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This paper summarizes the results of an experimental program at Caltech wherein
magnetohydrodynamically driven plasma jets are created and diagnosed. The
theory modelling these jets, the main experimental results and their relevance to
astrophysical jets are presented. The model explains how the jets are driven and
why they self-collimate. Characteristic kink and Rayleigh–Taylor instabilities are
shown to occur and the ramifications of these instabilities are discussed. Extending
the experimental results to the astrophysical situation reveals a shortcoming in
ideal magnetohydrodynamics (MHD) that must be remedied by replacing the ideal
MHD Ohm’s law by the generalized Ohm’s law. It is shown that when the generalized
Ohm’s law is used and the consequences of weak ionization are taken into account,
an accretion disk behaves much like the electrodes, mass source and power supply
used in the experiment.
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1. Introduction
Strong, collimated, distinct, continuous flows of plasmas known as astrophysical

jets have been observed in various astrophysical contexts over the past century and it
is now generally believed that astrophysical jets are driven by magnetohydrodynamic
(MHD) forces (Pudritz, Hardcastle & Gabuzda 2012). As noted by Livio (2011),
these jets exist over an enormous range of parameters and are phenomenologically
associated with accretion disks. Astrophysical jets can be non-relativistic or relativistic.
Jets having dynamics and morphology analogous to non-relativistic astrophysical jets
can be created in laboratory experiments and these experiments provide useful insight
regarding actual astrophysical jets. The claim that a laboratory experiment has any
relevance at all to astrophysical jets might at first sight seem unlikely because the
characteristic length and time scales of laboratory experiments are approximately
twenty orders of magnitude smaller than those of actual astrophysical jets. However,
because the MHD equations have no intrinsic scale, these equations describe both
laboratory and astrophysical jets and, as shown by Ryutov, Drake & Remington
(2000) and by Ryutov et al. (2001), laboratory experiments can be readily scaled to
astrophysical situations to the extent that both are described by MHD.

There are several motivations for studying laboratory experiments that can be
scaled to astrophysical jets. First and foremost, the laboratory experiments provide
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an important test of the validity of the MHD description of astrophysical jets.
Second, the laboratory experiments can reveal phenomena such as kinking and
Rayleigh–Taylor instability that may occur in actual astrophysical jets. Third, the
laboratory experiments can be used to test the validity of MHD codes used to
describe actual astrophysical jets and reveal shortcomings or errors in these codes.
Fourth, the laboratory experiments can show the transitions to certain types of
non-MHD behaviour. Fifth, parameters can be varied in laboratory plasmas to test
the predictions of theoretical models. Sixth, the time scale of laboratory experiments
is short so that dynamics can be easily followed whereas following the dynamics of
actual astrophysical jets can take years, decades or even longer. Finally, the laboratory
experiments can in principle be fully diagnosed so that complete understanding might
be obtained whereas the diagnostics of actual astrophysical jets are limited so many
essential quantities such as the internal magnetic field structure and density profile
are poorly known. Laboratory experiments are relatively inexpensive compared to
advanced telescopes and spacecraft so a great deal of relevant information and
understanding of underlying physics can be obtained with modest resources.

An important feature of experiments is the element of discovery as distinct from
the validation of previously existing models. When the experiments started, it was not
realized what they would reveal but, as will be shown in this paper, the laboratory
experiments have provided unanticipated new insights into the launching, collimation
and stability of non-relativistic astrophysical jets and have motivated new models.
These show that the jet is comprised of a launching region, a main column and a
tip and that different physics dominates in these three regions so the problem is
heterogeneous rather than homogeneous. The observations of jet stability have shown
existence of primary, secondary and possibly tertiary types of instability where each
type drives the next and these observations have shown certain types of coupling
between MHD and non-MHD regimes.

Because of the huge difference in scale between laboratory experiments and
astrophysical jets, laboratory experiments themselves can have very different scales
and very different technologies. Three different approaches with three different
associated scales and technologies have been used to create laboratory versions of
astrophysical jets. These approaches originated from technologies developed for other
purposes, namely spheromaks, Z-pinches and laser fusion. The spheromak-based
approach has been used at Caltech (Hsu & Bellan 2002) and has a nominal length
scale of 10 cm and a nominal time scale of 5 µs; the Z-pinch approach has been
used at Imperial College (Lebedev et al. 2005) and has a nominal length scale of
0.5 cm and a nominal time scale of 0.1 µs; the laser approach at the Laboratoire
d’Utilisation des Lasers Intenses (LULI) (Abertazzi et al. 2014) has a nominal length
scale of 0.2 cm and a nominal time scale of 0.01 µs; the laser approach at the
University of Rochester (Li et al. 2016) has a nominal length scale of 0.5 cm and
a nominal time scale of 0.001 µs. There is thus a two to three order of magnitude
difference between the parameters of these experiments, but this difference pales in
comparison to the approximately twenty orders of magnitude difference they all have
relative to actual astrophysical jets. Besides differing in time and length scales, the
three different approaches differ in how magnetic fields are generated, the magnitude
of the magnetic field, whether the magnetic fields are poloidal, toroidal or both, the
type of diagnostics used, how often the experiment can be operated and the plasma
density and temperature. The Caltech experiment has both toroidal and poloidal
magnetic fields, can be internally probed, has a well-defined changing morphology
and the plasma can be created non-destructively once every two minutes so it is
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Experiments relevant to astrophysical jets 3

FIGURE 1. Sketch showing composition of an MHD-driven plasma jet. The jet has a
poloidal magnetic field (blue line), a toroidal magnetic field (red circles), plasma (orange),
a mass source (blue box) and a current source driving poloidal current (green line). The
jet is divided into a main column which is long, slightly flaring and so nearly straight,
and a tip region where the poloidal magnetic field has strong curvature.

possible to have large numbers of plasma shots. The Z-pinch approach at Imperial
College has a toroidal magnetic field but no poloidal field and has X-ray imaging
rather than probes. The University of Rochester laser experiment has a self-generated
magnetic field which is assumed to contain poloidal and toroidal components. The
LULI laser experiment has an externally imposed poloidal magnetic field. The last
stage of the apparatus is destroyed on each shot of the Z-pinch experiment and on
both types of laser experiments so the number of shots is limited to at most a few
per day.

This paper will focus on the Caltech experiment but the concepts to be described
are also relevant to the other experiments and to actual astrophysical jets. The generic
layout of the Caltech laboratory jet and presumably of an astrophysical jet is shown in
figure 1. The Caltech experiment takes place in a 1.4 m diameter, 2 m long vacuum
chamber sketched in figure 2. The jet in figure 2 emanates from the concentric set
of electrodes located at the far right end of the chamber. The electrodes consist of a
20 cm diameter copper disk surrounded by a coplanar 50 cm diameter copper annulus
with a 6 mm gap between the disk and the annulus so that the disk and annulus
can be at different electrostatic potentials. A coil coaxial with the disk and annulus
and located just behind the gap generates a dipole-like magnetic field that links the
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FIGURE 2. Sketch of experimental layout showing disk and annulus electrodes, poloidal
magnetic field produced by coil behind gap between disk and and annulus and schematic
of the power supply that provides high voltage for breakdown and then drives the jet
current. The eight gas holes on each of the disk and annulus are shown as black dots.

disk to the annulus; this magnetic field corresponds to the blue line labelled ‘poloidal
magnetic field’ in figure 1. Figure 3 from You, Yun & Bellan (2005) shows the typical
formation, propagation and kink destabilization of a jet formed in this experiment
(note that vertically upward motion in figure 3 corresponds to right-to-left motion in
figure 2).

