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THE EMPTY SPHERE

R. M. ERDAHL AND S. S. RYSHKOV

In 1924 at the Toronto meeting of the International Congress of
Mathematicians, B. N. Delone introduced his empty sphere method for
lattices. We have titled our paper after this method as a tribute to his
memory.

1. Introduction. We have studied the sets of integer solutions of
equations of the form

n n
(1) f(x) =aqay+ > ax; + > agxx; =0,
i=1

ij=1

(a,.j = a;; a;, a;, Gy, X; € R)

where [ satisfies the following condition in which Z denotes the
integers,

2 f(z)=z0, ze€Z

and have resolved this problem using the theory of L-types of lattices [3, 4,
11]. We have been able to give a complete description of all such integer
solutions when n = 4.

This paper is a more lengthy discussion, with proofs of some of the
results announced in [9].

Throughout, all of our functions will satisfy the above two conditions. If
[ is one such function then:

1.1. Definition. The root figure of fis the collection of integer solutions
of f(x) = 0 and we denote it by Ry

For a given n, a complete solution of our problem amounts to a list of
all the possible root figures, Ry, that can occur.

Condition (2) on fforces the coefficient matrix Af = {a,_-/-} to be positive
semi-definite and requires that the portion of R"” whose elements, x, satisfy
the inequality f(x) << 0 to be free of integer points.

Suppose for the moment that R, is non-empty and that A is positive
definite. Under these circumstances the surface determined by the
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equation f = 0 is an ellipsoid, Ey. If the interior of Efis not empty, since f
assumes negative values there, 1t must be free of integer points. In both
cases, empty or non-empty, the interior of E; is free of integer points and
we say that Eis an empiy ellipsoid in R". The root figure, Ry, consists of
the integer points lying on the empty ellipsoid, Ez, in R". Moreover, any
collection R C Z", equal to the integer points on some empty ellipsoid in
R” is a possible root figure in Z". All such root figures are finite.

If T is a general n-dimensional lattice and we blow up a sphere in one of
its interstices in such a way that its interior is always free of lattice points,
this empty sphere will eventually be held rigidly by the lattice when no
further expansion is possible. At this time it must pass through at least
n + 1 affinely independent lattice points. The convex hull of the lattice
points lying on this sphere is a convex polytope which we will call an
L-polytope.

1.2. THEOREM. 4 root figure, R, corresponding to the collection of integer
points lying on some empty ellipsoid in R", is affinely equivalent to the vertex
set, V, of some L-polytope; dim V = dim R = n.

We take as the dimension of a discrete set, D, that of its affine hull:
dim D = dim aff(D). The affine hull of a set of points, X, is the smallest
affine space containing X.

Proof. Suppose that R is the collection of integer points lying on the
empty ellipsoid E’. Let

[ = Z" N aff(R), E = E' N aff(R).

Then R is also the collection of elements of I" lying on the empty ellipsoid
E.

Let T be some affinity (invertible affine transformation) mapping
E onto a sphere. Then T(E) is an empty sphere and the elements of
T(I') lying on this sphere are precisely T(R). By construction dim
T(R) = dim T(I') and therefore by the definition of L-polytope the
convex hull of T(R) is an L-polytope. Thus R is affinely equivalent to the
vertex set of some L-polytope.

To illustrate the above ideas consider the equation
fox,y) =2 — 4x — 4y + 2x* + 2° + 2xy = 0.

The curve defined by this equation is an ellipse passing through the three
points (1, 0), (0, 1), (1, 1), whose interior is free of elements of Z°. Since it
is only on the interior of this ellipse that the values of f, become negative,
/o satisfies condition (2), and f, = 0 is an equation of the type we have
studied. The root figure of f; consists of the three integer solutions of this
equation which lie at the vertices of a triangle. The triangle appears as an
L-polytope in two dimensional lattices (see Figure 1 of Section 4).
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Regarding the overall structure of the paper we have the following
comments. Due to its length, the proof of Theorem 2.1 of Section 2 was
put into an appendix; a more complete discussion of some of this material
will appear shortly (see reference [2] ). Many of the results presented in the
appendix appeared previously in preprint form (see [1]).

