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Abstract

A long-standing conjecture asserts that every finite nonabelian p-group has a noninner automorphism of
order p. In this paper the verification of the conjecture is reduced to the case of p-groups G satisfying
Z?

2 (G) ≤CG(Z?
2 (G)) = Φ(G), where Z?

2 (G) is the preimage of Ω1(Z2(G)/Z(G)) in G. This improves
Deaconescu and Silberberg’s reduction of the conjecture: if CG(Z(Φ(G))) , Φ(G), then G has a noninner
automorphism of order p leaving the Frattini subgroup of G elementwise fixed [‘Noninner automorphisms
of order p of finite p-groups’, J. Algebra 250 (2002), 283–287].
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1. Introduction

Let p be a prime and G be a finite nonabelian p-group. A longstanding conjecture
asserts that G has a noninner automorphism of order p [12, Problem 4.13]. This
conjecture is still open. In fact, the statement of the conjecture is a sharpened version
of a well-known and nontrivial property of finite p-groups that, with the exception of
groups of order p, they always have a noninner automorphism of p-power order [7].

The conjecture has been established for p-groups of class 2 and 3 [2, 3, 11], for
regular p-groups [13], for p-groups G in which G/Z(G) is powerful [1], for p-groups
G in which (G, Z(G)) is a Camina pair and p , 2 [9], for 2-groups with a cyclic
commutator subgroup [10], and for p-groups of order pm and exponent pm−2 [14].
It is worth noting that most of the noninner automorphisms given in these results
leave either Φ(G) or Z(G) elementwise fixed. Also, Deaconescu and Silberberg have
proved that if CG(Z(Φ(G))) , Φ(G), then G has a noninner automorphism of order p
leaving Φ(G) elementwise fixed [5]. Hence, they have reduced the verification of the
conjecture to the degenerate case in which

CG(Z(Φ(G))) = Φ(G). (∗)

The author gratefully acknowledges the moral and financial support of the University of Isfahan as well
as its Centre of Excellence for Mathematics. This research was in part supported by a grant from IPM
(No. 91050219).
c© 2013 Australian Mathematical Publishing Association Inc. 0004-9727/2013 $16.00

202

89 (2014), 202–209

first published online 7 June 2013)

https://doi.org/10.1017/S0004972713000403 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972713000403


The main motivation of the present paper is to reduce the verification of the
conjecture further. In addition, our aim is to find a noninner automorphism of order p
which acts trivially on a maximal subgroup of G. Let Z?

2 (G)/Z(G) = Ω1(Z2(G)/Z(G)),
where for a finite p-group H, Ω1(H) = 〈h ∈ H | hp = 1〉. Our main results are as
follows.

T 1.1. Let p be a prime and G be a finite nonabelian p-group. If G fails to fulfil
the condition

Z?
2 (G) ≤CG(Z?

2 (G)) = Φ(G), (∗∗)

then G has a noninner automorphism of order p leaving the Frattini subgroup of G
elementwise fixed. Moreover, if p is odd, then the noninner automorphism can be
taken such that it acts trivially on a maximal subgroup of G.

Theorem 1.1 reduces the verification of the conjecture to the case of finite p-groups
satisfying (∗∗). Let G ∗p and G ∗∗p denote the sets of all finite p-groups with the properties
(∗) and (∗∗), respectively. Then the following theorem holds.

T 1.2. For every prime p, G ∗∗p ⊆ G ∗p and G ∗p \ G
∗∗
p contains infinitely many

p-groups.

Therefore the result of this paper extends known classes of finite p-groups for which
the conjecture holds.

2. Preliminaries

Let G be a finite nonabelian p-group. By M (G) we denote the set of all maximal
subgroups of G. If x ∈G and H ≤G, then x and H denote the coset xΦ(G) and the
quotient group HΦ(G)/Φ(G), respectively. The inner automorphism of G induced by
x is denoted by θx. Also, we denote the direct product of groups G1,G2, . . . ,Gn, by
DrΠn

i=1 Gi. Any unexplained notation is standard and follows that of [8]. We use the
following facts in the proofs.

