

decisions

Michael D. Lee∗ Megan N. Lee†

Abstract

We consider the wisdom of the crowd situation in which individuals make binary decisions, and the majority answer is

used as the group decision. Using data sets from nine different domains, we examine the relationship between the size of the

majority and the accuracy of the crowd decisions. We find empirically that these calibration curves take many different forms

for different domains, and the distribution of majority sizes over decisions in a domain also varies widely. We develop a growth

model for inferring and interpreting the calibration curve in a domain, and apply it to the same nine data sets using Bayesian

methods. The modeling approach is able to infer important qualitative properties of a domain, such as whether it involves

decisions that have ground truths or are inherently uncertain. It is also able to make inferences about important quantitative

properties of a domain, such as how quickly the crowd accuracy increases as the size of the majority increases. We discuss

potential applications of the measurement model, and the need to develop a psychological account of the variety of calibration

curves that evidently exist.
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1 Introduction

The wisdom of the crowd is the phenomenon in which the

judgments of individuals can be combined to produce a group

judgment that is, in some way, superior to the judgments

made by the individuals themselves. The basic goal is to

show that the crowd judgment is more accurate than all

or most of the individual judgments, and there have been

attempts to make this goal precise (Davis-Stober, Budescu,

Dana, & Broomell, 2014). Demonstrations of the wisdom of

the crowd have a long history in both statistics (Galton, 1907)

and cognitive psychology (Gordon, 1924), and Surowiecki

(2004) provides an excellent review. The wisdom of the

crowd is also a currently active research topic, partly moti-

vated by the wider availability of crowd-sourced behavioral

data, and partly motivated by the computational feasibility

of elaborate aggregation methods. The field is expanding by

considering different and richer behavioral data than simple

judgments, including transition chains in which one indi-

vidual communicates their judgment to the next individual
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(Miller & Steyvers, 2011; Moussaïd & Yahosseini, 2016),

closed-loop swarm methods in which individuals commu-

nicate with each other synchronously (Rosenberg, Baltaxe,

& Pescetelli, 2016), prediction markets in which individu-

als trade binary propositions (Christiansen, 2007; Page &

Clemen, 2012), repeated judgments from the same indi-

vidual (Vul & Pashler, 2008; Steegen, Dewitte, Tuerlinckx,

& Vanpaemel, 2014), competitive and small-group settings

(Bahrami & Frith, 2011; Koriat, 2012; Lee & Shi, 2010;

Lee, Zhang, & Shi, 2011), and the collection of additional

meta-cognitive judgments (Prelec, Seung, & McCoy, 2017).

The field is also expanding through the possibility of ap-

plying model-based aggregation methods rather than simple

statistical measures like means, medians, and modes, es-

pecially through attempts to model the cognitive processes

and variables that generate the behavioral judgments (Lee

& Danileiko, 2014; Lee, Steyvers, & Miller, 2014; Selker,

Lee, & Iyer, 2017; Turner, Steyvers, Merkle, Budescu, &

Wallsten, 2014).

Some basic wisdom of the crowd phenomena have been

widely studied, and will continue to be important as the field

expands. One is whether and how quickly a crowd judgment

improves as the size of the crowd increases. This has been

studied both theoretically (Berg, 1993; Boland, 1989; Ladha,

1995; Grofman, Owen, & Feld, 1983) and empirically (Lee

& Shi, 2010; Vul & Pashler, 2008), including in early work

(Lorge, Fox, Davitz, & Brenner, 1958). Another basic issue

is how to extract the best possible group estimate from the

available crowd. This has also been widely studied, by con-

sidering different aggregation methods (Hastie & Kameda,

2005; Sorkin, West, & Robinson, 1998), by optimizing with

328

https://doi.org/10.1017/S1930297500006227 Published online by Cambridge University Press

https://doi.org/10.1017/S1930297500006227


Judgment and Decision Making, Vol. 12, No. 4, July 2017 Accuracy of crowd majority for binary decisions 329

respect to the statistical structure of the individual judg-

ments (Davis-Stober, Budescu, Broomell, & Dana, 2015),

or by attempting to identify experts and give greater weight

to their judgments in aggregation (Budescu & Chen, 2014;

Lee, Steyvers, de Young, & Miller, 2012)

A less well studied, but equally important, basic issue in-

volves the calibration of crowd judgments. While the goal

is always to produce accurate crowd judgments, knowing

when accuracy is likely or unlikely can be important addi-

tional information. Knowing how much confidence can be

placed in a crowd judgment is often a crucial piece of in-

formation, for example, in determining appropriate action.

The issue of calibration has been studied in prediction mar-

kets, examining how often binary propositions with specific

market values end up being true (Page & Clemen, 2012).

In a well-calibrated market, of course, propositions judged

as 80% likely should end up being true 80% of the time.

There is some other relevant work in other wisdom of the

crowd settings. For example, Kurvers et al. (2016) identify

some broad properties of the variability in individual judg-

ments that seem predictive of the accuracy of an aggregate

judgment in two real-world applications.

In this paper, we study the calibration of crowd judgments

in one of the simplest settings. This situation involves binary

decisions, in which each individual chooses between one of

two alternatives. An early example is provided by Gurnee

(1937), who studied individual and crowd answers to true-or-

false questions, and Bennett, Benjamin, and Steyvers (2018)

present recent work in the same vein. The binary deci-

sion situation has real-world relevance well beyond trivia.

Surowiecki (2004, p. 47) discusses the example of American

football coaches deciding whether to attempt to make fourth

downs. There is a literature on the level of consensus that

should be needed for individual juror decisions to be aggre-

gated as guilty or not guilty verdicts (Suzuki, 2015). The US

Federal Reserve makes decisions about monetary policy by

aggregating individual judgments from committee members

(Blinder & Morgan, 2005).

Throughout this paper, we rely on a simple majority rule

(i.e., the modal individual judgment) for aggregation. This

is by far the most common assumption, both in theory and

practice, and there is evidence majorities are not just sim-

ple, but also relatively robust and accurate (Kerr & Tindale,

2004). Thus, the natural calibration question is how the size

of the majority relates to the accuracy of the decision made

by that majority. Is an accused person found guilty by 7

out of 12 jurors less likely to actually have committed the

crime than an accused found guilty by all 12 jurors? The

obvious assumption is that crowd accuracy increases with an

increasing majority. This claim is made explicit by Grofman

et al. (1983, p. 265) in their “Bigger is Better” theorem,

which says “... the larger the size of the majority in favor

of an alternative, the more likely is that alternative to be the

correct one.” Extended theoretical analysis considers cases

in which the judgments of individuals are not independent,

but are positively or negatively correlated (e.g., Berg, 1993).