With the exception of Theorem 4.4 the material in Sections 3 and 4
is not new. It is a brief description of a portion of the results contained in
[4, 6] and included in order that our treatment be complete ( [4] is difficult
to obtain). The main result in Section 5, Theorem 5.1, is well known but
we have supplied a new proof (see [4] ).

We have broken the proof of our main result, Theorem 6.2, into two
parts. The first of these parts is included in this article and the second, due
to its length, will be published separately.

2. The root figures and z-equivalence. Infinite root figures are possible
when kernel (A7) # 0.1In this case, it is easy to show that the surface /' = 0
is a cylinder. The analysis of the infinite root figures is delicate and is
analyzed in our appendix. From the major result obtained there (Theorem
A.1) we have:

2.1. THEOREM. The non-empty finite root figures R C Z" consist of all
possible collections of integer points in R" lying on empty ellipsoids. The
infinite root figures consist of all possible collections of integer points of
the form R + T where,

(1) R is a finite root figure,

(2) T # {0} is a sublattice of 1" which contains 0,

(3) Any element in the lattice "' N aff(R + T) can be written uniquely as
p + v where

p € Z" N aff(R), y € T.

Since all of the infinite root figures are obtained from the finite ones by
a simple construction, enumeration of the possible root figures amounts to
classifying the finite ones. Affine equivalence is not sufficiently discrimi-
nating for such a classification. In all dimensions n, there are root figures
consisting of n + 1 elements, the vertices of a simplex. However, forn = 5
there are two geometrically distinct types of such figures. This follows
from the construction of the proof of Theorem 1.2 which relates
L-polytopes to root figures, and the fact that with n = 5 there are two
distinct types of simplexes which appear as L-polytopes. The edge vectors
of the first generate the ambient lattice whereas those of the second
generate a sublattice of index 2. For larger values of n the number of
distinct geometrical types of “simplicial” root figures increases.

The notion of z-equivalence is useful for classifying root figures. Besides
the root figure it takes the ambient lattice into account.
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2.2. Definition. Let I} € R", I, C R™ be lattices and R}, R, be subsets of
I, I, respectively. We say that R; and R, are z-equivalent if there is an
affinity (an invertible affine transformation)

T:aff(R)) — aff(R,)
such that T(R,) = R, and

Typically R, and R, are root figures of say f; and f, with I} = Z",
I, = Z". We will use the full generality of our definition when we
consider L-polytopes whose vertices form a subset of some general lattice.
We will say that two such polytopes are z-equivalent if their vertex sets are
z-equivalent.

The statement of Theorem 1.2 can now be strengthened appropriately
so that it becomes useful in the classification of the root figures (the proof
remains as before).

2.3. THEOREM. 4 finite root figure, R C 7" is z-equivalent to the vertex set
of some L-polytope.

By Theorem 2.3 and the comments following Theorem 2.1 it follows
that a complete solution of our problem for a given » is equivalent
to classifying all of the L-polytopes of dimensions 1, 2,...,n up to
z-equivalence.

3. L-decompositions and the classification of root figures. Suppose that
L, and L, are two distinct L-polytopes of some lattice I'. Then their
interiors are disjoint and their intersection, if it is not empty, consists of
an entire face, common to both of them, which is of some dimension less
than n. The collection of all possible L-polytopes forms a decomposition
of n-dimensional space called an L-decomposition:

Typically, all of the L-polytopes of some n-dimensional lattice, I, are
simplexes and its L-decomposition is simplicial. Such a lattice is called
general. Sufficiently small deformations of general lattices will not change
the affine structure of its L-decomposition, i.e., the L-decomposition of
the perturbed lattice will be affinely equivalent to that of I}. However,
under more persistent deformations suddenly new combinatorial types of
L-polytopes are formed as some of the simplexes join to form more
complicated polytopes. The affine structure of the L-decomposition
undergoes an abrupt change as a special lattice, I, is formed. (A special
lattice is one which has among its L-polytopes some which are not
simplicial.)