R 2.1. Let n ∈ N, x, y ∈G and a ∈ Z2(G).
• (xa)n = xnan[a, x](

n
2).

• [xn, a] = [x, a]n = [x, an].
• [x, ay] = [x, a][x, y].
• Moreover, if ap ∈ Z(G) then [a, Φ(G)] = 1.

R 2.2. Let G be a finite p-group, M be a maximal subgroup of G and g ∈G \ M.
Let u ∈ Z(M) such that (gu)p = gp. Then the map α given by g 7→ gu and m 7→ m, for
all m ∈ M, can be extended to an automorphism of order |u| that acts trivially on M.

R 2.3 [5, Remark 4]. Let G be a central product of subgroups A and B; that is,
G = AB and [A, B] = 1. Suppose that α ∈ Aut(A) and β ∈ Aut(B) agree on A ∩ B. Then
α and β admit a common extension γ ∈ Aut(G). In particular, if A has a noninner
automorphism of order p which fixes Z(A), then G has a noninner automorphism of
order p which fixes Z(A) and B.

[2] On noninner automorphisms 203

https://doi.org/10.1017/S0004972713000403 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972713000403


R 2.4. Let A and B be two elementary abelian finite p-groups. The set of all
homomorphisms from A to B, which is denoted by Hom(A, B), forms an elementary
abelian p-group by + operation (that is, ( f + g)(a) = f (a)g(a) for f , g ∈ Hom(A, B)
and a ∈ A). Let A = DrΠm

i=1〈ai〉 and B = DrΠn
i=1〈bi〉, where m = d(A) and n = d(B).

For 1 ≤ i ≤ m and 1 ≤ j ≤ n, the map fi, j : A→ B defined by ak 7→ bδk,i

j , where
δ is the Kronecker delta, can be extended to a homomorphism from A to B.
Furthermore { fi, j | 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a minimal generating set for Hom(A, B).
Thus Hom(A, B) � DrΠn

i=1 A is of rank d(A)d(B).

The latter remark becomes obvious when it is realised that A and B are vector spaces
over the field of p elements.

R 2.5. Let G be a finite nonabelian p-group such that Ω1(Z(G)) ≤ Φ(G).
If f ∈ Hom(G,Ω1(Z(G))) then the map σ f : G→G defined by x 7→ x f (x) is an
automorphism of order p. In addition, if ker( f ) ∈M (G) then σ f acts trivially on a
maximal subgroup of G.

3. Proofs of the main results

Let Z?
2 (G)/Z(G) = Ω1(Z2(G)/Z(G)). In the following lemmas we derive some

properties of Z?
2 (G).

L 3.1. If G is a finite p-group, then [Z?
2 (G), Φ(G)] = 1.

P. This follows immediately from Remark 2.1. �

L 3.2. Let H ≤G and a ∈ Z?
2 (G). Then the map Hϕa : H→Ω1(Z(G)), given by

h 7→ [h, a], for h ∈ H, is a homomorphism. Also, the map

Hϕ : Z?
2 (G) −→ Hom(H,Ω1(Z(G)),

defined by a 7→ Hϕa, for a ∈ Z?
2 (G), is a homomorphism and ker(Hϕ) = Z?

2 (G) ∩CG(H).

P. This is straightforward. �

The following propositions relate Z?
2 (G) to the automorphisms of order p which act

trivially on a maximal subgroup of G.

P 3.3. Let p be an odd prime and G be a finite nonabelian p-group such that
Z(G) is cyclic and Z?

2 (G)/Z(G) is not cyclic. Then G has a noncentral automorphism
of order p leaving a maximal subgroup of G elementwise fixed.

P. By hypothesis, Z?
2 (G)/Z(G) = 〈aZ(G)〉 × 〈bZ(G)〉 × L/Z(G), for some a, b ∈

Z?
2 (G) \ Z(G) and L ≤ Z?