These changes have the obvious impact of dampening or am-

plifying, respectively, the growth of accuracy with increasing

majority.

The goal of this paper is to examine the relationship be-

tween majority size and accuracy in a range of laboratory

and real-world settings, including predictive settings. In the

first half of the paper, we tackle the problem empirically,

examining the calibration between majority size and accu-

racy for nine data sets. These data sets vary widely in the

type of decisions being made, the expertise of individuals,

the size of the crowd, and other dimensions. We find that a

variety of different relationships between majority size and

accuracy are possible. In the second half of the paper, we

develop a method for inferring a calibration curve relating

majority size to accuracy for a set of decisions in a domain,

based on a standard logistic growth model. We demonstrate

the method by applying it to the nine data sets, and show

that it allows meaningful and useful inferences to be made

about how accuracy changes with the size of the majority,

whether a domain has irreducible uncertainty that places an

upper bound on accuracy, and a number of other properties

of crowd wisdom for binary decisions.

2 Nine Data Sets

In this section, we introduce and provide basic empirical

results for nine data sets. The data sets were chosen to span

the range of interesting theoretical possibilities relating the

size of majorities to crowd accuracy. They include examples

in which crowds are very accurate, even when majorities

are small, and examples where crowds are inaccurate, even

when majorities are large. The data sets were also chosen to

span different types of uncertainty. They include examples

where the decision task involves objective knowledge (e.g.,

whether the duration of a tone was longer or shorter than a

fixed standard), tasks involving ground truths that exist but

are not known at the time of the decision (e.g., whether or

not a skin lesion indicates an underlying cancer), and tasks

involving decisions for which the truth is not yet knowable

(e.g., which of two sports teams will win an upcoming game).

All of the data sets take the same basic form. There is

some number of decisions between two alternatives, and,

for each of these decisions, some number of individuals

each choose between the alternatives. Each decision has a

correct answer. Figure 1 shows, for each of the nine data

sets, the distribution, over all the decisions, of the number of

individuals choosing the correct alternative and the number

of individuals in the crowd. For each decision, there is some

majority of individuals in favor of one of the alternatives, and

that majority is either correct or incorrect. Figure 2 shows,

again for all nine data sets, the relationship between the size
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of the majority and its average accuracy. These calibration

curves are derived by finding all the decisions within a set of

bins for majority size, and then calculating the proportion of

those decisions for which the crowd majority is correct.

2.1 Duration perception

The data come from two psychophysical discrimination

tasks, involving visual and auditory duration perception, re-

ported by van Driel, Knapen, van Es, and Cohen (2014). In

the auditory task, individual participants judged the duration

of auditory beeps, while in the the visual task they judged the

duration of an LED light. In both tasks, a trial consisted of

a 500 ms standard, followed by a 1000 ms inter-stimulus in-

terval, and then a target stimulus of variable duration. Each

participant on each trial indicated whether they perceived

the target stimulus to be longer or shorter than the standard.

A total of 19 participants completed 3 blocks of 80 trials

for both the auditory and visual tasks, in a within-subjects

design.

The same 20 unique target durations were used in both

conditions. We treat each unique duration for each modality

as a decision, giving a total of 40 decisions for the data set.

We collected all of the responses made by any participant

to that target duration in that modality. For example, the

target stimulus with duration 470 milliseconds in the visual

condition was judged to be shorter than the standard on

146 of the 227 trials on which it was presented. Thus, for

this decision, the majority is about 64%, and is correct. In

the “duration perception” panel of Figure 1, this decision is

shown at an x-value of 146, and a y-value of 228, because

146 correct decisions were made for the stimulus, out of a

total of 228 presentations. In the “duration perception” panel

of Figure 2, this decision contributes to the point at an x-

value of 0.6 because its majority falls in the bin between 0.55

and 0.65. The corresponding y-value of 0.86 arises because

6 out of the 7 duration decisions with majority sizes falling

in this bin were correct.

Overall, the “duration perception” panel of Figure 1 shows

that most of the decisions are based on crowd sizes near

the maximum of 228, and that the majority of individuals

generally choose the correct alternative. The corresponding

calibration curve in Figure 2 shows that the majority decision

is almost always correct, even for decisions in which the

majority is made up of only slightly more than half of the

individual judgments.

2.2 Cancer diagnosis

The data come from Argenziano et al. (2003, see also

Kurvers, et al., 2016), and involve cancer diagnoses made

by each of 40 dermatologists for the same 108 skin le-

sions. The dermascopic images were presented online, and a

two-step diagnostic procedure was used, first distinguishing

melanocytic from non-melanocytic lesions, and then dis-

tinguishing melanoma from benign lesions. The second

step incorporated standard diagnostic algorithms as decision-

making aids.

We treat each lesion as a decision. The “cancer diagno-

sis” panel in Figure 1 shows that majority of dermatologists

chose the correct diagnosis for most lesions, and often there

is strong agreement between the dermatologistis. The cor-

responding calibration curve in Figure 2 shows an increase

in accuracy with an increasing majority, and that decisions

are almost always correct when there is near-complete agree-

ment.

2.3 Trivia questions

The data come from research reported by Bennett et al.

(2018), and involve individual participants answering trivia

questions. We consider data from multiple experimental

conditions involving the same set of 144 questions, 24 of

which are “catch” questions with obvious answers. The con-

ditions vary in terms of whether or not individuals can choose

which questions they answer, along the lines described by

Bennett et al. (2018).

We treat every question in every experimental condition

as a decision. The “trivia questions” panel in Figure 1 shows

that anywhere between a single individual and 33 individuals

were involved in the various decisions, with most decisions

involving fewer than 20 individuals. It is clear there are some

questions for which most individuals gave the correct answer,

but also many decisions with many incorrect answers. The

corresponding calibration curve in Figure 2 shows an in-

crease in accuracy with an increasing majority, qualitatively

much like the cancer diagnosis curve, with the possible dif-

ference that decisions based on very small majorities seem

to be accurate less than half the time.

2.4 Roulette

The data come from Croson and Sundali (2005), and involve

people’s gambling decisions playing the standard casino

game of roulette. The data were manually extracted from

18 hours of hotel security footage recorded over a 3-day pe-

riod from a Nevada casino in 1998. We considered only

the gambles in which a player placed chips on the (near) bi-

nary possibilities “red” vs. “black” or “odd” vs. “even”, and

counted multiple chips placed by the same player as a single

choice.