General lattices can be classified by the affine structure of their
respective simplicial L-decompositions. A pair of general lattices whose
L-decompositions are affinely equivalent belong to the same L-type and
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the collection of lattices of a given type is called an L-type domain. An
L-type domain is topologically connected in that any one of its members
can be continuously deformed into any other in such a way that the affine
structure of the intermediate L-decompositions remains constant.

The lattices lying on the boundary of an L-type domain are special.
Thus the collection of all lattices is composed of possibly several
connected regions, L-type domains, and the boundaries, which correspond
to special lattices.

For n = 1, 2, 3 there is a single unique L-type, and the affine structures
of the L-decompositions of any pair of general lattices coincide for these
cases. For n = 4 there are 3 and for n = 5 there are 221 distinct L-type
domains [8].

We can now describe the program proposed in this paper to enumerate
the L-polytopes up to z-equivalence. It follows directly from the definition
of z-equivalence that corresponding L-polytopes in affinely equivalent
L-decompositions are z-equivalent. Thus for a given n we need only look
at the collection of L-polytopes occurring in each affinely inequivalent
L-decomposition and then group these into z-equivalence classes.

A list of z-inequivalent simplexes for a given n is established by looking
at the L-decompositions of representative general lattices from each of the
L-type domains that occur and classifying the simplexes appearing in
these L-decompositions up to z-equivalence. We have found that for each
of the cases n = 4 all of the simplexes that occur are z-equivalent.

A list of the non-simplicial L-polytopes is obtained by examining the
boundaries of the L-type domains. The L-polytopes found in these special
lattices must be sorted into z-equivalence classes.

4. The first L-type domain. Let I" be some n-dimensional lattice with a
system of vectors, {a,, d,, . . ., a,, a,,}. satisfying the three conditions:

(1) {a;, ay, ..., a,} is a lattice basis for I

2a +a+...+a,,, =0

3) (a, aj) < 0,i # Jj; ((.,.) is the Euclidian scalar product).

The first L-type domain of Voronoi consists of all such lattices; it occurs
forn = 2.

Since {a|, a,, . . ., a,) is a basis and a,, | satisfies (2) it follows that any
choice of n vectors from the system forms a basis for I'.

Saying that lattices are orthogonally equivalent when they differ only
by an orthogonal transformation, then, up to orthogonal equivalence
the lattices of the first L-type domain may be parametrized by the
quantities

2. . ..
lal, i=1,...,n + 1, (a,-,q/)<0, i#j Lj=1,...,n

Special lattices on the boundary of this domain satisfy one or more
equalities of the form:
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(a;, a;) = 0.

The collection of L-polytopes of a lattice, I', meeting at y € T is the star
of the L-decomposition at y. Any other L-polytope must be orthogonally
equivalent to one contained in this star.

Suppose now that I is a general n-dimensional lattice belonging to the
first L-type domain with system {a,, a5, ..., a,, a, ,}. Starting aty, € T,
then moving to y; = vy, + g, thentoy, = y; + a,, ..., we finally arrive
aty, = v,—, T a, Since

a|+az+...+an+|=0

it follows that vy, = vy, + a,,,. The convex hull of the n + 1 points
Yo, Yi» - - - » Y, 18 @ simplex. What is unanticipated is that the circumscribed
sphere is an empty sphere, i.e., the simplex is an L-polytope of I'. This
simplex is denoted by {a,, a5, ..., a, ).

By permuting the system vectors {a,, a,, ..., a,,} and carrying out
similar constructions, (n + 1)! simplicial L-polytopes can be constructed
at y,. These are all denoted by symbols of the form

(ay, a5, . ... a4 1)
where the sequence in brackets is some permutation of the original.
The entire collection of (n + 1)! simplexes forms the star of the
L-decomposition at y,,.
Simplexes in the L-decomposition of I' not belonging to the star at y,
are denoted by symbols of the form

’ ’ ’ ’
<al’ ays - oo Ay Ay iy )p

This simplex belongs to the star at y, + b and can be constructed as above
but starting at the center of this star. It is the convex hull of the lattice
points

Yo=Y Thvi=vtavn=ta. . ..v=yv71a
We will need the following easily established result on the combinato-

rial structure of the L-decomposition of the first L-type domain:

4.1. PROPOSITION. In the star at vy, two simplexes have an (n — 1)-
dimensional face in common if and only if the order of the system vectors in
their symbol differ by a single transposition of two adjacent vectors. Each
simplex in this star has n such neighbours.