Section 2 presents a theoretical model of this jet using two complementary
descriptions of the magnetic force, where the first emphasizes the importance of
scalar flux functions and the second emphasizes the importance of magnetic field
line curvature and gradients of field strength. Section 3 describes in detail the set-up
of the experiment sketched in figure 2 that creates laboratory-scale MHD-driven
jets. Section 4 describes measurements of the velocity of these jets. Section 5
describes the kink instability of these jets. Section 6 describes how kinking can
establish conditions for a Rayleigh–Taylor instability. Section 7 describes several
consequences of the Rayleigh–Taylor instability. Section 8 summarizes the results of
a numerical simulation of the jet experiment. Section 9 describes an experiment where
a jet collides with a target cloud, slows down and becomes compressed. Section 10
discusses how the laboratory set-up for launching an MHD jet needs to be replaced by
an equivalently effective launching scheme for an actual astrophysical jet. Section 11
provides a brief summary. Appendix A provides a brief discussion of the experiments
at Imperial College, the University of Rochester and at LULI with certain differences
from and similarities to the Caltech experiment identified.
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FIGURE 3. Typical jet formation and propagation in Caltech experiment. [Reprinted figure
with permission from You, Yun and Bellan, Physical Review Letters 95, 045002 (2005).
Copyright 2005 by the American Physical Society.]

2. Theory
2.1. Flux functions

The discussion will be confined to non-relativistic jets that are governed by ideal
MHD and that involve combined poloidal and toroidal magnetic fields. These jets
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involve the full set of ideal MHD equations, namely the equation of motion, induction
equation, continuity equation,

ρ
dU
dt
= J×B−∇P (2.1)

∂B
∂t
=∇× (U×B) (2.2)

∂ρ

∂t
+∇ · (ρU)= 0 (2.3)

and an equation of state that, depending on the physical circumstances, can be
adiabatic, isothermal or the result of a more detailed energy equation. Since (2.1)–(2.3)
have no intrinsic scale, they can be expressed in a dimensionless form and it is
this property that allows laboratory plasma experiments to be scaled to solar or
astrophysical regimes.

2.2. Scaling of laboratory experiments to astrophysical situations
The method for scaling was developed by Ryutov et al. (2000, 2001) and will
now be briefly summarized. A given situation (e.g. laboratory experiment or actual
astrophysical jet) is characterized by a reference mass density ρ0, a reference magnetic
field B0, a reference length L and a reference pressure P0 so that all lengths, mass
densities, magnetic fields and pressures are normalized to these reference quantities.
These reference quantities provide convenient units by which parameters can be
measured so when measured in terms of these reference quantities all parameters are
of order unity. The first two reference quantities define a reference Alfvén velocity
vA0 = B0/

√
µ0ρ0 which upon combination with the third reference quantity defines

a reference time τ = L/vA0. The last two reference quantities define a reference
β =µ0P0/B2

0. Using Ampere’s law (2.1) can be expressed as

ρ

(
∂U
∂t
+U · ∇U

)
=
(∇×B)
µ0

×B−∇P. (2.4)

By defining the normalized dimensionless quantities t̄= t/τ , ρ̄=ρ/ρ0, ∇̄=L∇, B̄=
B/B0, Ū=U/vA0, equations (2.2), (2.3) and (2.4) can be expressed as

ρ̄

(
∂Ū
∂ t̄
+ Ū · ∇̄Ū

)
= (∇̄× B̄)× B̄− β∇̄P̄ (2.5)

∂B̄
∂ t̄
= ∇̄× (Ū× B̄) (2.6)

∂ρ̄

∂ t̄
+ ∇̄ · (ρ̄Ū)= 0. (2.7)

If a laboratory and an astrophysical plasma have the same β then (2.5)–(2.7) will be
identical for the two plasmas and so, if the normalized boundary and initial conditions
are the same for the laboratory and astrophysical plasmas, then the two plasmas will
evolve in identical ways. On denoting the laboratory plasma by ‘s’ for small and
the astrophysical plasma by ‘l’ for large, the scaling between the two plasmas is
determined from three parameters:

c1 =
Ls

Ll
, c2 =

ρ0s

ρ0l
, c3 =

P0s

P0l
. (2.8a−c)
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Since the two plasmas have the same β, it is seen that

β =
µ0P0s

B2
0s
=
µ0P0l

B2
0l

(2.9)

so

B0s = B0l

√
P0s

P0l
=
√

c3B0l. (2.10)

The reference Alfvén velocity of the laboratory plasma is

vA0s =
B0s
√
µ0ρ0s

=

√
c3B0l

√
µ0c2ρ0l

=

√
c3

c2
vA0l (2.11)

and the reference time of the laboratory plasma is

τs =
Ls

vA0s
=

c1Ll√
c3

c2
vA0l

= c1

√
c2

c3
τl. (2.12)

As an example of how this scaling can be implemented, suppose that a laboratory
plasma composed of hydrogen has a reference time τs = 1 µs (this does not mean
that the laboratory plasma lasts one 1 µs but rather that this is the convenient
unit by which time is measured), a reference length Ls = 10 cm, a reference
density ns = 1016 cm−3 and a reference temperature 2 eV. Suppose that a hydrogen
astrophysical jet has a reference density nl = 2 × 103 cm−3, a reference temperature
10 eV and a reference length 100 a.u., i.e. Ll = 1.5 × 1013 m. Using these relations
it is seen that c1 = 6.7 × 10−15, c2 = 5 × 1012 and c3 = 1012. Using (2.10), a 1 kG
magnetic field in the laboratory experiment would scale to a 1 mG magnetic field
in the astrophysical jet, a velocity of 50 km s−1 in the laboratory experiment would
scale to a velocity 112 km s−1 in the astrophysical jet and a time of 10 µs in the
laboratory experiment would scale to a time of 21 years for the astrophysical jet.
The reference quantities chosen for the laboratory experiment are nominal values
observed in the Caltech laboratory experiment and the scaled astrophysical jet time,
length, velocity, density, magnetic field and temperature are consistent in order of
magnitude with values reported in Wassell et al. (2006). Thus, to the extent that both
the laboratory and astrophysical jet plasmas are described by (2.5)–(2.7), they will
have the same behaviour when described in normalized quantities and the scaling
of laboratory and astrophysical quantities will be given by (2.8)–(2.12). A similar
scaling has been provided by Li et al. (2016) to show that the parameters of the
University of Rochester laser-driven jet experiment scale to the Crab Nebula.

2.3. Validity of scaling and of ideal MHD assumption
This scaling argument fails if (2.5)–(2.7) become invalid descriptions. This failure
will happen when terms that have been dropped to obtain these equations become
important. Situations where the equations become invalid descriptions include:

(i) The velocity approaches the speed of light. This is not an issue for laboratory
plasmas or for jets associated with protoplanetary disks as these jets have
velocities that are much less than 1 % of the speed of light.
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(ii) The Lundquist number S= µ0vA0L/η becomes so small as to be of order unity;
here η is the electrical resistivity. S is of the order of 102 for the laboratory
plasma and since the laboratory and astrophysical plasmas have similar velocities
and temperatures the main difference in the terms contributing to S is the length
L so the astrophysical jet has S∼ 1017. Since the term depending on S that was
dropped from (2.6) scales as 1/S, this term can certainly be omitted as all other
terms have been defined by choice of reference parameters to be of order unity.