2 (G). Since Z(G) is cyclic, we may assume that bp = api j,
for some integers i, j. Let u = bapi−1 j, M = CG(u) and Gϕu be the homomorphism given
in Lemma 3.2. Then it follows that M = ker(Gϕu) ∈M (G). Now let g ∈G \ M. Since
u is an element of order p in Z?

2 (G) \ Z(G) and (gu)p = gp, the result follows from
Remark 2.2. �
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P 3.4. Let G be a finite nonabelian p-group and H ≤G. If

d(Z?
2 (G)/Z?

2 (G) ∩CG(H)) , d(H)d(Z(G)),

then G has a central noninner automorphism of order p which acts trivially on a
maximal subgroup of G.

P. By a well-known argument (or applying Remark 2.2), we may assume that
Z(G) ≤ Φ(G). Now, let Hϕ be the homomorphism given in Lemma 3.2. Then

ker(Hϕ) =
Z?

2 (G)

Z?
2 (G) ∩CG(H)

.

By hypothesis, H � Φ(G) and Hϕ is not an epimorphism. Thus for some 1 ≤ i ≤ d(H)
and 1 ≤ j ≤ d(Z(G)), fi, j < Im(ϕ), where fi, j is as in Remark 2.4. If necessary, extend
{x1, . . . , xs} to a minimal generating set {x1, . . . , xs, . . . , xd} of G. For 1 ≤ k ≤ d, set

f (xk) =

{
fi, j(xk) 1 ≤ k ≤ s,
1 s < k ≤ d.

Then f determines an element of Hom(G,Ω1(Z(G))). By Remark 2.5, σ f is an auto-
morphism of G of order p that fixes a maximal subgroup of G elementwise. If σ f = θa

is inner, then one must have a ∈ Z?
2 (G). Thus for x ∈ H, σ f (x) = θa(x) and hence

fi, j(x) = x−1σ f (x) = [x, a] = ϕa(x).

This means that fi, j ∈ Im(ϕ), a contradiction. Therefore σ f is noninner and the result
follows. �

P 3.5. Let p be a prime and G be a finite p-group. If CG(Z?
2 (G)) , Φ(G),

then G has a central noninner automorphism of order p leaving a maximal subgroup
of G elementwise fixed.

P. Assume that G is a counterexample to the theorem. Let M ∈M (G) and
g ∈G \ M. Let u be an element of order p in Z(G) ∩ M. Then by Remark 2.2 the map
α given by g 7→ gu and m 7→ m, for all m ∈ M, can be extended to an automorphism
of order p that leaves M elementwise fixed. By assumption α = θxM

, for some
xM ∈G. Therefore xM ∈ Z?

2 (G) and M = CG(xM). By Lemma 3.1, Φ(G) ≤CG(Z?
2 (G)).

Therefore

Φ(G) ≤CG(Z?
2 (G)) ≤

⋂
M∈M(G)

CG(xM) =
⋂

M∈M(G)

M = Φ(G),

and the result follows. �
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S P. Let G be a counterexample to the theorem. For x ∈CG(Z?
2 (G)), let

H = 〈x〉. Then it follows from Proposition 3.4, that x ∈ Φ(G). Therefore CG(Z?
2 (G)) ≤

Φ(G). Now the result follows from Lemma 3.1. �

P 3.6. Let p be a prime and G be a finite p-group of class 2. If either p > 2
or Z(G) is not cyclic then Aut(G) contains a noninner automorphism of order p leaving
a maximal subgroup of G elementwise fixed. In addition, if Z(G) is not cyclic, then the
noninner automorphism can be taken to be central.

P. Let G be a counterexample to the proposition. By Theorem 3.5, CG(Z?
2 (G)) =

Φ(G). Thus Z(G) ≤ Φ(G) and since G is of class 2, one has d(Z?
2 (G)/Z(G)) =

d(G/Z(G)) = d(G). Now if d(Z(G)) > 1, then the result follows from Proposition 3.4,
and if d(Z(G)) = 1 and p > 2, then Proposition 3.3 completes the proof. �

Theorem 3.6 does not hold for 2-groups of class 2 in general. Indeed, there are
examples of groups of class 2 in which every automorphism of order two fixing Φ(G)
elementwise is inner [1, 11].