If {a}, &, ..., a4, a,, ) is an arbitrary member of the star at vy then
(@), a5, a5, ..., a4, ayy (b = a) — a, ) is a neighbour with which it
shares a (n — 1)-dimensional face. Each simplex has one such neighbour.

Thus {a;, a5, a3, ..., a,, a, ) has as neighbours the n simplexes

<a2’ ay, az, ..., 4, an+l>’ <al’ as, dy, - .., Ay, an+l>’ R
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(a, ay, a3, ..., @11, ay)

as well as the simplex

(dpirs @y, a3, .- s @y ay)y (b=ap — a,.))

On the boundary of the first L-type domain where one or more of the
pairs of system vectors are orthogonal some of these neighbours join to
form more complicated polytopes. These polytopes can be constructed in
a systematic way using the:

4.2. GLUEING THEOREM. When a; L g,
(a) Any simplex in the star at Y, with system vectors a;, a; lying adjacent in
its symbol joins to its neighbour whose symbol is obtained by transposition of

a; and a,.
(b) Any simplex in the star at v, with a; lying first and a; lying last joins to
its neighbour in the star at v, + a; — a; whose symbol is obtained by

transposing a; and a,.

(¢) Any simplex in the star at v, with a; lying first and a; lying last joins its
neighbour in the star at vy, + a; — a; whose symbol is obtained by
transposition of a; and a,.

The geometrical content of this theorem can be visualized in the
following way. Imagine a general lattice I" being deformed until a point on
the boundary is achieved where g; .l a;. Just before this boundary point is
achieved the empty spheres circumscribing the pairs of neighbouring
simplexes mentioned in the glueing theorem are distinct. At the exact
moment when this boundary point is achieved these spheres coincide and
the resulting L-polytopes have simplicial decompositions which contain
these pairs of neighbouring simplexes. The simplicial decompositions
of these more complicated L-polytopes could contain additional simplexes
depending upon whether or not other pairs of system vectors are
orthogonal.

As a simple consequence of the glueing theorem we have:

4.3. CorOLLARY. The affine structure of the L-decomposition of a lattice,

I', belonging to the first L-type domain with system {a;, a,, ..., d,,} is
completely determined by the orthogonalities occuring among the system
vectors.

Regarding the z-equivalence of L-polytopes we have the following
result:

4.4. THEOREM. If two L-polytopes belonging to lattices of the first L-type
domain or its boundary are affinely equivalent, they are z-equivalent.

Proof. Suppose that L is simplicial in I' ¢ R” belonging to the first
L-type domain, i.e.,
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L =(d,ay....d,, )

Then it is clear that the difference set formed from the vertex set of L,
V(L) — V(L), contains a lattice basis for I" and thus L determines I

Now consider some more general L-polytope, L, belonging to I}, on the
boundary of the first L-type domain. Since L, is the union of simplexes of
the form (a), a),...,a, ), the difference set V(L,) — V(L)) also
contains a lattice basis and thus L, determines I.

Thus arbitrary L-polytopes belonging to lattices of the first L-type
domain or to its boundary determine their lattices and if 7T is some affinity
mapping one L-polytope onto another it necessarily maps the lattice
determined by the first onto the second and the two L-polytopes must be
z-equivalent.

As an illustration of the above material we describe the L-polytopes in
the plane (the 1-dimensional case is trivial). Any general lattice, T, in the
plane belongs to the first L-type domain and has a system of lattice
vectors satisfying the conditions set forth at the beginning of this section.
The star of its L-decomposition is easily constructed:

System Star at

a
a, 3

a)

Figure 1

We have drawn empty spheres around the simplexes {a,, a,, a;) and
(ay, ay, a3). ‘

Now imagine that we deform the lattice in such a way that we move
from the interior of the first L-type domain to a point on the boundary
where (a,, a,) = 0 (see figure 2):
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Deformation of Lattice