(iii) The Hall term in the generalized Ohm’s law becomes important. This happens
when spatial gradients of the magnetic field have length scales that are smaller
than the ion skin depth di = c/ωpi. As will be discussed in § 7 the laboratory
plasma marginally satisfies the condition L�di but can transiently access regimes
where L< di in which case Hall terms become important. It is possible that this
also happens in certain astrophysical jets but di is many orders of magnitude too
small to be resolved by observations using foreseeable technology.

(iv) J/ne becomes large enough to become comparable to the thermal velocity or the
phase velocity of some plasma wave (e.g. acoustic, Alfvén) in which case kinetic
effects become important. The laboratory plasma generally has suitably small
J/ne to avoid this but situations can develop where the condition is violated.
This could also happen in certain astrophysical situations if sufficiently strong
localized magnetic field gradients developed. Extremely large J/ne would likely
result in production of energetic particles; this situation is outside the scope of
MHD. Large J/ne could destabilize kinetic modes in some situations and in other
situations would result in runaway electrons if ηJ exceeds the Dreicer electric
field (Dreicer 1959; Bellan 2006). The small J/ne assumption is marginally
satisfied in laboratory plasmas but can be violated in certain situations.

(v) Resistive effects become dominant. Ideal MHD means that Ohm’s law can be
written as E+U×B= 0 rather than as E+U×B= ηJ. Taking the curl of the
latter equation gives

−
∂B
∂t
+∇× (U×B)=

η

µ0
∇×∇×B (2.13)

so dropping the resistive term corresponds to assuming that ητ/µ0 � L2

which means that the characteristic time τ is much shorter than the time for
magnetic field to diffuse across the plasma. Because of the large scale lengths
in astrophysical problems this is easily satisfied. This constrains the duration of
the laboratory experiment to be short compared to the resistive diffusion time
µ0L2/η; thus, since η scales as T−3/2 the laboratory experiment should not be
too cold. Discarding the resistive term in (2.13) does not preclude the collision
mean free path from being smaller than the system size and so ideal MHD
does not require the plasma to be collisionless, only that events take place much
faster than the resistive diffusion time.

(vi) The plasma is so collisionless that the pressure is no longer isotropic. Ideal MHD
assumes there are sufficient collisions for the plasma pressure to be represented
by an isotropic scalar. As the collisionality is progressively reduced, plasma
regimes change in a sequence as follows: pressure becomes anisotropic so a
double adiabatic description is required (Chew, Goldberger & Low 1956), the
ion and electron temperatures become disconnected from each other and finally
the velocity distribution function becomes completely non-Maxwellian so the
concept of temperature ceases to exist.
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In summary, the laboratory plasma generally satisfies the assumptions required for
ideal MHD (enough collisions to make the pressure isotropic but not so many that
resistive diffusion causes unfreezing of the magnetic flux from the plasma, the Hall
term can be dropped, kinetic effects are unimportant). However, laboratory plasmas
can also access regimes where these assumptions are violated and so laboratory
plasmas can reveal information about the coupling between MHD and non-MHD
phenomena.

2.4. Relation to Taylor state and spheromaks
The reversed field pinch (RFP) is a toroidal magnetic device intended to confine a
plasma relevant to controlled thermonuclear fusion studies (Bodin 1990). RFP plasmas
had been routinely observed during the 1960s and early 1970s to spontaneously
self-organize into a simple well-defined state that could be modelled using Bessel
functions together with the assumption of zero hydrodynamic pressure. However,
it was not understood why this self-organization happened. Taylor (1974) argued
that self-organization takes place because instabilities cause a zero-pressure plasma
to seek a minimum-energy MHD equilibrium (i.e. a minimum of

∫
B2 d3r) while

simultaneously conserving magnetic helicity (i.e.
∫

A · B d3r). The quantity A is the
vector potential and magnetic helicity is a measure of flux linkages with each other
and also is related to twist. A similar argument had been provided earlier by Woltjer
(1958) for astrophysical contexts. The basis for the Woltjer–Taylor argument is that
a scale separation exists between the rates of dissipation of energy and of magnetic
helicity and if this scale separation is extreme, there is substantial energy dissipation
but negligible helicity dissipation. Although the energy dissipation is substantial, the
energy cannot decay to zero because energy depends on B2 so B would have to
vanish everywhere which would then cause the helicity to vanish. Thus, the system
will seek a minimum-energy state that conserves helicity. Minimizing energy while
conserving helicity can be expressed as a variational problem the solution of which
is

∇×B= λB, (2.14)

where λ is the smallest constant that satisfies imposed boundary conditions.
Equation (2.14) implies J×B= 0 and so is a force-free state. In cylindrical geometry
the components of (2.14) are

µ0Jr = λBr (2.15a)
µ0Jφ = λBφ (2.15b)
µ0Jz = λBz; (2.15c)

this decomposition will be used later. The parameter λ can be interpreted in several
ways: it can be considered an eigenvalue in (2.14), a measure of twist or as an
extensive variable conjugate to helicity that is analogous to temperature being an
extensive variable conjugate to heat in thermodynamics (Bellan 2000, 2018b). The
analysis leading to (2.14) involves presumption of a flux-conserving boundary which
is the property of a perfectly conducting wall. This flux-conserving property enables
setting to zero various terms that show up when integrating by parts to establish (2.14).
The solutions to this equation are in quite good agreement with a large number of
observed plasmas such as RFPs, spheromaks and solar corona loops. Spheromaks
are Taylor states confined by a bounding wall that has the topology of a spheroid
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(Rosenbluth & Bussac 1979; Jarboe 1994; Bellan 2000, 2018b); this is in contrast to
RFPs where the Taylor state is confined by a bounding wall that has the topology of
a toroid.

Integrating (2.14) over an arbitrary surface S gives∫
S

ds · ∇×B= λ
∫

S
ds ·B (2.16)

or
µ0I = λψ, (2.17)

where I and ψ are respectively the electric current and the magnetic flux passing
through the surface S. Equation (2.14) results from assuming a zero-pressure
equilibrium that has relaxed to its lowest-energy state while conserving magnetic
helicity. One type of system for creating spheromaks, the coaxial helicity injector,
has essentially the same topology as that sketched in figure 1 and so the formation
process of the spheromak using this system is closely related to astrophysical jets
(Bellan 2018b). To the extent that an astrophysical jet has low β (i.e. P small
compared to B2/2µ0) and has a twisted magnetic field (i.e. has magnetic helicity),
an astrophysical jet is closely related to a spheromak, the difference being that the
pressure is not exactly zero, the system is not in equilibrium but instead evolves in
time and poloidal magnetic field lines intercept a boundary (z= 0 plane in figure 1).
This close relation suggests that (2.17) should be relevant to a low β MHD jet.

A slightly less stringent situation is where (2.14) still holds but now λ is a function
of position. The divergence of (2.14) shows that B · ∇λ= 0 so λ would have to be
constant along a field line. Because λ is non-uniform, this situation is not quite a
minimum-energy state but will be close to a minimum-energy state if the gradient of
λ is not too large.