We treat each spin of the roulette wheel for which there

was more than one bet as a decision. The “roulette” panel

in Figure 1 shows that the 76 decisions involved at most four

players, and the vast majority only involved two players. The

number of individuals making correct decisions seems uni-

formly distributed for each crowd size. The corresponding

calibration curve in Figure 2 shows that accuracy is always
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Figure 1: Summary of observed behavior in nine data sets. In each panel, the y-axis corresponds to the number of individuals

in the crowd making a decision, and the x-axis corresponds to the number of individuals choosing the correct alternative for

that decision. The area of the circles corresponds to the number of decisions in the data set with each count of individuals

being correct and crowd size. The total number of decisions in the domain is also listed.

consistent with chance, whether the majority is only half the

crowd or the majority is the entire crowd.

2.5 Extrasensory perception

The data come from the analysis of the Zenith radio ex-

periments undertaken by Goodfellow (1938). These exper-

iments in telepathy in the 1930s involved a radio program

“transmitting” binary signals, by informing their listening

audience that a group of telepathic senders in the studio was

concentrating on one of two possible symbols, such as a cir-

cle or a square. The audience was asked to determine which

symbol was being transmitted, and invited to mail responses

indicating the signals they believed were sent, for a set of

transmissions conducted over the course of the program. We

consider the specific results in Goodfellow (1938, Table II),

which detail the frequency of responses to all 32 possible

sequences of 5 binary signals, for 6 different stimulus types,

as well as listing the true signal. Using the total number

of respondents for each stimulus type, we converted these

frequencies to counts for each individual signal. The counts

are approximate, given the limited precision of the provided

frequencies.

We treat each signal for each stimulus type as a deci-

sion. The “ESP” panel in Figure 1 shows that, for most of

the decisions, about half the respondents chose the correct

answer. It is also that the decisions span a wide range of

crowd sizes, ranging from about 1000 individuals to just un-

der 6000 individuals. The corresponding calibration curve

in Figure 2 reinforces that the majorities are generally near
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Figure 2: Calibration curves relating the majority size to its average accuracy. Each panel corresponds to a data set. The x-

axis corresponds to the proportion of individuals who chose the majority alternative, grouped into bins. The y-axis corresponds

to the proportion of decisions in each bin for which the majority was correct. The area of each circle is proportional to how

many decisions belong to each majority-size bin.

half the crowd, but shows a proportion of accurate decisions

around 60%.

2.6 March madness

The data come from Carr and Lee (2016), and involve partic-

ipants predicting which of two basketball teams would win a

game in the 2016 “March madness” U.S. collegiate tourna-

ment. The same 98 participants predicted the winner of the

28 first-round games not involving wild-card teams. The pre-

dictions were made online, as part of an Amazon Mechanical

Turk study, in which participants completed a simple survey

asking them to predict the winner of each game, and indicate

whether or not they recognized each team. No information

about the teams — such as tournament seedings, betting

market probabilities, or expert opinions — were provided,

although there was nothing preventing participants obtaining

this information in making their predictions.

We treat each game as a decision. The “March madness”

panel in Figure 1 shows a wide range of agreement and

accuracy over the decisions. The corresponding calibration

curve in Figure 2 is noisy, because of the relatively small

number of decisions, but generally suggests an increase in

accuracy with an increasing majority.

2.7 NFL games

The data come from Simmons, Nelson, Galak, and Frederick

(2011), who recruited American football fans from the gen-

eral public, and collected various predictions about the 2006

NFL season from them through an online competition. We

use predictions only from the “estimate” group of 45 fans,
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who predicted the outcome of 226 Sunday games. Other

groups in the Simmons et al. (2011) made predictions rela-

tive to a betting measure known as the point spread, rather

than directly predicting the winner of each game.

We treat each game as a decision. The “NFL games”

panel in Figure 1 shows that the number of correct decisions

ranges from none of the fans to all of them. It also shows that

not every fan made a prediction about every game, leading

to variability in the crowd size over decisions. The corre-

sponding calibration curve in Figure 2 shows that, in general,

as the majority increases in size, the crowd decisions tend

to become more accurate. Even when there is complete

consensus, however, only about 70% of games are correctly

predicted. It is also clear that many decisions involve large

majorities.

2.8 AFL games

The data come from pundit predictions for the 198 games

played in the regular season of the Australian Football

League in 2015 and 2016.1 The predictions were made by

a regular set of 29 pundits, most of whom made predictions

about every game, in a weekly column in the Melbourne Her-

ald Sun newspaper, published online at heraldsun.com.

au. Some pundits were AFL expert commentators or former

players, and some were politicians or prominent athletes

from other sports.

We treat each game as a decision. The “AFL games”

panel in Figure 1 shows that the number of correct decisions

ranges, as for the NFL data set, from none of the pundits

to all of them. There are more decisions for which there is

unanimous agreement than for the NFL games data set. The

calibration curve for the AFL games in Figure 2 shows, with

considerable noise, an increase in accuracy with increasing

majority.

2.9 Fantasy football

The data come from the website fantasypros.com, which

collates expert opinion on which of two players will per-

form best in an American fantasy football competition each

week.2 The comparisons are presented for each of the stan-

1This is the sport often mistakenly called “Australian rugby” by US sport-

ing commentators, including otherwise intelligent ones like Dan Lebatard

who should know better. It is as closely related to rugby as the MLS is to

the NFL. And, for what it is worth, the newly-discovered “end over end”

punting style in the NFL has been used in Australian football since the

1800s, where it is called a “drop punt”.

2American fantasy football is a widely-played fantasy sport, in which

competitors create virtual leagues, by drafting a roster of real football play-

ers. Games in the virtual league pair competitors, who each choose to play

or “start” a set players from their roster, and bench or “sit” the remainder.

The player choices are constrained by their positions, so that, for example,

typically a competitor must start one quarter back, two or three running

backs, two or three wide receivers, one tight end, one kicker, and one de-

fense and special teams. The competitors then accrue points, following a

dard fantasy football positions, and generally include all pos-

sible combinations of players likely to be available in a typ-

ical fantasy league. We collected the data from week 8 to

week 17 inclusive of the 2015–2016 season, at various non-

systematic times between the end of the Monday night game

for one week and the beginning of the Thursday night game

for the next week. Depending on the timing, and depending

on the players being compared — since some experts make

predictions for more limited sets of players than others, and

post their predictions at different times between Monday

night and Thursday morning — the crowd size varies from 6

to 129. As a concrete example, the first player combination

collected in week 8 was the quarterback comparison of Tom

Brady and Phillip Rivers by 127 experts, 88 of whom recom-

mended Brady. These experts turned out to be correct, since

Brady scored about 34 points, while Rivers scored about 27,

using standard scoring data we collected from the website

fftoday.com.

