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Abstract

A long-standing conjecture asserts that every finite nonabelian p-group has a noninner automorphism of
order p. In this paper the verification of the conjecture is reduced to the case of p-groups G satisfying
Z5(G) £ Cg(Z3(G)) = D(G), where Z3(G) is the preimage of Q(Z,(G)/Z(G)) in G. This improves
Deaconescu and Silberberg’s reduction of the conjecture: if Co(Z(P(G))) # O(G), then G has a noninner
automorphism of order p leaving the Frattini subgroup of G elementwise fixed [ ‘Noninner automorphisms
of order p of finite p-groups’, J. Algebra 250 (2002), 283-287].
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1. Introduction

Let p be a prime and G be a finite nonabelian p-group. A longstanding conjecture
asserts that G has a noninner automorphism of order p [12, Problem 4.13]. This
conjecture is still open. In fact, the statement of the conjecture is a sharpened version
of a well-known and nontrivial property of finite p-groups that, with the exception of
groups of order p, they always have a noninner automorphism of p-power order [7].

The conjecture has been established for p-groups of class 2 and 3 [2, 3, 11], for
regular p-groups [13], for p-groups G in which G/Z(G) is powerful [1], for p-groups
G in which (G, Z(G)) is a Camina pair and p # 2 [9], for 2-groups with a cyclic
commutator subgroup [10], and for p-groups of order p™ and exponent p”~2 [14].
It is worth noting that most of the noninner automorphisms given in these results
leave either ®(G) or Z(G) elementwise fixed. Also, Deaconescu and Silberberg have
proved that if Cg(Z(®(G))) # ©(G), then G has a noninner automorphism of order p
leaving ®(G) elementwise fixed [5]. Hence, they have reduced the verification of the
conjecture to the degenerate case in which

Co(Z(D(G))) = (G). ()

The author gratefully acknowledges the moral and financial support of the University of Isfahan as well
as its Centre of Excellence for Mathematics. This research was in part supported by a grant from IPM
(No. 91050219).

© 2013 Australian Mathematical Publishing Association Inc. 0004-9727/2013 $16.00

202

https://doi.org/10.1017/S0004972713000403 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972713000403

[2] On noninner automorphisms 203

The main motivation of the present paper is to reduce the verification of the
conjecture further. In addition, our aim is to find a noninner automorphism of order p
which acts trivially on a maximal subgroup of G. Let Z; (G /Z(G) = Q1(Z:(G)/Z(G)),
where for a finite p-group H, Q(H)=<he€ H|h” =1). Our main results are as
follows.

THeoreM 1.1. Let p be a prime and G be a finite nonabelian p-group. If G fails to fulfil
the condition
Z3(G) £ C(Z3(G) = D(G), ()

then G has a noninner automorphism of order p leaving the Frattini subgroup of G
elementwise fixed. Moreover, if p is odd, then the noninner automorphism can be
taken such that it acts trivially on a maximal subgroup of G.

Theorem 1.1 reduces the verification of the conjecture to the case of finite p-groups
satisfying (+x). Let %p" and g; * denote the sets of all finite p-groups with the properties
() and (=), respectively. Then the following theorem holds.

Tueorem 1.2. For every prime p, 9, C9; and 9, \ 9" contains infinitely many
p-groups.

Therefore the result of this paper extends known classes of finite p-groups for which
the conjecture holds.

2. Preliminaries

Let G be a finite nonabelian p-group. By .#(G) we denote the set of all maximal
subgroups of G. If x€ G and H <G, then ¥ and H denote the coset x®(G) and the
quotient group H®(G)/P(G), respectively. The inner automorphism of G induced by
x is denoted by 6,. Also, we denote the direct product of groups G, G», . .., G,, by
DrIT’_, G;. Any unexplained notation is standard and follows that of [8]. We use the
following facts in the proofs.

RemMark 2.1. Letn €N, x, y € G and a € Z,(G).
° (xa)" = x"ad"[a, x](;).

[x*, a] =[x, a]" =[x, a"].

[x, ay] = [x, al[x, y].

Moreover, if a” € Z(G) then [a, ®(G)] = 1.

Remark 2.2. Let G be a finite p-group, M be a maximal subgroup of G and g € G \ M.
Let u € Z(M) such that (gu)? = gP. Then the map « given by g — gu and m — m, for
all m € M, can be extended to an automorphism of order |u| that acts trivially on M.

