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ABSTRACT

It is shown how the upper bounds for stop-loss premiums (and approximations
to tail probabilities) obtained by replacing the individual model for a portfolio
of risks by the collective model can be improved upon at the cost of only slightly
more computer time. The method used is simply to keep a restricted number of
large risks as they are instead of approximating them by a compound Poisson
distribution. In a real-life example, the relative error in the stop-loss premium is
shown to be reduced drastically by keeping only 10 out of 743 risks unchanged.
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1. INTRODUCTION

Consider the individual model for the total claims in one year on a certain port-
folio containing k contracts:

(i) s= 2 Xi.

With this random variable S we can construct a random variable S" having
stop-loss premiums at least as large as S (see, e.g. KAAS, 1987, Th. 1.1.3), by
replacing the random variable Xj in (1) by a sum Y-, of TV, independent random
variables Xfj) with the same distribution as X,:

(2) Y, = 2 XV\ S" = £ Yit

where the random variables M have Poisson (1) distributions and are indepen-
dent of Xlj). The proof of this statement goes as follows. Consider Theorem
4.3.8 of GOOVAERTS et al. (1984), which states that one compound distribution
precedes another in stop-loss order if both the number of claims and the in-
dividual terms are correspondingly ordered. First one applies this theorem to a
counting distribution degenerate on {1) to obtain Xi < Yi for all /, where the
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symbol < denotes stop-loss order. Next, applying the same theorem with both
N[ and N2 degenerate on [k\, we see that indeed S < S".

We assume that the random variables X, are either equal to some amount M;
(with probability qf), or zero, which is realistic in life-insurance applications.
Without much loss of generality we assume the amounts at risk M, to be integer-
valued.

The probability distribution of S can be computed using convolution. If /
denotes the highest argument of interest, this process takes a number of oper-
ations proportional to k-t, since the random variables X, can have only two
values. The probability distribution of S" is a compound Poisson distribution
with parameter \=Y>qi and claim-amount distribution P[Z = z] =
^l/: M, = .:| <7//X. To compute this distribution, one might either use Panjer's
recursive algorithm or the fast Fourier transform technique. The number of
operations involved is proportional to /'•max Mi for Panjer's recursion and to
b- log b for the FFT technique, where b ^ Ms a number so large that P[S = b]
is less than the required precision (see BERTRAM, 1981, or KAAS, 1987). Since
both t and b will be equal to E[S] plus some multiples of NVar[S], they have
the same order of magnitude for large portfolios.

In KAAS (1987) it is shown by a numerical example that the stop-loss
premiums of S and S" are really quite close together. See also GERBER (1984).
There remains, however, room for improvement.

2. A BETTER-FITTING, STILL TRACTABLE MODEL

Our aim is to find a random variable S' having stop-loss premiums higher than
5, but not as high as S". Moreover we want the stop-loss premiums of S' to be
computable in a time longer by only a constant factor than the time needed to
compute those of S", whatever the size of the portfolio.

This is achieved by mixing the techniques mentioned in Section 1 (Panjer and
convolution). Define S' as

(3) S' = S Xi+Yj Ylt

a v n v
where Kis some subset of i 1,2,..., k \. The policies in set V remain unchanged,
the others are replaced by a compound Poisson distribution. From the additivity
property of stop-loss order (see GOOVAERTS et al., 1984), we see that the
stop-loss premiums of S' are between those of S and S".

The distribution of S can be determined by first computing the probability
vector of the second sum of (3), either by Panjer's recursion or by FFT, and
subsequently adding the terms of the first sum using convolution. By taking the
number of elements \V\ in V small enough, the | V\ -t extra operations this
requires do not add substantially to the number of operations used in the first
step. If we use Panjer's recursion, we may take | V\ to be of order max M,. With
FFT we may (asymptotically) leave about log b policies unchanged. For large k,
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the standard deviation of S becomes negligible compared to E[S], so we may
replace log b above by log k.

Having decided upon how many elements to include in V, the question remains
which policies we should leave unchanged. We consider two criteria.

Denote by irz(t) the stop-loss premium with retention t of an arbitrary random
variable Z. From GERBER (1984, Th. 3, and property (1)) it follows that the so-
called stop-loss distance (the maximum over all retentions of the absolute dif-
ference in stop-loss premium) between S and S' satisfies

](4) max | -Ks'(t) - irs(t) | < ]
it1- HV

Note that ITS (t) ^ 7r.v(O for all t. To minimize this upper bound the policies
with maximal q}Mi should be included in V.