(ll a|
| W A A /
\
\ a B a3 a,
\
\
a,
b g
a, k R \\ a a, a as
\ a a
> - L > :
Figure 2

As soon as this boundary point is achieved the empty spheres
circumscribing (a,, a,, a;) and {a,, a;, a;) coincide and a new type of
L-polytope is formed; a rectangle. This figure is obtained by joining the
two neighbours {(a,, a,, a;) and (a,, a;, ay) as described in the glueing
theorem. The three pairs of neighbours

{ (a3, a), ay), (a3, ay, ay) },
{ {ay, a3, ay), (ay, a3, @), (b = a, — ay) } and
{<ar, a3, @), {ay, a3, a)y (b = a; — ay) }

also join to form rectangles. This new star is composed of 4 affinely
equivalent (and therefore by Theorem 4.4, z-equivalent) rectangles.

It follows by the symmetry of the construction that we also obtain four
rectangles if, instead of (a,, a,) = 0 we require that either (@, a;) = 0 or
(a5, a;) = 0. Requiring that two distinct pairs of system vectors be
orthogonal leads to a contradiction. For example, if (a,, a,) = (a;, a3) =0
then by using the equation a; + a, + a3 = 0 it follows that

|‘11|2 = —(a], az) - (al’ a3) =0,

a contradiction.
Thus by the above argument and by Theorem 4.4 we have:

4.5. THEOREM. Up to z-equivalence there are two types of L-polytopes in
the plane: the triangle and the rectangle.

5. L-polytopes in 3-space. All of the general lattices in R’ belong to the
first L-type domain and the special lattices to the boundary of this
domain. Up to affine equivalence the L-decompositions of these lattices
can be enumerated with the help of the Delone symbol. For any one of
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these lattices let {a,, a,, a;, a4} be a system of lattice vectors as described
in Section 4. We represent this system by a graph, the Delone symbol,
which is constructed using the following rules:

(1) the graph has 4 vertices, one each for the four system vectors.

(2) We pencil in an edge joining vertex i and j if and only if
(a;, a;) < 0.

Thus a general lattice is represented by a graph with 4 vertices which is
complete and a special lattice by such a graph with edges missing. A pair
of Delone symbols which differ by a permutation of vertices correspond to
lattices with affinely equivalent L-decompositions. Up to a permutation of
vertices, the following forms a complete list of the graphs on 4 vertices.
(We assume that the vertices of all these graphs are numbered as F %)

TaBLE 1
Graphs on Four Vertices

1 2
4 3
F F* F3 F3 2
F3 F3 F F} P

There are no lattices corresponding to the graphs F% through FY of
Table 1. For example, F% would represent a lattice, I', with system
vectors, {a,, a,, a3, a,}, satisfying the conditions

(a, @) = (a3, a3) = (ap, ag) = 0.
By virtue of the fact that a; + a, + a3 + a, = 0 it follows that
lay = —(ay, a; + a3 + ag) =0

which is clearly impossible.

Also graphs F' % and F % represent lattices whose L-decompositions are
affinely equivalent. If {a,, a,, a;, a4} is a system for I" which is represented
by F % then these vectors satisfy the conditions:

(1) (a1, ay) = (a), a3) = (ay, a3) = 0

(2) (ay, ay), (ay, ay), (a3, ag) <O.

https://doi.org/10.4153/CJM-1987-039-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1987-039-7

804 R. M. ERDAHL AND S. S. RYSHKOV

But b; = a, b, = a3 — a,, b; = a, also forms a basis for I' and by adding
by = —a, — a; we have another system, {b,, b,, b3, b,}, for T since

b+ b, + b3+ b, =0 and
(1) (by, by) = (b, by) = (b3, by) = 0;
) (by, by) = —lay?, (by, by) = —layf,
(b). b)) = —la,* < 0.

But this system has the graph F %

Thus up to affine equivalence, graphs F > through F % correspond to the
five distinct types of L-decompositions which occur in R®.