2.5. Relation to Lynden-Bell’s magnetic tower model
Lynden-Bell (2003) proposed a jet model called a magnetic tower. According to
this model the jet is a zero-pressure axisymmetric force-free plasma enveloped by
a finite-pressure medium having zero magnetic field. At the interface between the
force-free plasma and the external finite-pressure region there is a balance between
the internal magnetic pressure B2/2µ0 and the external hydrodynamic pressure.
The situation is then similar to that of a spheromak with the external field-free,
finite-pressure region playing the role of the perfectly conducting wall because in
both the spheromak and magnetic tower situations the magnetic field normal to
the interface vanishes. The magnetic tower is assumed to be in a quasi-equilibrium
such that it slowly expands in the axial direction into a region of lower external
pressure. The model to be discussed here differs from the magnetic tower by having
finite pressure in the jet, being dynamic rather than in equilibrium and not requiring
confinement by an external field-free medium. Similarities are that both the magnetic
tower and the model to be discussed here assume (2.17), both assume axisymmetry,
both have helical magnetic fields (i.e. both toroidal and poloidal magnetic fields exist)
and both have poloidal magnetic field intercepting the z = 0 plane as sketched in
figure 1. The relation of the model presented here to the magnetic tower model will
be further discussed at the end of § 2.7.
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2.6. Symmetry
The collimated nature of jets corresponds to their being axisymmetric (Bogovalov &
Tsinganos 1999; Vlahakis & Tsinganos 1999) so it is convenient to use a cylindrical
coordinate system {r, φ, z}. It is possible for exact axisymmetry to be violated, in
which case axisymmetry can be considered as a local property provided the deviation
from exact axisymmetry is not too large. In this case, the jet still has an axis but the
axis is not straight. An example of this deviation from axisymmetry occurs when the
jet kinks as discussed in § 5 or is arch shaped as discussed in Bellan (2003) and in
Stenson & Bellan (2012). When the jet axis deviates from being a straight line, the
coordinate z can be considered to be the distance along a line parallel to the jet axis,
φ can be considered to be the angle around this axis and r can be considered to be
a distance measured normal to the axis.

Axisymmetry provides important simplifying constraints on the theoretical description
and, in particular, shows that the magnetic field can be expressed as

B=Bpol +Btor, (2.18)

where the poloidal field is

Bpol =
1

2π
∇ψ ×∇φ (2.19)

and the toroidal field is
Btor =

µ0I
2π
∇φ. (2.20)

The poloidal flux ψ and the poloidal current I are defined as

ψ(r, z, t) =
∫ r

0
Bz(r′, z, t)2πr′ dr′ (2.21a)

I(r, z, t) =
∫ r

0
Jz(r′, z, t)2πr′ dr′. (2.21b)

Thus I and ψ are respectively the electric current and magnetic flux passing through
a circle of radius r at axial location z at time t. From Ampere’s law ∇×B=µ0J the
poloidal and toroidal current densities are

Jpol =
1

2π
∇I ×∇φ (2.22)

and

Jtor =−
r2

2πµ0

[
∇ ·

(
1
r2
∇ψ

)]
∇φ. (2.23)

2.7. Equation of motion in terms of flux functions
As shown in Bellan (2017, 2018a) by expanding the convective term U · ∇U on the
left-hand side of the MHD equation of motion (2.1) and also using (2.19), (2.20),
(2.22) and (2.23) to express the J×B term on the right-hand side, the radial, toroidal
and axial components of the MHD equation of motion can be expressed without
approximation as
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∂

∂t
(ρUr)+∇ · (ρUrU) =

1
4π2

(
−

1
µ0

∂ψ

∂r
∇ ·

(
1
r2
∇ψ

)
−
µ0I
r2

∂I
∂r

)
−
∂P
∂r
+
ρU2

φ

r
(2.24a)

∂

∂t
(ρrUφ)+∇ · (ρrUφU) =

1
4π2

(∇I ×∇ψ · ∇φ) (2.24b)

∂

∂t
(ρUz)+∇ · (ρUzU) =

1
4π2

(
−

1
µ0

∂ψ

∂z
∇ ·

(
1
r2
∇ψ

)
−
µ0I
r2

∂I
∂z

)
−
∂P
∂z
. (2.24c)

The radial equation, (2.24a), contains on its right-hand side the radial component
of J × B, the radial component of the pressure gradient and centrifugal force.
Equation (2.24b), the toroidal component of the equation of motion, contains on
its right-hand side only the toroidal component of J × B as axisymmetry prevents
the pressure gradient from having a toroidal component. Equation (2.24c), the axial
component of the equation of motion, contains on its right-hand side the axial
component of J × B and the axial component of the pressure gradient. The peculiar
form of the Laplacian-like term

∇ ·

(
1
r2
∇ψ

)
=

1
r2

(
r
∂

∂r

(
1
r
∂ψ

∂r

)
+
∂2ψ

∂z2

)
(2.25)

means that this term becomes relatively unimportant compared to the other terms if
ψ ∼ r2. This is for two reasons: first, the contribution involving r−1∂/∂r(r2) is a
constant so the next r derivative vanishes and second, because the jet by assumption
is very long, the dependence on z is weak.

Ideal MHD presumes that particles make many cyclotron orbits between collisions
in which case the microscopic particle behaviour is essentially governed by
single-particle Hamiltonian Lagrangian theory. This theory prescribes angular motion
in terms of the canonical angular momentum Pφ = mrvφ + qrAφ and shows that
because of the assumed axisymmetry, the canonical angular momentum of a particle
is an exact constant of the motion, i.e.

Pφ =mrvφ +
1

2π
qψ(r, z, t)= const. (2.26)

Here we have used Bpol = ∇ × ((2πr)−1ψφ̂) = ∇ × (Aφφ̂) to give ψ(r, z, t) =
2πrAφ(r, z, t). A zero-mass particle would thus have to stay on a surface of constant
poloidal flux. If finite particle mass is taken into account (2.26) implies that δPφ = 0
so

δ

(
mrvφ +

1
2π

qψ(r, z, t)
)
=mrδvφ +mvφδr+

q
2π

(
δr
∂ψ

∂r
+ δz

∂ψ

∂z
+ δt

∂ψ

∂t

)
= 0.

(2.27)
Since Faraday’s law implies

Eφ =−
∂Aφ
∂t
=−

1
2πr

∂ψ

∂t
(2.28)

and (2.19) gives

Br = −
1

2πr
∂ψ

∂z
(2.29a)

https://doi.org/10.1017/S002237781800079X Published online by Cambridge University Press

https://doi.org/10.1017/S002237781800079X


Experiments relevant to astrophysical jets 13

Bz =
1

2πr
∂ψ

∂r
(2.29b)

equation (2.27) can be expressed as

δvφ + φ̇δr− φ̂ · (r̂δr+ ẑδz)×
q
m

Bpol −
q
m
δtEφ = 0. (2.30)

The term containing Eφ results from motion of the flux surface and so for purposes
of calculating displacement from a flux surface, we may assume that the flux surface
is stationary so Eφ = 0. If a particle is assumed to be making cyclotron orbits with
superimposed particle drifts as dictated by guiding centre theory, then rφ̇ is of the
order of or smaller than the thermal velocity, as is δvφ . The maximum deviation that
a particle can make from its original position on a flux surface is then

(r̂δr+ ẑδz)max '
vT

qBpol/m
(2.31)

which is a Larmor radius calculated using the poloidal field only. If charged particles
cannot move more than a poloidal Larmor radius away from the poloidal flux surface
on which they originate, then it would be impossible to have a steady-state electric
current flowing perpendicular to poloidal flux surfaces. Thus, any steady-state electric
current must flow on a poloidal flux surface. When collisions are taken into account
it is seen that the perpendicular resistivity is much higher than the parallel resistivity,
showing that there is negligible current across flux surfaces since such a current would
be perpendicular to the magnetic field.