We treat only a subset of all the available comparisons

as decisions, with the intent of considering only those com-

parisons that would realistically be encountered in playing

fantasy football. Specifically, we considered only compar-

isons in which both players had an average fantasy football

score over the weeks considered that exceeded a threshold for

their position — 10 points for quarterbacks, running backs,

and wide receivers, and 5 points for tight ends, kickers, and

defense and special teams — and the difference in the means

between the two players was less than 5. These restrictions

are an attempt to identify players that are likely owned in

fantasy football leagues, and comparisons between players

that are close enough that expert advice might be sought.

Overall, the restrictions resulted in a total of 6335 player

comparisons being treated as decisions.

The “fantasy football” panel in Figure 1 shows a wide

range of crowd sizes, and it seems that often nearly every

expert is either correct, or nearly no expert is correct. This

pattern is made clear in the calibration curve in Figure 2,

which shows a large majority for most decisions. The cal-

ibration curve also shows, however, that even these highly-

agreed decisions are correct only about 60% of the time, and

decisions with majorities proportions below about 0.8 are

correct no more often than chance.

3 Discussion of Empirical Results

The empirical results show that the relationship between the

size of the majority and crowd size can take many forms.

A reasonable prior expectation about the relationship might

resemble the cancer diagnosis calibration curve in Figure 2,

in which progressively larger majorities lead to progressively

league scoring system, based upon the actual performance of the real play-

ers in the real football games for that week. The winner of the fantasy game

is the competitor who obtains the greatest total number of points for the

players they started.
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greater accuracy. The other calibration curves in Figure 2,

however, show a set of other possibilities. These variations

seem theoretically and practically interpretable and impor-

tant.

The duration perception domain suggests that it is possi-

ble for even very small majorities to be very accurate. The

calibration curve shows that even if a tone duration is judged

to be longer than the standard only slightly more often than

it is judged to be shorter, it is almost certainly the case

it was really longer. One interpretation is that the simple

psychophysical judgments being made are completely inde-

pendent of each other, even in those cases where it is the

same participant making a judgment about the same target

duration on a different trial. Given some objectively correct

signal, completely statistically independent noise, and a rea-

sonable crowd size, it is theoretically reasonable to expect

high accuracy even for small majorities.

The trivia questions domain suggests that it is possible

for majorities to be incorrect systematically. The calibration

curve shows that narrow majorities are correct less than half

the time. One interpretation is that this happens because

of trick questions, designed to prompt answers driven by

widely-held beliefs that are factually incorrect.

Both the roulette and ESP domains suggest that it is pos-

sible for accuracy to be independent of majority size. The

calibration curves show accuracy near chance, independent

of the size of majorities for various decisions. The obvious

interpretation is that this is because these domains do not

involve signals that provide any useful information. Even

if everybody puts their money on black in roulette, they are

right only (about) half the time.

Finally, all of the March madness, NFL games, AFL

games, and fantasy football prediction domains suggest that

it is possible for there to be an upper limit on crowd ac-

curacy. All of the calibration curves show accuracy well

below 100% even when decisions are near unanimous. In

contrast, the duration perception, cancer diagnosis, and trivia

question calibration curves show near-perfect accuracy when

decisions are near unanimous.

Collectively, these findings suggest that the relationship

between majority size and accuracy, and the distribution

of majority sizes over decisions in a domain, are variable

and complicated. Calibration curves do not always progress

from the bottom-left (small majority, low accuracy) to the

top-right (large majority, high accuracy). They can pass

through the top-left (small majorities, high accuracy), the

bottom-right (large majority, low accuracy), and anywhere

in between.

The other information summarized in Figure 2 relates to

the distribution of majority sizes over all the decisions in a

domain. This is shown by the area of the circles for each

majority-size bin. It is less clear what a reasonable prior ex-

pectation about this distribution might be. For decisions that

individuals as well as groups can make accurately, large ma-

jorities should be observed. Even for inaccurate decisions,

the concept of “group-think” — which emphasizes the pos-

sibility people in groups chose in a way that avoids creative

or independent thinking, and attempts to avoid individual re-

sponsibility for group decisions — suggests it is possible for

most individuals to favor one alternative, if individuals are

aware of the choices of others. For example, (Surowiecki,

2004, p. 47) discusses the concept of risk-averse “herding”

as possibly accounting for most American football coach-

ing groups not attempting many fourth downs, despite some

evidence it would be better to do so.

The nine data sets show a range of results in terms of the

distribution of majority size. Both the fantasy football and

AFL games domains do show many decisions with large in-

accurate majorities, consistent with herding. The other NFL

games and March madness domains show a broader distri-

bution of majority sizes. The cancer diagnosis domain also

shows many large majorities, presumably because of individ-

ual expertise. The duration perception and trivia questions

results show a broad range of majority sizes. The roulette

domain is based on very small crowd sizes, while the ESP

domain is based on very large crowd sizes that are almost

always evenly divided.

Thus, it appears that, just as for the relationship between

majority size and accuracy, there are few general regularities

in the distribution of majorities. It is also clear that the dis-

tribution of majorities is not closely tied to overall accuracy.

The fantasy football results make it clear that most decisions

having large majority does not indicate high accuracy, and

the duration perception results make it clear that high ac-

curacy can be achieved without most decisions having large

majorities.

4 A Logistic Growth Model of Major-

ity and Accuracy

The calibration curves in Figure 2 provide evidence that the

relationship between majority size and crowd accuracy can

take a number of forms. Drawing strong conclusions based

on this sort of empirical analysis, however, is difficult. The

binning assumptions used to generate the curves in Figure 2

are not principled, and different choices of bin widths lead to

quantitatively, if not qualitatively, different curves. It is clear

that calibration curves for most of the data sets are noisy,

and it is impossible to determine what variation is signal and

what variation is noise by the visual inspection of Figure 2.

The potential problems associated with making inferences

by the visual inspection of calibration curves based on arbi-

trary binning assumptions, are highlighted by an animation,

available at https://osf.io/v9zcr/, that shows how the

curves change as the bin width is changed.

Part of the problem is that simple empirical analysis

largely ignores the underlying uncertainty inherent in in-
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ferring the majority size and crowd accuracy from the be-

havioral data. A majority of 1 out of 2 people in the roulette

data set is treated as equally good evidence for a 0.5 majority

as 2500 out of 5000 people in the ESP data set. Similarly, the

uncertainty inherent in inferring the crowd accuracy from bi-

nary outcomes is based on simple proportions of the binned

decisions, and there is no attempt to quantify uncertainty.