Remark 2.3 [5, Remark 4]. Let G be a central product of subgroups A and B; that is,
G =ABand [A, B] = 1. Suppose that @ € Aut(A) and 8 € Aut(B) agree on A N B. Then
a and B admit a common extension y € Aut(G). In particular, if A has a noninner
automorphism of order p which fixes Z(A), then G has a noninner automorphism of
order p which fixes Z(A) and B.
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ReMark 2.4. Let A and B be two elementary abelian finite p-groups. The set of all
homomorphisms from A to B, which is denoted by Hom(A, B), forms an elementary
abelian p-group by + operation (that is, (f + g)(a) = f(a)g(a) for f, g € Hom(A, B)
and a€A). Let A=DrlII (a;) and B =DrlII_ (b;), where m = d(A) and n =d(B).
For 1<i<m and 1<j<n, the map f;;:A— B defined by akHb(]s."‘i, where
6 is the Kronecker delta, can be extended to a homomorphism from A to B.
Furthermore {f; ;|1 <i<m, 1< j<n}is a minimal generating set for Hom(A, B).
Thus Hom(A, B) = DrII?_, A is of rank d(A)d(B).

The latter remark becomes obvious when it is realised that A and B are vector spaces
over the field of p elements.

RemArk 2.5. Let G be a finite nonabelian p-group such that Q;(Z(G)) < O(G).
If feHom(E,Ql(Z(G))) then the map o;:G — G defined by x~ xf(x) is an
automorphism of order p. In addition, if ker(f) € .# (G) then o acts trivially on a
maximal subgroup of G.

3. Proofs of the main results

Let Z3(G)/Z(G) = Q1(Z2(G)/Z(G)). In the following lemmas we derive some
properties of ZJ(G).
Lemwma 3.1. If G is a finite p-group, then [Z2*(G), O(G)] =1.
Proor. This follows immediately from Remark 2.1. O

Levmma 3.2. Let H< G and a € Z;(G). Then the map ¢, :H — Q,(Z(G)), given by
= [h, al, for h € H, is a homomorphism. Also, the map

# : Z3(G) — Hom(H, Q,(Z(G)),

defined by a v ¢, for a € Z3 (G), is a homomorphism and ker(,¢) = Z;(G) N Cg(H).
Proor. This is straightforward. O

The following propositions relate Z3(G) to the automorphisms of order p which act
trivially on a maximal subgroup of G.

Prorosition 3.3. Let p be an odd prime and G be a finite nonabelian p-group such that
Z(G) is cyclic and Z;(G)/Z(G) is not cyclic. Then G has a noncentral automorphism
of order p leaving a maximal subgroup of G elementwise fixed.

Proor. By hypothesis, Z; (G)/Z(G) =(aZ(G)) X (bZ(G)) X L/ Z(G), for some a,b e
Z3(G)\ Z(G) and L <Z3(G). Since Z(G) is cyclic, we may assume that b” = a’i,
for some integers i, j. Let u = bat"'i , M = Cg(u) and ¢, be the homomorphism given
in Lemma 3.2. Then it follows that M = ker(;¢,) € .# (G). Now let g € G\ M. Since

u is an element of order p in Z3(G) \ Z(G) and (gu)” = g”, the result follows from
Remark 2.2. O
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Prorosition 3.4. Let G be a finite nonabelian p-group and H < G. If
d(Z3(G)/Z3(G) N Cg(H)) # d(H)A(Z(G)),

then G has a central noninner automorphism of order p which acts trivially on a
maximal subgroup of G.

Proor. By a well-known argument (or applying Remark 2.2), we may assume that
Z(G) < ®(G). Now, let ;¢ be the homomorphism given in Lemma 3.2. Then

ker(,0) Z3(G)
T LG nCot)

By hypothesis, H £ ®(G) and ,¢ is not an epimorphism. Thus for some 1 <i < d(H)

and 1 < j <d(Z(G)), f;; & Im(p), where f;; is as in Remark 2.4. If necessary, extend

{x1, ..., x5} to a minimal generating set {xj, ..., Xy,...,xqs} of G. For 1 <k <d, set

fijGx) 1<k<s,

f(x_")z{1 s<k<d.

Then f determines an element of Hom(G, Q(Z(G))). By Remark 2.5, o is an auto-
morphism of G of order p that fixes a maximal subgroup of G elementwise. If o = 6,
is inner, then one must have a € Z}(G). Thus for x € H, o ¢(x) = 6,(x) and hence

£.i® = x7op(x) =[x, al = @, (%).