If the poloidal current flows on poloidal flux surfaces, then I = I(ψ) so ∇I =
(∂I/∂ψ)∇ψ in which case the right-hand side of (2.24b) vanishes. We note that if
the poloidal current were to flow across poloidal flux surfaces, then ∇I × ∇ψ · ∇φ
would be finite which would constitute a torque that changes the angular momentum
density ρrUφ . The confinement of both signs of particles to the vicinity of poloidal
flux surfaces means that there can be no electric current across poloidal flux surfaces;
this implies that ∇I×∇ψ · ∇φ must vanish in steady state. It is possible however to
have a transient finite ∇I × ∇ψ · ∇φ. Such a situation corresponds to the transient
current that results when particles make inward or outward transient displacements
from the poloidal flux surface. Because of the dependence on charge sign in (2.31),
ions and electrons displace in opposite directions and this corresponds to a transient
current normal to the flux surface. These transient currents provide a transient torque
that rotates the plasma by a finite amount so that the plasma twists up. This twisting
is in the same fashion as the twisting of the magnetic field when the poloidal current
is ramped up (Bellan 2003). This means that if the jet starts with Uφ = 0 it will have
Uφ = 0 at later times except for times when the current is changing and the amount
of field twist is changing.

The jet main column flows primarily in the z direction so Ur � Uz. Thus, in the
main column terms involving Ur, Uφ and ∇ · (r−2∇ψ) may be dropped. Furthermore,
all terms in (2.24b) vanish. Equation (2.24a) then reduces to the Bennett pinch relation

∂P
∂r
=−

1
4π2

(
µ0I
r2

∂I
∂r

)
, (2.32)

which is the balancing of the outward force from the pressure by the inward pinch
force −JzBφ . The pinching corresponds to the red circles in figure 1 behaving like
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14 P. M. Bellan

circular elastic bands trying to reduce their radii and so providing a radial inward
force. The simplest non-trivial situation where I= I(ψ) is where I is a linear function
of ψ and so it is convenient to assume that

µ0I = λψ, (2.33)

where λ is a constant having dimensions of inverse length. Equation (2.33) is then
similar to the self-organized Taylor state discussed in § 2.4, the difference being that
here β is not assumed to be zero and the configuration is not assumed to be in
equilibrium. From a mathematical point of view this means that (2.15a) and (2.15c)
are satisfied but not (2.15b) because to the extent that Bz is uniform, Jφ is zero and
to the extent that P is finite, Bφ is finite. As discussed in Lewis & Bellan (1990), for
reasons of mathematical regularity each of I and ψ at small r (i.e. near the jet axis)
must be proportional to r2 if the axial magnetic field and axial current density are
finite on axis. Thus, at small r (2.33) must be almost exactly true and not just the
simplest non-trivial situation.

The simplest non-trivial form for ψ in the jet main column is

ψ =ψ0
r2

a2
, (2.34)

where a is the jet radius; equation (2.29b) shows this form for ψ corresponds to a
uniform axial magnetic field in the jet main column. Equation (2.32) can then be
integrated to give

P=
λ2ψ2

0

4π2µ0a2

(
1−

r2

a2

)
. (2.35)

If a is allowed to have a weak dependence on z this generalizes to

P(r, z)=
λ2ψ2

0

4π2µ0a(z)2

(
1−

r2

a(z)2

)
. (2.36)

Comparison of (2.35) and (2.36) shows that if a does depend on z there will then
be a pressure gradient in the the z direction and ∂P/∂z will be proportional to ∂a/∂z.
The pressure gradient is such as to accelerate plasma axially from where a is small
to where a is large.

We now turn attention to (2.24c) and assume a quasi-steady behaviour so the term
containing ∂/∂t is small compared to the other terms. Because Ur�Uz in the main
column and ∇ · (r−2∇ψ) is small compared to the other terms, this equation reduces
to

∂

∂z

(
ρU2

z +
λ2ψ2

8π2µ0r2
+ P

)
= 0, (2.37)

where (2.33) has been used. Equation (2.37) is a generalized Bernoulli relation and
upon substituting (2.34) and (2.36) becomes

ρU2
z +

λ2ψ2
0

4π2µ0a(z)2

(
1−

r2

2a(z)2

)
= const. (2.38)

On the z axis where r = 0 the constant can be evaluated at z= 0 where Uz ' 0 and
a(z) is small and then also evaluated just before the jet tip at approximately z = l
where a(z) is large and Uz is large. This gives

(ρU2
z )r=0,z=l =

λ2ψ2
0

4π2µ0a(0)2
(2.39)
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so
(Uz)r=0,z=l =

µ0Ir=a(0),z=0

2πa(0)√µ0ρr=0,z=l
=

Bφ,r=a(0),z=0
√
µ0ρr=0,z=l

, (2.40)

which scales like an Alfvén velocity yet is not the local Alfvén velocity because
Bφ is not the entire magnetic field and furthermore Bφ is evaluated at a location
different from where the velocity is being determined. Equation (2.40) shows that the
jet velocity is linearly proportional to the poloidal current.

The constant in (2.38) will be smaller off the z-axis and so the general form of the
velocity will be

(Uz(r))z=l =
µ0Ir=a(0),z=0

2πa(0)√µ0ρr=0,z=l

(
1−

r2

2a(z)2

)
(2.41)

indicating there is a shearing of the axial velocity with the peak axial velocity located
on the z-axis. The axial gradient of the middle term in (2.37) corresponds to the
dominant part of the axial component of the J×B force, i.e. to JrBφ=−∂/∂z(B2

φ/2µ0)

since Bφ =µ0I/2πr and µ0I= λψ . Because ψ ∼ r2 this contribution to the axial force
vanishes on the z-axis so on the z-axis the axial force is entirely the result of the
axial pressure gradient. This axial force −∂/∂z(B2

φ/2µ0) is shown in figure 1 as the
red circles pushing up from where they are densely packed and so constituting an
axial upward force acting on the main column.

The expressions derived so far describe the jet main column. At the jet tip, the
poloidal field bends around so it is no longer appropriate to assume that ψ has a weak
dependence on z. This bending implies existence of a substantial radial magnetic field
Br =−(2πr)−1∂ψ/∂z. The suddenness of the bending implies a toroidal current Jφ =
µ−1

0 ∂Br/∂z. Both Br and Jφ are positive so they combine to give a retarding axial force
−JφBr. The bending of the poloidal field and the retarding force at the tip are sketched
in figure 1. This retarding force means that the jet tip velocity will be somewhat
slower than that of the jet main column so the jet main column continuously piles up
(stagnates) at the tip. An observer moving with the jet and located where the jet main
column is catching up with the tip would see a converging flow since the observer is
moving slower than the main column but faster than the tip. This flow convergence in
the jet frame produces a density pile-up. Since toroidal magnetic flux is frozen into
the plasma, there will also be a pile-up of the frozen-in toroidal magnetic flux, i.e. an
increase in the density of the toroidal magnetic flux. However, the density of toroidal
magnetic flux is just the toroidal field and so this stagnation will increase the local
toroidal magnetic field. Since the toroidal magnetic field is what produces the pinch
force, the stagnation will increase the pinch force and so tend to collimate the jet.
Thus, the jet is self-collimating and the collimation process is like a zipper acting on
the inner part of the poloidal field lines.

This argument for collimation can be justified mathematically by dotting the
induction equation, (2.2), with ∇φ to obtain

∂

∂t

(
Bφ
r

)
=∇ · [(U×B)×∇φ]. (2.42)

Expanding the right-hand side gives

∂

∂t

(
Bφ
r

)
=∇ ·

[
B

Uφ

r
−U

Bφ
r

]
(2.43)
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16 P. M. Bellan

or, on using Uφ = 0,
d
dt

(
Bφ
r

)
=−

Bφ
r
∇ ·U, (2.44)

where d/dt = ∂/∂t +U · ∇ is the convective derivative, i.e. the derivative as seen by
an observer moving with the jet. Equation (2.44) shows that Bφ indeed increases in
the jet frame where there is a converging flow, i.e. negative ∇ ·U.