We are now in a position to enumerate the L-polytopes occurring in
these L-decompositions and start with a system {a,, a,, a3, a,} for a
general lattice I' whose projection on some plane is:

System for R’

a

a
az
dq

Figure 4

Now consider the simplex {a,, a,, a3, a4) belonging to the star at y,, of this
general lattice I'. Without modifying the two-dimensional representation
of the system vectors imagine that various combinations of pairs of system
vectors become orthogonal as indicated by the Delone symbols F 3 through
F % This results in the joining of other simplexes to the original one as
described in the glueing theorem. All in all five distinct L-polytopes are
formed in this way, one each for the five Delone symbols F > through F %
(see Table II).

By further investigation the entire stars of the five types of L-
decompositions may be constructed and when this is done it is found that
up to affine equivalence the only L-polytopes which occur are those which
appear in our list of five (Table II). The numbers of these various types of
L-polytopes appearing in these stars is recorded in Table III. Therein we
denote the various L-polytopes by their numbers of vertices denoting the
octahedron by 6, and the triangular prism by 6,.
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TaBLE II
L-Polytopes in R’

L-decom- Figure Simplicial decomposition Description
position of figure

a
a;

F? {ay, ay, a3, as) simplex

ll4

1
F (ar, ay, a3, ag) pyramid
(ay, ay, a3, ag)
a, da
I
3 (an, ay, a5, a4) triangular
Fy ay, ay, a3, ag) fo
prism
(a, a3, ay, ag)
a,
(ay, ay, a3, ag)
F Cap. ay. a3, ) octahedron
(ay. ay, ag. az)
(ay, ay, a4, az)
a4
a;
ay, ay, a3, ag)
(ay. ay, as, ag)
F% {ay, ay, ag, az) box
(ay, ay, ag, az)
(ay, a3, ay, ag)
(a3, ay, a4, ay)
a
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TasBLE II1
. Stars of L-decompositions in R’
L-decomposition

4 5 6, 60 8
F> 24 0 0 0 0
F 8 10 0 0
F3 0 0 12 0
F3 8 6
F2 0 0

By virtue of Theorem 4.4 and the information appearing in Table II we
have:

5.1. THEOREM. Up to z-equivalence there are five distinct L-polytopes
which occur in R®. These are pictured in Table 11.

6. The L-polytopes in R*. The general lattices in R* belong to one of
three different L-type domains [9]. We first enumerate all of the
L-polytopes appearing in the first L-type domain and on its boundary as
in the 3-dimensional case. Here the Delone symbol for such a lattice has
five vertices and as before the absence of an edge corresponds to a pair of
orthogonal system vectors. A complete list of the graphs on 5 vertices, up
to permutations of vertices is given in Table IV. As before, only a portion
of these graphs correspond to Delone symbols of lattices. In addition there
are some instances where two or more of these graphs correspond to the
same lattice. This of course can only happen when a lattice has two
distinct systems of vectors with different orthogonality relations among
them. In these cases a lattice has two or more Delone symbols.

The graphs Fg, F4, F%, F3, Fg, F2, F%, F%, F%, Fl, Fé, F° do not corre-
spond to lattices at all. Consider, for example, F¢. The system vectors
{a,, a5, a3, a4, as} of any such lattice would have to satisfy the
equalities

(a3, @) = (a3, a3) = (a3, a4) = (a, as) = 0,
but this is impossible.

Also some graphs represent lattices whose L-decompositions are
affinely equivalent; F; and F 3 in such a case. If

{al, az, a3, a4, _(a] + 02 + 03 + 04)}
is a system for some lattice, I, represented by F ; then
{a), — a5, ay, a3, a4, —(a; + a3 + ay) }

is also a system for I" but this system has the graph F?. In addition:
(a) F 4, F ‘2‘, F 3‘ represent lattices with affinely equivalent L-decomposi-
tions. For if
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TaBLE IV
Graphs on Five Vertices

~
—c

ﬁ i
w

S

R
N

Fi

S

s
F3

~
wh

3
F3

51

3L

F3

S

{ & % & & K
1 % % = 5 5

3
Fs

J3

F§

1

F§

~0 7,7 <

—

3

A A o

K

{a,, a5, a3, ay, —(a; + a, + a3 + ay) }
is a system for I" with symbol F ‘1‘ then

{a) — a3, a5, a3, a4 —(ay + a; + a)) }
and

{a,, a5, a3, —a; + a4, —(a; + ay + ay) }
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are also systems for I'. But these have graphs F 3 and F § respectively.
(b) F SF i, F 2 represent lattices with affinely equivalent L-decomposi-
tions. If

{a;, ay, a3, a4, —(a) T ay + a3 + ay) }
is a system with symbol F g then

{al’ (12, 03 - a4, a4, _(al + (12 + a3)}
and

{ai, ay, a3 — ag a4 — a3, —(a; + a3) }

are also systems for the same lattice but with graphs F ? and F 3 respec-
tively.