The following result improves [11, Part (1) of Theorem].

P 3.7. Let p be a prime and G be a finite p-group such that Z?
2 (G) is not

abelian. If p is odd then G has a noninner automorphism of order p leaving a maximal
subgroup of G elementwise fixed, and if p = 2 then G has a noninner automorphism of
order two leaving the Frattini subgroup of G elementwise fixed.

The proof of Proposition 3.7 requires the following preliminary fact. Recall that
a finite nonabelian p-group, all of whose maximal subgroups are abelian, is called a
minimal nonabelian p-group or Rédei p-group.

R 3.8. Let G be a Rédei p-group. If p is odd then G has a noninner
automorphism of order p leaving a maximal subgroup of G elementwise fixed, and
if p = 2 then G has a noninner automorphism of order p leaving Φ(G) elementwise
fixed. The former follows from Theorem 3.6, since Rédei p-groups have nilpotency
class 2, and the latter has been proved by using the classification of Rédei 2-groups
[5, Remark 3].

P  P 3.7. Assume that G is a counterexample of minimal order to the
proposition.

First we prove that Z?
2 (G) is not cyclic. Suppose to the contrary that Z?

2 (G) = 〈u〉,
for some u ∈ Z?

2 (G). If x, y ∈ Z?
2 (G), then x = uia and y = u jb for some i, j ∈ N and

a, b ∈ Φ(G) ∩ Z?
2 (G). Now it follows from Lemma 3.1 that [x, y] = 1. But this means

that Z?
2 (G) is abelian, a contradiction.

Then, by Proposition 3.4,

d(Z?
2 (G)/Z?

2 (G) ∩CG(Z?
2 (G))) = d(Z?

2 (G))d(Z(G));

and by Proposition 3.5, CG(Z?
2 (G)) = Φ(G). Therefore Z(G) is cyclic.
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Next, suppose that a, b ∈ Z?
2 (G) such that [a, b] , 1. Let K = 〈a, b〉 and L = CG(K).

Note that [K,G] = K′ = Ω1(Z(G)) = 〈[a, b]〉. Hence, if x ∈G, then [a, x] = [a, b]s

and [b, x] = [a, b]t, for some integers s, t. Thus, [a, b−sat x] = 1 and [b, b−sat x] = 1.
Therefore b−sat x ∈CG(K) and it follows that G is the central product of K and L.
Moreover, K is a Rédei p-group. Hence, by Remark 3.8, K �G.

Finally, if p is odd, then by assumption K has a noninner automorphism α of
order p that acts trivially on a maximal subgroup M of K. By Remark 2.3, α can
be extended to a noninner automorphism of G of order p that fixes ML. Since
Z(K) = 〈[a, b], ap, bp〉 = Φ(K), we have K ∩ L = Z(K) = Φ(K) = M ∩ L and

|G|
|ML|

=
|K||L|/|K ∩ L|
|M||L|/|M ∩ L|

=
|K|
|M|

= p.

Therefore ML ∈M (G), a contradiction. Also, if p = 2, then a similar argument gives
a contradiction. �

P  T 1.1. This follows immediately form Propositions 3.5 and 3.7. �

To prove Theorem 1.2, we use the following observation.

L 3.9. If G1 belongs to G ∗p \ G
∗∗
p , then so does G1 ×G2, for all G2 ∈ G ∗p .

P. The result follows immediately from the following elementary facts. Let G1

and G2 be two finite p-groups. Let H1 ≤G1 and H2 ≤G2. Set G = G1 ×G2 and
H = H1 × H2. Then Φ(G) = Φ(G1) × Φ(G2) and CG(H) = CG1 (H1) ×CG2 (H2). �

P  T 1.2. Let G ∈ G ∗∗p . Then by Lemma 3.1, Z?
2 (G) ≤ Z(Φ(G)).

Therefore,
Φ(G) = CG(Z?