This makes it difficult, for example, to draw conclusions

about whether majorities around 0.5 in the trivia questions

data set really perform worse than chance, or whether the

drop in accuracy for majorities of 0.6 for the duration per-

ception data set is somehow “significant”.

Even more importantly, the failure to incorporate uncer-

tainty in the empirical analysis makes it impossible to make

principled inferences about the underlying form of the cal-

ibration function. For example, the accuracy of the crowd

appears to increase with increasing majority sizes for both

the NFL games and AFL games data sets, but it is not incon-

ceivable they are constant, and the observed fluctuations are

due to sampling variability. If they do increase, it is certainly

not obvious whether they do so at the same rate. Nor is it

obvious whether one game is inherently more unpredictable

than the other, in the sense that a unanimous crowd is more

accurate in one case than the other.

To address these sorts of questions requires modeling the

data, by making assumptions about the underlying form of

the calibration function relating majority size and crowd ac-

curacy. Inferences about the underlying calibration function,

and about meaningful parameters of that function — such as

the rate of increase in accuracy with majority, or the ceiling

level of accuracy achieved by unanimous crowds — can then

be made by applying the model to the behavioral data. Ac-

cordingly, in this section we develop a modeling approach,

based on standard statistical logistic-growth models.

4.1 A general logistic-growth model

Each of the nine data sets can be formally described as fol-

lows: there are n decisions, and the ith decision has ki people

making the majority decision out of a crowd of ni people,

with an accuracy of yi = 1 if the majority decision is cor-

rect, and yi = 0 otherwise. For each decision, the key latent

variables of interest are the proportion θi representing the

size of the majority, and the probability φi representing the

probability the majority of the crowd is correct.

We make the obvious assumptions that the observed ma-

jority size follows a binomial distribution with respect to the

underlying majority proportion and the crowd size

ki ∼ Binomial
(

θi, ni
)

,

and the observed crowd accuracy is a Bernoulli draw with

respect to the underlying accuracy

yi ∼ Bernoulli
(

φi
)

.

We also model the distribution of majority proportions across

all of the decisions as coming from an over-arching truncated

Gaussian distribution, so that

θi ∼ Gaussian(0,1)

(

µ, 1/σ2
)

,

where µ ∼ Uniform
(

1

2
, 1
)

and σ ∼ Uniform
(

0, 1

2

)

are the

mean and standard deviation, respectively.

Understanding the relationship between majority size and

accuracy involves formalizing a calibration function that

determines the accuracy for each possible given majority,

φi = fψ (θi), where ψ are parameters of the calibration func-

tion. We focus on one candidate calibration function, based

on the standard Verhulst logistic growth model widely used

throughout the empirical sciences (Weisstein, 2017). This

model is typically applied to phenomena — such as pop-

ulation growth, biological growth, the spread of language,

the diffusion of innovation, and so on — in which growth is

bounded. It seems well suited to the current problem because

of logically bounded nature of crowd accuracy.

Formally, we consider what we term a shifted probabilistic

logistic growth model

φi =
α

1 + exp
{

− β[log
θi

1−θi
− log

δ+ 1

2

1−(δ+ 1

2
)
−

log(2α−1)

β ]
}

, (1)

with a growth parameter β, a bound parameter α, and a shift

parameter δ. This model is shown in the central panel of Fig-

ure 3. The upper bound on accuracy is controlled by α. As

the size of the majority increases, the accuracy of the crowd

increases at a rate controlled by β, with β = 1 corresponding

to a linear increase, values β > 1 corresponding to faster in-

creases, and values β < 1 corresponding to slower increases.

In the limit β = 0, there is no growth in accuracy, and it is

constant for all majority sizes. The shift of the growth curve

is controlled by δ. When δ = 0 a majority of one-half (i.e.,

the crowd is evenly divided between both alternatives) has

chance accuracy. When δ > 0 the curve is shifted to the

right, as shown, meaning that majorities greater than one-

half can perform at chance, and small majorities can perform

worse than chance.

The parameterization of the shifted probabilistic model

given by Equation 1 is intended to help the meaningful inter-

pretation of the parameters, and hence help in setting priors.3

For the upper bound on accuracy, we use

α ∼ Uniform
(1

2
, 1
)

,

corresponding to the assumption that best possible accuracy

in a domain is equally likely to be anywhere from chance to

perfect accuracy. For the growth of accuracy. we use

β ∼ Gamma
(

2, 1
)

,

3In the standard parameterization, a one-half majority would achieve

accuracy of α/2. The parameterization in Equation 1 is designed so that a

one-half majority always achieves chance accuracy when δ = 0.
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Figure 3: Empirical calibration curves relation the proportion of decision makers in the majority on the x-axis, to the average

accuracy of the majority decision on the y-axis.

which has its mode at β = 1, corresponding to the assump-

tion that the most likely growth rate is linear, but allows for

any growth rate β > 0. The exact form of the prior was

chosen by examining the implied prior over calibration func-

tions, using the approach advocated by Lee and Vanpaemel

(2018), and demonstrated by Lee (2018). For the shift in the

calibration curve, we use

δ ∼ Uniform
(

0,
1

2

)

.

This prior makes the assumption that if the calibration curve

is shifted, it can only be shifted to the right, and that all

rightward shifts are equally likely. These shifts have the

effect of decreasing the accuracy of majorities, consistent

with the possibility that no signal is accumulated until some

significant majority is achieved. Leftward shifts, in con-

trast, have the effect of increasing the accuracy of majorities.

These increases, however, are what the growth parameter β

is intended to capture. Thus, for model identifiability and

interpretation, only rightward shifts are incorporated in the

model.

4.2 Special case models

We also consider four special cases of the full shifted proba-

bilistic model, shown in the surrounding panels of Figure 3.

The deterministic model in the top-left corresponds to set-

ting δ = 0, α = 1, and allowing only β to vary. This model

thus assumes that perfect accuracy is achieved for large ma-

jorities, and that one-half majorities perform with chance

accuracy. This special case of the general model is expected

to be appropriate for book knowledge, or other domains in

which the ground truth exists, and a reasonable number of

people in the crowd might know the correct answer. In this

case, it is reasonable to expect a large majority to corre-

spond to a correct answer, and an evenly-divided crowd to

correspond to a guess. The free parameter β corresponds to

how quickly an increasing majority moves from guessing to

correct decisions.