This means that f; ; € Im(¢), a contradiction. Therefore o is noninner and the result
follows. o

ProposiTiON 3.5. Let p be a prime and G be a finite p-group. If Co(Z}(G)) # (G),
then G has a central noninner automorphism of order p leaving a maximal subgroup
of G elementwise fixed.

Proor. Assume that G is a counterexample to the theorem. Let M € .#(G) and
g€ G\ M. Let u be an element of order p in Z(G) N M. Then by Remark 2.2 the map
a given by g — gu and m +— m, for all m € M, can be extended to an automorphism
of order p that leaves M elementwise fixed. By assumption a =6, , for some
x,; € G. Therefore x,, € Zz*(G) and M = Cs(x,). By Lemma 3.1, ®(G) < CG(Z;‘(G)).
Therefore

(G) < CeZ3@) < () Cotm)= (] M=),

Me #(G) Me #(G)

and the result follows. m]
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Seconp Proor. Let G be a counterexample to the theorem. For x € Cs(Z3(G)), let
H = (x). Then it follows from Proposition 3.4, that x € ®(G). Therefore CG(Z; (G) <
®(G). Now the result follows from Lemma 3.1. O

ProrosiTiON 3.6. Let p be a prime and G be a finite p-group of class 2. If either p > 2
or Z(G) is not cyclic then Aut(G) contains a noninner automorphism of order p leaving
a maximal subgroup of G elementwise fixed. In addition, if Z(G) is not cyclic, then the
noninner automorphism can be taken to be central.

Proor. Let G be a counterexample to the proposition. By Theorem 3.5, C(Z3(G)) =
®(G). Thus Z(G) < ®(G) and since G is of class 2, one has d(Z; (G/Z(G)) =
d(G/Z(G)) = d(G). Now if d(Z(G)) > 1, then the result follows from Proposition 3.4,
and if d(Z(G)) = 1 and p > 2, then Proposition 3.3 completes the proof. O

Theorem 3.6 does not hold for 2-groups of class 2 in general. Indeed, there are
examples of groups of class 2 in which every automorphism of order two fixing ®(G)
elementwise is inner [1, 11].

The following result improves [11, Part (1) of Theorem].

ProposiTion 3.7. Let p be a prime and G be a finite p-group such that Z5(G) is not
abelian. If p is odd then G has a noninner automorphism of order p leaving a maximal
subgroup of G elementwise fixed, and if p = 2 then G has a noninner automorphism of
order two leaving the Frattini subgroup of G elementwise fixed.

The proof of Proposition 3.7 requires the following preliminary fact. Recall that
a finite nonabelian p-group, all of whose maximal subgroups are abelian, is called a
minimal nonabelian p-group or Rédei p-group.

Remark 3.8. Let G be a Rédei p-group. If p is odd then G has a noninner
automorphism of order p leaving a maximal subgroup of G elementwise fixed, and
if p =2 then G has a noninner automorphism of order p leaving ®(G) elementwise
fixed. The former follows from Theorem 3.6, since Rédei p-groups have nilpotency
class 2, and the latter has been proved by using the classification of Rédei 2-groups
[5, Remark 3].

Proor orF ProposiTiON 3.7. Assume that G is a counterexample of minimal order to the
proposition.

First we prove that ZJ(G) is not cyclic. Suppose to the contrary that Z3(G) = (u),
for some u € Z3(G). If x,y € Z;(G), then x =u'a and y = u/b for some i, j€ N and
a,bedG)N Z; (G). Now it follows from Lemma 3.1 that [x, y] = 1. But this means
that Z}(G) is abelian, a contradiction.

Then, by Proposition 3.4,

d(Z3(6)/Z3(G) N C(Z(G))) = d(Z5 (G)A(Z(G));

and by Proposition 3.5, Cg(Z;(G)) = ®(G). Therefore Z(G) is cyclic.
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Next, suppose that a, b € Z3(G) such that [a, b] # 1. Let K = (a, b) and L = C5(K).
Note that [K, G] =K' = Q,(Z(G)) = ([a, b]). Hence, if x€ G, then [a, x] = [a, b]*
and [b, x] = [a, b]', for some integers s,t. Thus, [a, b~*a’x] =1 and [b, b~*a’x] = 1.
Therefore b*a’x € C5(K) and it follows that G is the central product of K and L.
Moreover, K is a Rédei p-group. Hence, by Remark 3.8, K £ G.