Another option is to minimize the total error made in the stop-loss premium
over all integer retentions instead of only its maximum. This can be done as
follows. First, it can be shown that the means of S, S' and S" are equal. For any
non-negative random variable Z we have

(5) ( (z-t) dFz(z) dt=[ V (z-t) dt dFz(z)
0 J I J 0 JO

Z2 dFz(z) = \E[Z2]\.

From E[S] = E[S'] and (5) we deduce directly for the intergral over all re-
tentions of the difference in stop-loss premiums for S' and S:

(6) ( Ky(f)-7r.v(/)) dt = \\Var[S'] - V a r [ S ] j .

Also, for an arbitrary random variable Z with values only in (0,1, . . . ) we have
by the piecewise linearity of irz(t) for non-integral values of t,

S CO CO CO

7Tz(0 dt = Xi 1 { T Z ( / ) + 7TzO'+ 1)) =j7Tz(0)+ XI Tz(i)-
0 1 = 0 i=\

As irz(0) = E[ Z] for non-negative random variables Z, for the left-hand side of
(6) we have

(8)

Combining (8) and (6) we see that the total (absolute) error in the stop-loss
premiums is minimized making the variance of S' as small as possible. The
variance of S equals

(9)
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For the variance of S" we have
k k

(10) Var[5"] = £ q.Mf = Var[S] + £ qfMf,
i = \ / = i

and then of course the variance of S' can be written as

(11) Var[S' ] = 2 <?,(1 - <7,)M/ + 2 ?,M,? = Var[S"] - 2 <?,2M,2.
a v it v a v

To minimize the variance of S', the policies to be included in V are those with
the highest contributions to the variance of S". This means that q}M} should be
maximal, or equivalently q,Mi should be maximal. So, according to this second
criterion, only the policies with the lowest risk premiums should be replaced by a
compound Poisson distribution.

Intuitively it is more appealing to distinguish the policies on their risk premium
than on their value of q}M\. Also, since (4) gives only an upper bound to the
maximum of the error, we can expect the error in the tails to be less using the
second criterion.

3 . NUMERICAL RESULTS

We tested the procedure outlined above on a real-life portfolio of widow/orphan
pensions with a stop-loss coverage for each year's losses. The data consist of the
capital lost in case of death and the mortality rate of the insured. To make exact
computation of the probability function feasible we rounded the capitals to
integers, after having applied a scaling factor. The resulting portfolio (after
removal of capitals equal to zero) had the following characteristics:

number of policies, k
range of the risk capitals
expected number of deaths,

mean claim
expected value of S
variance of S

743
(1 50]

1.71
3.18
5.44

45.41

Table 1 gives the error in stop-loss premium made by applying the collective
model. Two sizes j V\ were investigated: | V\ = 10 and | V\ = 20. Inclusion of
policies in these sets V was done according to both criteria.

The exact values of the stop-loss premium, again expressed as percentages of
E[S], are given in Table 2, together with the relative errors of the approximating
models. Again we see that the collective model S" is a good approximation to the
individual model, but, especially in the tails, the extra effort caused by using S'
is certainly worthwhile. As expected, the errors for small retentions
( < £ [ S ] + N Var[S] , say), were smaller using the first criterion, but for bigger
retentions errors resulted almost as large as those for S".
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ERROR BOUNDS

Total error
Error bound
Maximal error

AND ACTUALLY I
1

1.
0.
0.

TABLE
OBSERVED MAXIMAL

PREMIUMS FOR

S"

.06

.18
046

S\

S

1

0
0
0

" AND S' , AS

K| = 10 S'

1

ERROR (OVER
A PERCENTAGE

.1̂ 1 =
First criterion

.78

.15

.037

0.62
0.14
0.031

20

ALL RETENTIONS)
O F E [ S ]

S',\ V\ = 10

IN STOP-LOSS

.S\ | V\ = 20
Second criterion

0.68
0.16
0.041

0.54
0.14
0.035

TABLE 2

Sioi'-i.oss PREMIUMS IOR THE INDIVIDUAL MODEL S AS A PERCENTAGE OL E[S]; RELATIVE ERRORS
(*100%) FOR THE COLLECTIVE MODEL S" AND THE MIXED MODELS S' WITH | V\ = 10 AND | V\ = 20