The shifted deterministic model in the bottom-left corre-

sponds to setting just α = 1, allowing for worse-than-chance

performance. This special case is expected to be appropriate

where a domain includes decisions that are actively mislead-

ing, or for which people systematically produce incorrect

answers. There is evidence that this can happen in the re-

lated literature on the calibration of individual probability

estimates. Lichtenstein and Fischhoff (1977, Figure 6), for

example, observe worse-than-chance performance in a cali-

bration analysis considering the worst participants answering

the most difficult questions in a general knowledge task sim-

ilar to our trivia question domains. In these cases, the free

parameter δ corresponds to the increase over one-half needed

for a majority to reach chance accuracy.

The probabilistic model in the top-right corresponds to

setting just δ = 0, and allowing only β to vary. This model
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assumes one-half majorities perform with chance accuracy,

and accuracy grows to some upper bound α as majorities

increase. Conceptually, this bound applies when the crowd

fundamentally lacks the ability to make completely accurate

decisions. Potentially, this could occur if a ground truth

exists, but the information needed to determine this truth

is not available to the crowd. Perhaps more interestingly,

this situation will arise when the ground truth itself is yet to

be determined, and is subject to future events that cannot be

known with certainty, as is the case when the crowd is making

predictions. In these cases, the free parameter α corresponds

to the upper bound measuring the inherent (un)predictability

of the domain, and β corresponds to how quickly that limit

is approached.

Finally, the chance model in the bottom-right corresponds

to setting α = 1
2
, β = 0, and δ = 0, which reduces the full

shifted probabilistic model to θ = 1
2

for all majority sizes,

so that accuracy is always at chance. This special case is

expected to be appropriate in domains where little or no sig-

nal is available, and crowds cannot make effective decisions.

Again, there is evidence in the individual probability cali-

bration literature that this can be empirically observed (e.g.,

Lichtenstein & Fischhoff, 1977, Figure 2).

4.3 Latent-mixture implementation

We implement the model as a graphical model in JAGS

(Plummer, 2003), which allows for fully Bayesian inference

using computational sampling methods. We treat the full

shifted probabilistic model, and its four special cases, as

components of in a latent-mixture model. The assumption

is that all of the decisions in a domain follow one of these

five calibration curves, so that

φi =





1
2

if z = 1

1/
(

1 + exp
{

−β
[

log
θi

1−θi

] })

if z = 2

1/
(

1 + exp
{

−β
[

log
θi

1−θi

− log
δ+ 1

2

1−
(

δ+ 1

2

)

] })

if z = 3

α/
(

1 + exp
{

−β
[

log
θi

1−θi

−
1
β

log
(

2α − 1
)] })

if z = 4

α/
(

1 + exp
{

−β
[

log
θi

1−θi

− log
δ+ 1

2

1−
(

δ+ 1

2

)

−
1
β

log
(

2α − 1
)] })

if z = 5

(2)

with each mixture component given equal prior probability

z ∼ Categorical
(1

5
,
1

5
,
1

5
,
1

5
,
1

5

)

.

The JAGS script is provided in the supplementary material

(https://osf.io/3t3fp/). We applied this model to each

of the nine data sets, collecting 1000 samples from each

of 4 independent chains, thinning by retaining every 10th

sample, after discarding 1000 burn-in samples from each

chain. Convergence was checked by visual inspection, and

using the standard R̂ statistic (Brooks & Gelman, 1997).

5 Discussion of Modeling Results

Figure 4 and Table 1 summarize the results of applying

the latent-mixture logistic-growth model to the nine data

sets. The inset histogram shows the posterior probability of

the five possible models, ranging from the simplest chance

model to the shifted probabilistic model. These probabilities

quantify how likely each model is, based on the decision data,

taking account of both goodness-of-fit and the complexity of

each model. The lines in Figure 4 show samples from the

posterior distribution of the inferred calibration curve. These

samples are based on the joint posterior parameter distribu-

tion for the model with the greatest posterior probability.4

Also shown by circles are samples from the joint posterior

distribution of the majority proportion θ and crowd accuracy

φ aggregated over all of the decisions.

Accompanying the results in Figure 4, Table 1 lists the

most likely model for each data set, and the marginal pos-

terior expectation of the relevant parameters. Every model

includes the mean µ and standard deviation σ over the ma-

jority proportions. Depending on the inferred model, the

growth β, upper bound α, and shift δ are also detailed.

The duration perception and cancer diagnosis domains are

inferred to have deterministic calibration curves. This makes

sense, since it corresponds to there being a ground truth, and

perfect accuracy being achievable. The inferred growth pa-

rameters indicate that crowd accuracy increases very quickly

for duration perception, and moderately quickly for cancer di-

agnosis. The inferred majority proportion parameters show

that, on average, majorities are large, but there is consider-

able variation across decisions. This is especially true for

duration perception.

The trivia questions domain is inferred to have a shifted

deterministic calibration curve. The natural interpretation

comes in two parts. The first part, corresponding to the

deterministic model inference, is that there are ground truth

answers, so that perfect accuracy is achievable. The inferred

growth parameter shows that accuracy improves as majority

4An alternative approach is to use model averaging, which infers a cali-

bration curve by combining all of the five components in the latent mixture,

in proportion to their posterior probability. In some senses, especially for

prediction, this is the optimal Bayesian approach. In the current context,

though, interpretation is a primary goal, and model averaging makes less

sense. For example, one of the key goals is to infer whether a domain is

deterministic, with knowable ground truths, or probabilistic, with an upper

bound on accuracy. These are qualitative choices in terms of interpretation,

and averaging the α parameter over both avoids deciding whether or not the

domain has inherent uncertainty, and produces a posterior distribution for

α that is difficult to interpret.
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Figure 4: Results from applying the latent-mixture logistic growth model to the nine data sets. Each panel corresponds

to a data set. The inset histogram shows the posterior probability of the 5 mixture component models (“c” = chance, “d” =

deterministic, “sd” = shifted deterministic, “p” = probabilistic, “sp” = shifted probabilistic). The most likely model is labeled in

bold. The lines show samples from the posterior distribution of the most likely calibration model, and the circular markers

show samples from the joint distribution of majority proportion θ and crowd accuracy φ aggregated over all of the decisions.

increases at about the same rate for the cancer diagnosis

domain. The second part, corresponding to the shifted model

inference, is that some of the trivia questions are “trick” or

misleading questions, for which small majorities have worse

than chance accuracy. The inferred shift parameter shows

that about a 65% majority is needed to reach chance accuracy,

and an evenly-divided crowd is correct less than 40% of the

time. The inferred majority proportion parameters show that

about 75% of the crowd agrees on average, but there is again

significant variability in this proportion across decisions.