Proceeding further, the equation of continuity, (2.3), can be written as

dρ
dt
+ ρ∇ ·U= 0. (2.45)

Eliminating ∇ ·U between (2.44) and (2.45) gives

d
dt

(
Bφ
r

)
=

Bφ
rρ

dρ
dt
, (2.46)

which can be expressed as
d
dt

ln
(

Bφ
ρr

)
= 0, (2.47)

which implies that
Bφ
ρr
= const. in the jet frame. (2.48)

Thus, the increase in density that occurs as the main jet column stagnates at the tip
will require a corresponding increase in Bφ/r. If r is set to be the jet radius a(z) then
since Bφ=µ0Itot/2πa(z) where Itot is the total poloidal current in the jet, it is seen that
a(z) must decrease if ρ increases since Itot is constant. This confirms the continuous
self-collimation of the jet.

The relationship of the model presented here to that of Lynden-Bell can now be
determined. Specifically, the magnetic tower model proposed by Lynden-Bell (2003)
corresponds to setting U = 0, P= 0, and I = I(ψ) in (2.24a–c) in which case ∇I ×
∇ψ = 0 and so (2.24a) and (c) reduce to

1
µ0

∂ψ

∂r
∇ ·

(
1
r2
∇ψ

)
+
µ0I
r2

∂I
∂r
= 0 (2.49a)

1
µ0

∂ψ

∂z
∇ ·

(
1
r2
∇ψ

)
+
µ0I
r2

∂I
∂z
= 0. (2.49b)

Using ∂I/∂z = (∂I/∂ψ)(∂ψ/∂z) and ∂I/∂r = (∂I/∂ψ)(∂ψ/∂r) both (2.49a) and (b)
reduce to

∇ ·

(
1
r2
∇ψ

)
+
µ2

0I
r2

∂I
∂ψ
= 0. (2.50)

On changing to the P, β notation used by Lynden-Bell (2003) for poloidal flux and
poloidal current (i.e. ψ → P, µ0I → β) (2.50) becomes identical to Lynden-Bell
(2003, (24)); this equation is just the Grad–Shafranov equation (Grad & Rubin 1958;
Shafranov 1966) for the situation of zero hydrodynamic pressure and I = I(ψ). If
(2.33) is assumed, (2.50) becomes the equation governing spheromaks and RFPs.
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2.8. Time evolution of flux functions
The induction equation, equation (2.2), is obtained by taking the curl of the ideal
Ohm’s law

E+U×B= 0 (2.51)

and invoking Faraday’s law ∇×E=−∂B/∂t. The toroidal component of (2.51) is

Eφ +UrBz −UzBr = 0. (2.52)

From (2.28) and (2.29) this becomes

∂ψ

∂t
+U · ∇ψ = 0, (2.53)

which provides an equation for the evolution of ψ . Equation (2.53) shows that the
plasma is frozen to the poloidal magnetic flux so plasma axial flow will stretch the
poloidal flux axially. Once the evolution of ψ has been determined using (2.53), the
poloidal current I is determined by (2.33). Using Ampere’s law Bφ = µ0I/2πr and
(2.33) in (2.48) gives

λψ

ρr2
= const. in the jet frame (2.54)

so

ρ ∼
ψ

r2
in the jet frame. (2.55)

2.9. Stretched dipole point of view
The energy stored in a magnetic field in a given volume V is

W =
∫

V

B2

2µ0
d3r (2.56)

and a simple variational argument shows (Bellan 2006) that for given boundary
conditions the lowest-energy magnetic field is a vacuum (also called potential)
magnetic field, i.e. a magnetic field for which there is no current density. Such a
magnetic field satisfies ∇ × Bvac = 0 and so can be represented as Bvac =∇χ where
χ is a scalar function. Since ∇ · B = 0, it is seen that ∇2χ = 0 and so a vacuum
magnetic field in a volume V is completely determined by the boundary conditions
prescribed on the surface S bounding V . Since the vacuum field is the lowest energy
magnetic field for given boundary conditions, any deformation of a magnetic field
away from its initial vacuum state while maintaining the boundary conditions requires
work. This means that magnetic field lines can be considered as entities that, when
stretched from their vacuum state while remaining anchored at the boundary, will
behave like elastics that ‘want’ to revert to the unstretched vacuum state.

An alternative and useful way of considering how the equation of motion governs
jet behaviour (Bellan 2006) is to decompose the magnetic force into a curvature and
a gradient term such that
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J×B =
1
µ0
(∇×B)×B

=
1
µ0

B · ∇B−∇
(

B2

2µ0

)
= −

B2

µ0

R̂
R
−∇⊥

(
B2

2µ0

)
, (2.57)

where R is the local radius of curvature and R̂ is a radial unit vector pointing from
the local centre of curvature of a field line to the field line. The subscript ⊥ refers
to the direction perpendicular to the magnetic field. The two terms in (2.57) are
denoted respectively as the curvature and the gradient term. These two terms are not
necessarily orthogonal and in the case of a vacuum magnetic field, the two terms are
equal and opposite since J = 0 for a vacuum field. The magnetic force associated
with the curvature term −µ−1

0 B2R̂/R acts to decrease or straighten out the curvature
while the magnetic force associated with the gradient term −∇⊥(B2/2µ0) pushes from
regions of large B2 to regions of small B2 but only in the direction perpendicular to
B.

The jet can be subdivided into the jet main column and the jet tip as indicated in
figure 1. The jet main column consists of most of the jet length l and in the main
column the jet is highly collimated with Bz � Br and Uz � Ur. Thus, in the main
column the magnetic field is nearly straight so the curvature term is small in (2.57).
However, the field curvature is large in the tip region and the curvature force provides
a local retardation of the jet in this region (see figure 1) which provides the stagnation
and mass pile-up that causes amplification of Bφ and hence collimation. The field
curvature at the tip is quite evident in the 6 through 8 µs frames in figure 3.

The poloidal magnetic flux of a magnetic dipole located at z=−h is given by

ψdipole(r, z)= B0πh3 r2

(r2 + (z+ h)2)3/2
, (2.58)

where B0 is defined such that B = B0ẑ at r = 0, z = 0. The corresponding poloidal
magnetic field in the upper half-volume defined by z>0 is given by inserting (2.58) in
(2.19) and this magnetic field is a vacuum magnetic field as can be seen by inserting
(2.58) in (2.23). Consideration of (2.58) in the z= 0 plane shows that in this plane

ψdipole(r, z)= B0πh3 r2

(r2 + h2)3/2
(2.59)

and so in this plane

Bz(r, z= 0) =
1

2πr

(
∂ψdipole

∂r

)
z=0

= B0
1− 1

2(r/h)
2

(1+ (r/h)2)5/2
(2.60)

so Bz reverses polarity at r =
√

2h. A jet poloidal magnetic field can then be
considered as the stretching in the z direction of a poloidal flux that is initially given
by (2.58) while maintaining the z= 0 plane boundary condition prescribed by (2.59)
or equivalently by the associated (2.60).
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This stretching can be represented by replacing z in (2.58) by a stretched version but
only for regions within the length l of the jet because for z> l there is no jet and the
magnetic field must revert to being the dipole field. Thus, we make the replacement
z→ zσ(z) in (2.58) where σ(z)= ε for 0< z< l and then σ(z) abruptly becomes equal
to unity as soon as z exceeds l. A possible functional form for σ is

σ(z)=
1

1+ ε

(
e2(z−l)/h

1+ e2(z−l)/h
+ ε

)
. (2.61)

Thus, equation (2.58) is replaced by

ψ(r, z)= B0πh3 r2

(r2 + (zσ(z)+ h)2)3/2
, (2.62)

which reverts to (2.59) at z= 0 and so satisfies the same boundary conditions as the
vacuum field. It is seen that as the jet becomes very long so σ(z) becomes very small,
the dependence of ψ on z becomes very weak and so Br becomes much smaller than
Bz because Br/Bz =−(∂ψ/∂z)/(∂ψ/∂r). In this z< l region and for r� h, it is seen
that ψ ∼ r2 which justifies the form of (2.34) and also the neglect of ∇ · (r−2∇ψ) in
(2.24a) and (2.24c) in the jet main column.