Thus there are a total of 16 affinely inequivalent L-decompositions that
can occur in R* and these can be represented by the 16 Delone symbols
F, F Rl R, RS, RS, FS, FS, B3, F3, F3, F3, Fl, Fj, F%, F;. Starting
with the simplex {(a,, a,, a3, a4, as) and proceeding through this list of
possible L-decompositions, glueing simplexes as we go as dictated by the
glueing theorem we obtain 16 distinct L-polytopes, one each for the 16
distinct types of L-decompositions that can occur. Two dimensional
representations of all of these figures are included in Table V. We label the
figures by the symbol for the L-decomposition in which they occur.

By further investigation a complete list of the L-polytopes occurring
in the star of any given L-decomposition can be obtained. In Table VII,
along with the designation for the L-decomposition, we include a list of
these additional L-polytopes. Since no new L-polytopes occur which
have not been accounted for in the original list we have, by virtue of
Theorem 4.4:

6.1. THEOREM. Up to z-equivalence there are exactly 16 L;pOlytopes which
occur in or on the boundary of the first L-type domain in R".

Three additional L-polytopes can be found on the boundaries of the
other two L-type domains that occur in R* but due to its length we will not
include a description of how we obtained them. Thus the proof of our
main Theorem 6.2 below is incomplete. All of this will be the subject of a
second paper on the present topic.

We remark that the simplexes occurring in the L-decompositions of the
second and third L-type domain are all z-equivalent to those occurring in
the first. Thus any new figures that occur must appear on the boundaries
of either the second or third L-type domain. But any portion of the
boundary of either of these domains which is shared by the first L-type
domain will yield no new L-polytopes since we have already enumerated
all of these. Figure A, included in Table VI below occurs only on the
boundary of the third L-type domain, Figures B and C lie on portions of

https://doi.org/10.4153/CJM-1987-039-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1987-039-7

THE EMPTY SPHERE 809

the boundary of the third L-type domain shared by the second L-type
domain.

6.2. THEOREM. Up to z-equivalence there are a total of 19 distinct
L-polytopes in R*, those appearing in Tables V and VII.

Appendix. Kernel (4,) # 0. We will prove the following:

A. 1. THEOREM. Suppose that Ry C Z" is not empty and 0 # V =
ker(4;). Then Ry is of the form

Ry =R + T,

where R, T satisfy the three conditions;,

(1) R is the collection of integer points lying on some empty ellipsoid in
R".

(2) T is a sublattice of 1" containing 0.

(3) The two lattices Ty = Z" N aff(R) and T form a decomposition of
7" N aff(R + T):

Z'NaffR+T) =T + T, (Tx — Tx) n T =0.

Such a root figure is finite or infinite depending upon whether
dim(I") > 0.

Moreover any subset of 1" of the form R + T where R, T satisfy these
three conditions is a root figure in R".

In the course of our proof we will make use of two subspaces of R”
which are equal to the affine hulls of their integer elements and are related
to V. We define (a), ¥} to be the largest linear subspace of R" which is the
affine hull of its integer elements and is contained in V" and (b), V] to be
the smallest linear subspace which is the affine hull of its integer elements
and contains V. Both are uniquely determined:

V, = affZ" n V), V, =Vt n 2,
where L denotes the orthogonal complement with respect to the usual
scalar product. The two containments ¥ C V' C }]| become equalities if
and only if V is the affine hull of its integer elements.

The following three propositions, proved in [2], describe some useful
properties of the subspaces V, V.

A.2. ProrosiTioN. If 0 # V = ker(4y), then [ is constant on the
translates of V by elements x € R":f(x + V) = f(x).