Retention

0
3
6
9

12
15
18
21
24
27
30
33
36
39
42
45
48
51
54
57
60
63
66
69
72
75
78
81
84
87
90

S

100.000
61.476
38.345
24.846
16.775
11.744
8.414
6.062
4.427
3.246
2.379
1.727
1.245
0.887
0.612
0.420
0.280
0.173
0.108
0.068
0.044
0.029
0.019
0.013
0.009
0.006
0.004
0.003
0.002
0.001
0.001

S"

0.00
0.05
0.12
0.18
0.23
0.27
0.30
0.34
0.39
0.45
0.53
0.64
0.76
0.91
1.11
1.37
1.75
2.41
3.29
4.41
5.77
7.38
9.21

11.46
14.20
17.42
21.11
24.78
28.64
34.37
42.79

S',\ V = 10 .
First criterion

0.00
0.04
0.10
0.14
0.16
0.18
0.20
0.22
0.24
0.27
0.30
0.36
0.44
0.56
0.73
0.96
1.31
1.92
2.77
3.88
5.24
6.84
8.64

10.89
13.53
16.77
20.31
23.92
27.81
32.84
41.48

0.00
0.04
0.08
0.11
0.13
0.15
0.17
0.19
0.21
0.23
0.25
0.29
0.34
0.41
0.50
0.63
0.82
1.18
1.66
2.26
2.97
3.75
4.59
5.67
6.98
8.86

11.28
14.64
19.20
24.66
33.17

S ' , | K| = 10
Second

0.00
0.05
0.11
0.15
0.17
0.18
0.19
0.19
0.20
0.21
0.22
0.24
0.26
0.29
0.32
0.37
0.45
0.58
0.76
0.96

.16

.33

.45

.52

.47

.42

.40

.39

.46

.61
1.82

S',\ V\ = 20
criterion

0.00
0.04
0.09
0.12
0.13
0.14
0.14
0.14
0.15
0.15
0.16
0.17
0.19
0.20
0.22
0.25
0.28
0.34
0.43
0.51
0.57
0.61
0.59
0.58
0.57
0.20
0.61
0.64
0.67
0.76
0.91
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4. SOME FURTHER COMMENTS

As pointed out by B. SUNDT at the XX ASTIN-Colloquium, Scheveningen
(1987) the idea of separating large and small risks in the computations need not
be restricted to the case of random variables Xk of purely life-insurance type. In
the next more complicated case, for instance, of including both death risk Mk

with probability qu and disability risk Qk with probability /* on policy k, we
may approximate S by the compound Poisson distribution S" with parameter
X = H qk• + X ik and claim amount distribution P[ Z = z] = (H\k-. ,w, :,\Qk +
^\k: Qt- :] '/t)/X. Note, however, that the considerations of how many policies to
leave unchanged depend on the fact that convolution with a two-valued risk takes
only O(0 steps.

Another question raised at this colloquium by W. S. MEUER is how these
computational techniques relate to the techniques of stochastic simulation widely
used in practice. A rule of thumb is to use simulation only as a last resort and
avoid it whenever the model considered admits more exact procedures. Indeed,
suppose we estimate the stop-loss premium at a certain retention / by n pseudo-
random draws from the distribution of S, or rather of Z = (S - t)+. To achieve
the same relative accuracy of 1% as in Table 1, we have to take n so large that

02) _L
n

For t = 12 ~ E[S] +%Var[5] and the above portfolio we obtained a value of
n ~ 185,000, and for t= 18 = E[S] +2%Var[S] we even have to generate some
400,000 replications of the portfolio, which amounts to about 300 million
random drawings.

A procedure for obtaining quick first estimates we can recommend is to use the
familiar Gamma approximation to the distribution of S (see, e.g. BOWERS et at.,
1987). The Gamma distribution admits an analytical expression for the associated
stop-loss premiums. We found that the relative error in the stop-loss premium did
not exceed 7.2% for retentions in the range (0,£"[S] + 3xVar[S]). The NP-
approximation might be used too.

Instead of using convolution to obtain the exact distribution of the individual
model one might use the recursive algorithm described in DE PRIL (1986). As
was pointed out by KUON et at. (1987), his algorithm is very time-consuming.
Worth mentioning too is the algorithm of KORNYA (1983) to approximate the
distribution of S with a controllable error bound.

It should be noted that our method works best for portfolios of small to
intermediate size, when the risk capitals are of the same order of magnitude as
the retention. For really large portfolios, the error reduction is less spectacular,
though still significant.

We think one of the main advantages of our approach is that it can be
explained easily not only to clients and managers, but also to those members of
actuarial departments who have not sufficiently kept up with the latest
developments in risk theory.
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