Figure 4 shows plots of ψ(r, z) as given by (2.62) and (2.61) for increasing values
of l. These plots show that the magnetic field lines are nearly straight in the main
column and then curve around at the jet tip. There is a concentration of field lines at
the jet tip where this curvature occurs and this concentration comes from the abrupt
change in σ which causes ψ to have a large gradient in the z direction and thus
Br to have a large value. Both the curvature and gradient forces point downward
in regions just below the maximum value of Br (i.e. below where flux surfaces are
horizontal and have maximum density) and so give a retarding force. However, just
above the maximum value of Br the curvature force points down while the gradient
force points up, so the curvature and gradient forces tend to cancel; this corresponds
to the magnetic field tending to be a vacuum field in the region above the maximum
value of Br,

3. Experimental set-up

Creating a jet requires three ingredients, namely poloidal flux, poloidal current and
a mass flux at the jet source and these must all be axisymmetric. The Caltech jet
experiment takes place in the 1.4 m diameter, 2 m long vacuum chamber sketched in
figure 2. The jet emanates from a concentric set of electrodes located at one end of
the chamber. As stated in the Introduction the electrodes consist of a 20 cm diameter
copper disk surrounded by a coplanar 50 cm diameter copper annulus with a 6 mm
gap between the disk and the annulus so that the disk and annulus can be at different
electrostatic potentials. A coil coaxial with the disk and annulus and located just
behind the gap generates a dipole-like poloidal magnetic field that links the disk to
the annulus. The coil current lasts approximately 5 ms which greatly exceeds all other
experimental time scales and so can be considered as being effectively steady state.
Because the copper disk and annulus act like perfect conductors on the <50 µs time
scale of the jet experiment, but as resistive conductors on the 5 ms time scale of the
coil current, the magnetic flux produced by the coil diffuses into the copper disk and
annulus when the coil is turned on, but then is frozen into the disk and annulus on
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20 P. M. Bellan

FIGURE 4. Stretched poloidal flux functions from (2.62) for increasing values of l where
σ(z) is defined by (2.61), ε= 0.01 and h= 2.

the <50 µs time scale of the jet experiment. The plane of disk and annulus defines
the z= 0 plane and so poloidal flux is fixed in the z= 0 plane consistent with (2.62).
The total poloidal flux has been measured using flux loops that integrate the voltage
induced in a loop and these measurements show that the poloidal flux is 0.5–2 mWb.
Each of the disk and annulus have eight holes through which neutral gas is puffed
by fast electrically pulsed valves. The neutral gas density is large near the holes but
falls off rapidly in a few centimetres. Various gas species are used with hydrogen,
argon and nitrogen being used most frequently. The gas valves have plenums that
release a fixed amount of gas into approximately 1 m long copper tubes that go to
holes on the electrodes from which the gas is ejected into the vacuum chamber. The
gas valve timing is quite critical and is adjusted so that the peak gas pressure at z= 0
coincides with the time of plasma breakdown. If the peak gas pressure occurs much
before breakdown, there will be substantial neutral gas in the vacuum chamber and
the jet will interact with this gas. Having peak gas pressure long after breakdown
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is less serious, but means that the cryopump which evacuates the chamber will fill
up with gas more quickly and so will have to be purged more often. The gas valve
timing has to take into account the time for the gas to travel from the valve to the
electrodes; this delay is inversely proportional to the gas thermal velocity and so is
greater for the heavier gases. Typical delay times are of the order of one to a few
ms depending on the gas species.

The gas valve timing and pressure are arranged so that the neutral gas in the region
between the disk and annulus satisfies the Paschen breakdown condition. The Paschen
criterion for hydrogen indicates that the minimum voltage required for breakdown
occurs when the product of neutral gas pressure and the distance between electrodes
is approximately 2 torr cm. The voltage for breakdown at this minimum is 300 V.
In actual practice, the applied voltage is 2–6 kV and the effective distance between
electrodes is a few tens of cm. Supplying gas at the eight annulus holes is essential
to have breakdown, but once the plasma has broken down, the gas coming from the
annulus holes has little influence. On the other hand, after breakdown the gas supplied
from the eight disk holes becomes the source of plasma for the jet and the density of
this gas affects the density of the plasma in the jet. The vacuum chamber is typically
evacuated before firing a shot so there is no pre-existing gas outside the jet. However,
as discussed in § 9 it is also possible to arrange for the vacuum chamber to contain
a target cloud of pre-existing gas which the jet impacts and stagnates against. At the
present time, experiments have not been done with a uniform surrounding background
gas. However, the vacuum chamber walls act in a sense like a cocoon of surrounding
background gas because the walls act as a flux conserver. A cocoon of surrounding
conducting background gas would also be a flux conserver to the extent that the jet
magnetic field cannot penetrate the cocoon.

Two different power supplies have been used to provide the breakdown voltage and
power the jet; these power supplies can be used separately or together. The first and
original power supply consists of a pair of 59 µF high-energy capacitors connected
in parallel. These capacitors are charged to 2–6 kV and then electronically switched
via Type A ignitrons to four low-inductance coaxial cables that go to the electrodes.
The electrical design is optimized to minimize inductance in order to drive maximum
electric current. This power supply provides a sine wave current having a rise time of
about 5–7 µs (Kumar, Moser & Bellan 2010). The second and newer power supply
is a pulse forming network (PFN) consisting of ten 120 µF capacitors connected
as five pairs of capacitors with a small inductance between each pair (Moser 2012).
The capacitance and inductance were chosen so that the PFN provides a flat-top
current lasting 50 µs. The PFN was designed to match the nominal jet impedance.
Typically, the first power supply creates the jet and the PFN sustains the jet. From
an electrical point of view, before breakdown the load looks like an open circuit
(infinite impedance) and after breakdown like a nearly short circuit (low impedance).
The behaviour after breakdown is such that the power supply behaves like a current
source driving a nominal 20 m� load; specifically the nominal load current is 100
kA and the nominal load voltage is 2 kV. The PFN was designed to match this
20 m� impedance. The effect of using the PFN in addition to the original capacitor
pair is to make the current waveform last longer in which case the jet lasts longer
and so attains greater length.

The magnetic field and plasma density have substantial spatial variation but peak
axial magnetic fields are from 0.1 to 0.6 T near the electrodes, peak currents are
approximately 100 kA and peak densities are n = 1022–1023 m−3. The temperature
is much less variable and is typically 2–4 eV. Shikama & Bellan (2013) made
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detailed spectroscopic measurements near the electrodes in a nitrogen plasma. These
measurements indicated a peak density of n = 1023 m−3 using Stark broadening
and a peak magnetic field B = 0.6 T using Zeeman splitting. These give an Alfvén
velocity vA = 10 km s−1 and a plasma β = 0.1 near the electrodes. The jet radius is
approximately 2 cm at this location.