Finally, if p is odd, then by assumption K has a noninner automorphism @ of
order p that acts trivially on a maximal subgroup M of K. By Remark 2.3, @ can
be extended to a noninner automorphism of G of order p that fixes ML. Since
Z(K)={la, bl,a”, b’y = D(K), we have K N L = Z(K) = D(K) = M N L and

Gl _ KIL/KaL K| _
ML~ IMILI/IM AL~ M|

Therefore ML € .# (G), a contradiction. Also, if p = 2, then a similar argument gives

a contradiction. O

Proor or THeEorEM 1.1. This follows immediately form Propositions 3.5 and 3.7. O
To prove Theorem 1.2, we use the following observation.

Lemma 3.9. If G belongs to g];“ \ g,j‘*, then so does G X G», for all G, € g;

Proor. The result follows immediately from the following elementary facts. Let G,
and G, be two finite p-groups. Let H; <G, and H; < G,. Set G =G| X G, and

H = H, x H. Then ®(G) = ®(G) x D(G,) and Cg(H) = Cg,(Hy) x Cg, (Ha). o
Proor or Tueorem 1.2. Let Ge€%,*. Then by Lemma 3.1, Z}(G) < Z(®(G)).
Therefore,

D(G) = C6(Z3(G)) 2 Co(Z(D(G))) = D(G).

This proves the first part of the theorem. For the second part, by Lemma 3.9 it suffices
to show that for every prime p, ¢4, \ ¢, # @. First, assume that p >3 and let G be a
group with the following power-commutator presentation:

G =Pc(g1,82.83.84- 8518V =85 =85 =g, =85 = 1,
83 =182, 811, g4 =183, 811, &5 = [84. 811,
(85, 811 =1, [g3, 821 =85, [84,821=1, [g5, 821 =1
(g4, 831 =1, [g5,831=1, [gs, 841 = 1),
To show the consistency of this presentation, it suffices to check that for each of the

following pairs of test words the collections of both words coincide (see [15, page 424]
and [4, Lemma 2.1]).

() (grgj)gi and gr(g;gi), for 1 <i< j<k<5,
(ii) g and g5 (g;g0), for 1 <i<j<5,
(i) g;and (g;g)g’ " for1<i<j<5.
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Checking (i) is straightforward and one may use induction to check (ii) and (iii).
For instance, by induction on i, we get g,g" = (281)8) ' = g gzgggif’*l)/ 2 ’5('7])(’72)/ 6,
Therefore the collection of (gggl)g’l7 ! coincides with 2.

Now the consistency of the presentation implies that G is of order p> and class 4.
Thus G is of maximal class. Let Z,(G)/Z(G) = (uZ(G)), for some u € Z,(G). Then
by an easy argument as in the proof of Proposition 3.3, C6(Z;(G)) = Cg(u) # ©(G).
On the other hand, ®(G) =G’ is abelian and Cg(Z(®(G))) = ®(G). Therefore,
Gdﬁ\%ﬁi&

Now suppose that p < 3. We use the following code in GAP [6] to complete the
proof in this case.

f:=function(p,n)
local k,q,g,u,v,t;
k:=NumberSmallGroups(p "n);
q:=0;
for j in [1..k] do
g:=SmallGroup(p’°n,j);
z:=Center(g);
u:=Center(FactorGroup(g,z));
v:= Omega(u,p);
map :=NaturalHomomorphismByNormalSubgroup( g,z );
w:=PreImagesSet (map,Vv);
phi:=FrattiniSubgroup(g);
if Centralizer(g,w)<> phi and
Centralizer(g,Center (phi))=phi
then q:=q+1; break;
fi;
od;
return(q);
end;

This code accepts prime p and positive integer n. Then it returns 1 if there exists a
group G of order p” in the GAP small groups library such that G € g; \ g]j‘*, otherwise
it returns 0. We see that £(2,7)=1 and £(3,5)=1, which completes the proof of the
theorem. O

We end the paper by answering the natural question that arises here: ‘Is there any
finite p-group of class two in 4, \ 47’

PropositioN 3.10. Let G be a finite nonabelian p-group of class 2. Then G € %; if and
only if G € 4.

Proor. By Theorem 1.2, it is enough to prove the ‘only if” part. In fact we prove that
if Ge 54;‘ is of class 2, then Z3(G) = Z(®(G)). Suppose that G is a finite p-group of
class 2 such that C(Z(®(G)) = ©(G). Then Co(P(G)) = Z(P(G)) and it follows from
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Lemma 3.1 that ZJ(G) < Z(®(G)). Now let a € Z(D(G)). Thus 1 = [a, x"] = [a”, x],
for every x € G. Therefore a” € Z(G) which means that a € Z3(G). Hence Z(®(G)) <
Z5(G), and the result follows. m|
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