A.3. PrRoPOSITION. Let 0 # V = ker(Ay). Then the set M, where
M= {meRI\fom) = fm+ W),
is an affine subspace of R" with
) M—MAV=V,
2 R'=M+ W
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A.3. PrROPOSITION. If 0 # V = ker(4y), then [ is non-negative on the
translates of Vi by elements z € Z":f(z + V) = 0.

A.1. Proof of theorem. Consider f with properties as in the statement of
Theorem A.1. Let

By Proposition A.2 Ry + Z" N V = Ry so
L+Z'nVv=1I

Choose a sublattice I, C I'yso that I' = 7" N V, T, form a decomposition
of Iy
A

=0+ L—-TynTl=0

Using this decomposition we write, for m € Iy, m = r + v, where r € I,
v € T. By Proposition A.2, f(m) = f(r) and m € Ry if and only if
r € Ry Defining R to be equal to R, N T, it follows that

R;=R + I

Regarding the properties of I', R we have:
(1) If m € R then f(m) = 0 and by Proposition A.4

f(m) = f(m + V)

m is therefore an element of M, the affine space defined in Proposition
A.3. Since aff(R) © M property (1) of Proposition A.3 implies that

(aff(R) — aff(R)) NV, C V.

Since the two subspaces (aff(R) — aff(R)), V| both have integer bases the
same is true of ther intersection and

(aff(R) — aff(R)) N V, C ¥,
which implies that
(aff(R) — aff(R)) N V C ¥,
But by the construction of I it follows that
(aff(Ty) — aff(Ty)) N ¥ = 0 (¥, = aff I).
Since R C T, we conclude that
(aff(R) — aff(R)) N V =0

and the restriction of the surface defined by the equation f = 0 to aff(R)
must be an empty ellipsoid in aff(R); R is the collection of integer points
lying on an empty ellipsoid in aff(R). This being the case R can also be
realized as the collection of integer points lying on some empty ellipsoid in
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R" and therefore satisfies condition (1).
(2) Since 0 € T, T satisfies condition (2).
(3) Since R C T, and since

dim(R) = dim(Rf) — dim(T") = dim(Ff) — dim(I") = dim(I})

we must have Z" N aff(R) = I,. With this identity, condition (3) of the
theorem is a restatement of the fact that I, I' form a decomposition of
fThe last statement of the first part of the theorem regarding the
finiteness of the root figure is obvious.

To begin the proof of the second part of the theorem assume that R, T’
satisfy conditions (1) through (3) of A.l. By condition (1), R can be
realized as the integer points lying on some empty ellipsoid in R". Let g
be a function satisfying the two conditions stated in the introduction and
such that the surface determined by the equation g = 0 coincides with this
empty ellipsoid. Then R = R,. Let

I = Z" N aff(R)

or, if need be, let I be equal to some extension of Z" N aff(R) so that I}, I'
form a decomposition of Z":

77—, +T, T -T)NnT =0

That such a I} can be constructed is guaranteed by conditions (2), (3) on
I, R.If Y, = aff(I}), Y = aff(I') then an element x € R" can be written
uniquely as y; + y withy; € Y}, y € Y. Now define the function 4 by the
formula

h(x) = h(y, +y) = gy

Since y, is related to x by an affine transformation, #(x) can be written as
in equation (1) of the introduction. For z € Z",

h(z) = h(y; +v) =g(y) =0

since y; € Z" by the construction of I. Thus 4 satisfies condition (2) of
the introduction and

R, = {z € Z'|h(z) = 0}

is a root figure. Since it is clear that R + I' = R,, R + T'is a root figure
and our proof is complete.
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TaBLE VII
Stars of L-decompositions first L-type domain
L-decomposition Figure number
1 2 3 4 5 6 7 8 910 11 12 13 14 15 16
F° 120
F 60 36
F] 20 24 28
F} 40 24 14
F$ 10 28 16
F$ 20 24 16
F§ 48
Fo 72 18
F3 10 14 18
F3 36
F 16 20
F3 36 10
Fi 10 20
F 24
Fi 16 12
F} 16
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