Both the ESP and roulette domains are inferred to follow

the chance model. For the roulette data set, this finding is

easily interpreted, and is not surprising. The domains was

chosen because of the expectation that there is no objective

accuracy signal, and no wisdom of the crowd effect is pos-

sible. No matter how many people bet on red, they are right

— approximately, allowing for the lone green outcome —

half of the time. The interpretation of the specific ESP data

set we used is more subtle. The emphasis of the Goodfellow

(1938) analysis is on the non-uniform choices people make

when generating “random” sequences, and the subtle in-

fluence of stimuli and instructions, as possible accounts of

better-than-chance performance in the ESP task. The need

for such an account is evident in the above-chance accuracy

in the empirical calibration curve in Figure 2. The inference

of the chance calibration curve presumably results, in part,

from the absence of evidence of an increase in accuracy with

increasing majorities, as predicted by the other calibration
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Table 1: Model and parameter inferences applying the latent-mixture logistic-growth model to the nine data sets (“det” =

deterministic, “shift det” = shifted deterministic, “prob” = probabilistic, “shift prob” = shifted probabilistic).

Majority Accuracy

Data set Model µ σ β α δ

Duration perception det 0.93 0.24 3.82 – –

Cancer diagnosis det 0.98 0.18 1.68 – –

Trivia questions shift det 0.78 0.17 1.57 – 0.14

Roulette chance 0.85 0.07 – – –

ESP chance 0.54 0.07 – – –

March madness prob 0.72 0.12 1.82 0.73 –

NFL games prob 0.83 0.15 0.99 0.82 –

AFL games prob 0.99 0.17 1.32 0.78 –

Fantasy football shift prob 1.00 0.13 0.77 0.59 0.29

curve models. It is worth noting that Figure 4 shows that

some significant posterior probability was inferred for the

probabilistic model, consistent with a tension between these

two possibilities in the data.

The March madness, NFL games, and AFL games domain

are all inferred to have a probabilistic calibration curve. This

makes sense, since all three involve predictions, and there

is irreducible uncertainty in the outcome. The inferred up-

per bound parameter provides an estimate of the level of

irreducible uncertainty, finding best-case predictabilities of

73%, 82%, and 78%, respectively, for the three domains.

The inferred growth parameter show that March madness

predictions become accurate more quickly as the majority

increases, followed by AFL games, and then NFL games.

The inferred majority proportion parameters show an inter-

esting disconnect between the typical sizes of majorities, and

these inferences about the growth and upper bound on crowd

accuracy. In particular, the AFL games data set shows much

greater mean majority proportions, despite have a moderate

growth and upper bound compared to the March madness

and NFL games data sets. This is compatible with some

form of “herding” for the AFL games experts, in the sense

that they all tend to make the same predictions, without any

justification in terms of crowd accuracy.

Finally, the fantasy football domain is inferred to have

a shifted probabilistic calibration curve. The probabilistic

part of the inference makes sense for the same reasons as

the March madness, NFL games, and AFL games domains.

Predicting which fantasy football player to start involves ir-

reducible uncertainty. The inferred upper bound parameter

shows that there is a very low ceiling of 59% accuracy. The

inferred shift parameter shows the crowd reaches better-than-

chance performance only once there is a majority proportion

of about 80%. The inferred growth parameter connects these

two findings, showing a slow increase in accuracy with in-

creasing majorities. The inferred majority proportion param-

eters show a remarkable disconnect with the low accuracy.

The average majority proportion is effectively unanimity, and

there is only moderate variability. This is compatible with

significant herding, in which most experts chose the same

player for most decisions, despite the low accuracy of these

predictions.

6 General Discussion

The core of the wisdom of the crowd phenomenon is the pos-

sibility of generating good group judgments from individual

judgments. Any application of the crowd judgment, how-

ever, benefits from knowing how accurate it might be. The

decisions made by individuals are more useful if we know

much confidence can be placed in them. The same is true

of crowd decision. Other than examining the calibration of

prediction markets, and some work in forecasting, however,

there appears to be little research evaluating the confidence

that should be placed in crowd judgments. More fundamen-

tally, there appear to be few methods for making predictions

about the accuracy of crowd judgments in the first place.

In this paper, we have taken first steps towards understand-

ing the confidence that can be placed in crowd judgments,

for the simple but fundamental case in which individuals

choose between two discrete alternatives. For binary judg-

ments, an obvious measure of the confidence of a crowd is

the size of the majority. Thus, our primary research ques-

tions was to understand the relationship between majority

size and accuracy. A secondary question was to understand

the distribution of majority sizes over decisions, especially

as this distribution might relate to overall accuracy.

Using nine diverse data sets, we found evidence that nei-

ther question has a simple answer. In terms of the calibration

curve relating majority size to accuracy, we found domains
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in which increasing majorities tend to be more accurate, but

also domains in which small majorities were just as accu-

rate, and domains in which larger majorities were not more

accurate. In terms of the distribution of majority sizes, we

found domains in which there was a broad distribution over

decisions, and other domains in which most decisions had

large majorities. Sometimes, however, these large major-

ity domains involved very accurate crowd judgments, and

sometimes they involved very inaccurate crowd judgments.

Given this empirical diversity, an important first step to

understanding is to be able to measure the features of a do-

main. Accordingly, we developed a measurement method,

based on logistic growth models. We applied this model

to the nine data sets, using Bayesian analyses that acknowl-

edge the uncertainty in the behavioral data, and allow for

inferences about psychological meaningful models and pa-

rameters. In particular, the measurement model contains

interpretable components corresponding to how quickly ac-

curacy grows as the majority increases, whether or not a

domain has irreducible uncertainty, and whether majorities

can be systematically wrong.

The measurement method was shown to make sensible

inferences for nine data sets, and these results demonstrate

the potential for its application. Most obviously, the inferred

calibration curves allow the probability of the accuracy of

a crowd judgment to be estimated from the size of the ma-

jority on which it is based. From the results in Figure 4,

if 70% of the individuals in a crowd judges a duration to

be longer than a standard, it almost certainly is, if 80% of

dermatologists judge a skin lesion to be cancerous, there is

a 70–95% probability that it is, and if 90% of a trivia team

agree on a true-false answer, there is about a 90% probability

they are right. More surprisingly, the same trivia questions

calibration curve suggests that if below 65% of the team

agrees, it is probably a trick question, and it would be better

to choose the minority decision. The calibration curves for

the prediction domains are obviously extremely useful for

betting, where decisions needs to be made in the context of

specific monetary payoffs. For example, if more than 80%

of pundits agree on an AFL game winner, there is at least a

60% probability they are right, and odds better than this are

worth taking.