2 (G)) ≥CG(Z(Φ(G))) ≥ Φ(G).

This proves the first part of the theorem. For the second part, by Lemma 3.9 it suffices
to show that for every prime p, G ∗p \ G

∗∗
p , ∅. First, assume that p > 3 and let G be a

group with the following power-commutator presentation:

G = Pc〈g1, g2, g3, g4, g5|g
p
1 = gp

2 = gp
3 = gp

4 = gp
5 = 1,

g3 = [g2, g1], g4 = [g3, g1], g5 = [g4, g1],

[g5, g1] = 1, [g3, g2] = g5, [g4, g2] = 1, [g5, g2] = 1

[g4, g3] = 1, [g5, g3] = 1, [g5, g4] = 1〉,

To show the consistency of this presentation, it suffices to check that for each of the
following pairs of test words the collections of both words coincide (see [15, page 424]
and [4, Lemma 2.1]).

(i) (gkg j)gi and gk(g jgi), for 1 ≤ i < j < k ≤ 5,
(ii) gi and gp−1

j (g jgi), for 1 ≤ i < j ≤ 5,

(iii) g j and (g jgi)g
p−1
i , for 1 ≤ i < j ≤ 5.
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Checking (i) is straightforward and one may use induction to check (ii) and (iii).
For instance, by induction on i, we get g2gi

1 = (g2g1)gi−1
1 = gi

1g2gi
3gi(i−1)/2

4 gi(i−1)(i−2)/6
5 .

Therefore the collection of (g2g1)gp−1
1 coincides with g2.

Now the consistency of the presentation implies that G is of order p5 and class 4.
Thus G is of maximal class. Let Z2(G)/Z(G) = 〈uZ(G)〉, for some u ∈ Z2(G). Then
by an easy argument as in the proof of Proposition 3.3, CG(Z?

2 (G)) = CG(u) , Φ(G).
On the other hand, Φ(G) = G′ is abelian and CG(Z(Φ(G))) = Φ(G). Therefore,
G ∈ G ∗p \ G

∗∗
p , ∅.

Now suppose that p ≤ 3. We use the following code in GAP [6] to complete the
proof in this case.

f:=function(p,n)

local k,q,g,u,v,t;

k:=NumberSmallGroups(pˆn);

q:=0;

for j in [1..k] do

g:=SmallGroup(pˆn,j);

z:=Center(g);

u:=Center(FactorGroup(g,z));

v:= Omega(u,p);

map:=NaturalHomomorphismByNormalSubgroup( g,z );

w:=PreImagesSet(map,v);

phi:=FrattiniSubgroup(g);

if Centralizer(g,w)<> phi and

Centralizer(g,Center(phi))=phi

then q:=q+1; break;

fi;

od;

return(q);

end;

This code accepts prime p and positive integer n. Then it returns 1 if there exists a
group G of order pn in the GAP small groups library such that G ∈ G ∗p \ G

∗∗
p , otherwise

it returns 0. We see that f(2,7)=1 and f(3,5)=1, which completes the proof of the
theorem. �

We end the paper by answering the natural question that arises here: ‘Is there any
finite p-group of class two in G ∗p \ G

∗∗
p ?’

P 3.10. Let G be a finite nonabelian p-group of class 2. Then G ∈ G ∗p if and
only if G ∈ G ∗∗p .

P. By Theorem 1.2, it is enough to prove the ‘only if’ part. In fact we prove that
if G ∈ G ∗p is of class 2, then Z?

2 (G) = Z(Φ(G)). Suppose that G is a finite p-group of
class 2 such that CG(Z(Φ(G)) = Φ(G). Then CG(Φ(G)) = Z(Φ(G)) and it follows from
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Lemma 3.1 that Z?
2 (G) ≤ Z(Φ(G)). Now let a ∈ Z(Φ(G)). Thus 1 = [a, xp] = [ap, x],

for every x ∈G. Therefore ap ∈ Z(G) which means that a ∈ Z?
2 (G). Hence Z(Φ(G)) ≤

Z?
2 (G), and the result follows. �
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