Our modeling approach has interesting applications be-

yond inferring the calibration curve, coming from the latent

mixture approach. The four data sets involving predictions

about uncertain future events were correctly inferred, and

led to an inference about the upper bound on achievable ac-

curacy. These bounds are relevant to the general question of

distinguishing between games of chance, such as roullette,

or games of skill, such as chess. One way to conceive of the

distinction is that games of skill have some minimum level of

predictability, and the α parameter is one way to operational-

ize this level for a given domain. This is important for public

policy debates, especially in legal jurisdictions where games

of chance are illegal, but games of skill are not. As a recent

concrete example, the legality of a daily fantasy sports is de-

bated in terms of this distinction, with public, political, and

legal opinion divided (Meehan, 2015). Our results reflect on

this debate, since the upper bound for fantasy football was

inferred to be around 60%, between the 50% of roulette and

the approximately 80% of NFL and AFL games. Setting a

threshold on α delineating chance from skill would be one

way to codify public policy.

Other applications to policy are suggested by the jurispru-

dence and economic governance examples we mentioned in

the introduction as motivations for studying the calibration

of binary choice. For example, different American states

sometimes allow collective jury decisions to be based on less-

than-unanimous individual juror decisions (Suzuki, 2015).

Inferred calibration curves relating the size of the majority

in a jury to the accuracy of that decision — presumably

measured at some later date based on additional evidence

— would allow an appropriate threshold of agreement to be

determined for a desired level of accuracy. An advantage

of the model-based approach adopted here is that such an

analysis would incorporate uncertainty in a principled way.

It would also allow for extrapolation and interpolations to

situations not observed in empirical data. For example, the

β parameter can be interpreted as the rate of increase in ac-

curacy with additional juror agreement, which would allow

inferences to be made about the accuracy of jury sizes and

majorities not currently used in practice. Similarly, the level

of agreement needed among voting members of the Federal

Reserve Board when a decision is made to raise or lower

interest rates could be studied in terms of its calibration with

subsequent economic success or failure.

An advantage of taking a modeling approach, and our

use of fully Bayesian methods for statistical inference in

applying models to data, is that uncertainty is represented

and incorporated into analyses. This advantage applies to

issues involving both model selection and parameter esti-

mation (Wagenmakers, Morey, & Lee, 2016). Identifying

the appropriate calibration curve is effectively a model se-

lection problem, and our approach automatically balances

goodness-of-fit and complexity in making these inferences.

The answers to practical questions based on calibration curve

parameters will similarly benefit from knowledge of the un-

certainty in their estimation. For example, asking whether

the NFL or AFL is more inherently predictable amounts to

determining the probability that the upper bound α is greater

for the NFL, which can be done by comparing their posterior

distributions. Similarly, it would be possible to determine

whether accuracy grows more quickly with increasing expert

consensus in the NFL than the AFL by comparing the pos-

terior distributions of their β growth rate parameters. The

answers to these questions will themselves be uncertain, giv-

ing the probability the NFL exceeds the AFL, reflecting the

fundamental uncertainty in inference from limited data.
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Looking ahead, our modeling approach also sharpens the

theoretical challenges involved in understanding the wisdom

of the crowd for binary decisions. The variety of calibration

curves observed empirically in Figure 2 ultimately needs

to be explained in terms of the psychology of individual

decisions. While the measurement model provides a useful

way to characterize the relationship between majority size

and accuracy, it does not provide an account at the level

of the basic underlying psychological processes. Existing

theoretical frameworks for the wisdom of the crowd (Davis-

Stober et al., 2015; Grofman et al., 1983) typically make

strong assumptions that provide analytical tractability, but

will almost certainly need to be relaxed to explain the sorts

of calibration curves we observed.

At least three components seem important for a success-

ful psychological model. One required component is an

account of the environment, allowing for both knowable

ground truths and irreducible uncertainty, and allowing for

domains where accuracy signal range from very strong to

non-existent. The nature of the environment also needs to

be incorporated: most of our data sets involved “neutral”

environments passively providing information, but the ESP

environment was helpful in the way the pseudo-random sig-

nals were generated, and the trivia question environment

was adversarial in its use of trick questions. A second re-

quired component is an account of the cognitive processes

that convert the knowledge of individuals to their judgments.

This involves assumptions about both expertise, and the ba-

sic decision-making processes that produce the behavioral

judgment. It also involves understanding the goals and in-

centives involved in making decisions: the goal in duration

perception is simply to be accurate, but there may be an

incentive to pick unlikely winners (“dark horses”) in sports

predictions. The third required component is an account

of the social influences individuals have on each other. In

some of our data sets, individuals made decisions indepen-

dent of each other, but in others some individuals could see

the decisions of others. Thus, assumptions need to be made

about how this visibility affects individuals, including pos-

sibilities like herding. Even in situations where individuals

make judgments independently, it is likely they are sensitive

to the possible opinions of others, especially in competi-

tive settings (Lee et al., 2011; Prelec et al., 2017). Thus, a

complete psychological model needs to incorporate environ-

mental, cognitive, and social theories, to explain when and

why calibration curves take different forms. We think the

development of a psychological model, to complement the

measurement model developed here, should be a priority for

future research.

Finally, it would be possible to extend the study crowd

calibration beyond the simple binary decision-making case

considered here. One way to think of the calibration curve

is that it relates a measure of the confidence a crowd has

in its decision to the eventual accuracy of that decision.

In the binary case, it is natural to measure confidence in

terms of the size of the majority. This measure could be

equally well applied to multiple-choice decisions, and so

our model generalizes immediately to discrete choices with

more than two alternatives. For continuous choices, such

as scalar estimation, different measures of the confidence

a crowd has in its decision need to be defined. In some

cases, such as prediction markets, this seems straightforward.

The complicated aggregation mechanism used by prediction

markets generates a crowd probability that can be compared

to accuracy, leading to the sort of calibration curve analyses

presented by Page and Clemen (2012). For other scalar

estimation situations, such as the basic wisdom of the crowd

problem of estimating the number of jelly beans in a jar,

additional assumptions need to be made. One possibility is

that some measure of the dispersion of individual estimates

— such as the variance, or the range — is a useful indicator

of crowd confidence (Kurvers et al., 2016). How these sorts

of measures of the confidence of crowd estimates relate to the

accuracy of those estimates is an interesting and important

generalization of the calibration surves for binary decisions

we have considered.
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