Because of the large density and low temperature, the mean free path is very small
compared to the system size and is of the order of microns. Nevertheless, as discussed
in § 7 there are circumstances where two-fluid and kinetic effects become apparent
because of large local stresses.

Figure 3 from You et al. (2005) shows the formation, propagation and kink
destabilization of a jet created using the original power supply, i.e. no PFN is used.
This figure shows that initially (4 µs) there are eight plasma-filled flux tubes spanning
from a hole on the disk to a hole on the annulus; these are called the spider legs
because of their appearance. As time progresses, the inner spider legs merge at
about 7 µs to form the jet main column which then continuously increases in length
(7–10 µs) until a kink instability develops. The diameter of the circle (disk electrode)
in figure 3 is 20 cm.

4. Jet flow velocity, collimation and tip stagnation
The jet flow velocity has been measured by Kumar & Bellan (2009) using a laser

interferometer. The laser beam, shown as a green line in figure 5, propagated at right
angles to the jet motion so that the density measured by the interferometer has a time
dependence such that the initial rise time of the interferometer signal corresponded to
the tip of the jet intercepting the laser beam. In the figure the jet tip passes the laser
beam at approximately 7 µs. The time profile of the interferometer signal would then
very roughly correspond to the axial dependence of the line-averaged density; this is
seen in figure 6. The interferometer signal exploits the plasma wave dispersion relation
ω2
= ω2

pe + k2c2 so k =
√
ω2 −ω2

pe/c. The phase ϕ of the interferometer leg through
the plasma is given by

ϕ =

∫
dy k=

ω

c

∫
dy

√
1−

ω2
pe(y)

ω2
. (4.1)

Since the laser frequency ω greatly exceeds the plasma frequency ωpe, the phase can
be written as

ϕ '
ω

c

∫
dy

(
1−

ω2
pe(y)

2ω2

)
(4.2)

and so the change in phase that occurs when plasma passes through the laser beam
is

1ϕ '−
1

2ωc

∫
dyω2

pe(y)=−
q2

e

2ωcε0me

∫
dy n(y). (4.3)

Thus, the interferometer phase shift 1ϕ that occurs when the plasma traverses the
laser beam is proportional to the line-averaged density. The laser beam is 29 cm from
the electrode plane and so the jet velocity is defined as this distance divided by the
time at which the jet front passes the interferometer beam (green line in figure 5).
Thus, the jet velocity in figure 5 would be 0.29 m/7 µs = 41 km s−1. By charging
the capacitor bank to different voltages and measuring the resultant electric current
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FIGURE 5. Green line shows interferometer laser beam location. [Reprinted figure
with permission from Kumar and Bellan, Physical Review Letters 103, 105003 (2009).
Copyright 2009 by the American Physical Society.]

flowing in the jet and the jet velocity, a plot of jet velocity versus current can be
made. This was done separately for hydrogen and for deuterium plasma jets and a
plot of velocity versus current is shown in figure 7. This plot shows that hydrogen is
faster than deuterium by approximately the square root of the mass ratio consistent
with the scaling in (2.40). The straight lines in figure 7 go approximately through the
origin confirming that velocity is linearly proportional to current.

The high initial density at early times in figure 6 is consistent with the argument
in §§ 2.7 and 2.9 that the jet main column stagnates against the jet tip, much like a
stream of fast cars on a highway slows down and bunches up when it reaches a group
of slow moving cars.

The axial dependence of axial velocity and associated density has been measured by
Yun & Bellan (2010) using Stark broadening of atomic lines to determine density and
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FIGURE 6. Time dependence of interferometer signal for hydrogen and deuterium plasma
jets at two different capacitor bank settings. The jet velocity is faster (i.e. front appears
earlier) for hydrogen than for deuterium (compare red to green and black to blue) and is
faster for a higher voltage setting (compare red to black and green to blue). [Reprinted
figure with permission from Kumar and Bellan, Physical Review Letters 103, 105003
(2009). Copyright 2009 by the American Physical Society.]

using Doppler shift to determine velocity. These measurements show a large increase
in density near the jet tip associated with reduction of axial velocity near the jet tip,
i.e. a stagnation of the jet near the tip consistent with the collimation mechanism
discussed in § 2.7. These measurements also show that the density of the plasma in
the main column is not the result of ionizing pre-existing neutral gas but rather comes
from the injection of plasma coming from the mass source at the inner electrode. This
is because the density in the jet main column is much higher than the density of any
pre-existing neutral gas even if pinching of plasma formed by this pre-existing gas is
taken into account.

5. Kink instability

A plasma having toroidal magnetic field only (i.e. a Z-pinch) is subject to an
axisymmetric instability called the sausage or necking instability. This instability
involves conversion of stored magnetic energy into bulk kinetic energy in a manner
analogous to the conversion of potential energy into kinetic energy when a ball
rolls down a hill. Addition of a poloidal field stabilizes the sausage because an
axisymmetric compression of a poloidal field increases the stored magnetic energy
(this increase will be discussed further in § 10). However, the presence of both a
poloidal magnetic field and a toroidal magnetic field makes the plasma subject to a
non-axisymmetric instability called the kink instability. The sausage instability has
m= 0 symmetry whereas the kink has m= 1 symmetry. A plot of the threshold for
sausage and kink instabilities in a plasma having both poloidal and toroidal magnetic
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FIGURE 7. Velocity measured using laser interferometer versus peak electric current
flowing through the plasma. The different colours are different capacitor charge voltages.
[Reprinted figure with permission from Kumar and Bellan, Physical Review Letters 103,
105003 (2009). Copyright 2009 by the American Physical Society.]

fields shows that the kink is destabilized before the sausage; see von der Linden &
You (2017).

An example of a kink instability is shown in figure 8 from Hsu & Bellan (2003).
The kink instability can also be understood as a means by which the plasma reduces,
in a flux-conserving way, the energy stored in the magnetic field. Just as in the
sausage instability, the energy removed from the magnetic field goes into plasma
kinetic energy so the system can be thought of as being analogous to a ball rolling
off the top of a hill. The magnetic energy is the same as the inductive energy and
since inductance L is defined as the magnetic flux Φ per electric current I, the
magnetic energy can be expressed as

W =
∫

B2

2µ0
d3r=

LI2

2
=
(LI)2

2L
=
Φ2

2L
. (5.1)

A coil has more inductance than a straight wire and since flux conservation together
with (5.1) imply W ∼ 1/L, the kink reduces the magnetic energy by winding the
initially straight current channel to be in the form of a helix, i.e. a coil. This winding
into a helix is subject to azimuthal and axial boundary conditions. The azimuthal
boundary condition is that the displacement be periodic in the azimuthal direction so
as to be single valued. The axial boundary condition is that the ends of the jet are
tied down like the ends of a violin string. Thus, the kink is an exponentially growing
perturbation with a spatial dependence exp(ik · x) = exp(imφ + ikz) where m is an
integer and kl/2π is an integer or half-integer. The most unstable kink mode has
|m| = 1 and the smallest non-trivial value for k corresponds to the jet length being
one wavelength, i.e. k= 2π/l.

The kink wavevector is oriented perpendicular to the unperturbed magnetic field
since orientation parallel to the unperturbed magnetic field would require work to be
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FIGURE 8. Photo of a kink instability extracted from figure 3 of Hsu and Bellan.
[Reprinted figure with permission from Hsu and Bellan, Physical Review Letters 90,
215002 (2003). Copyright 2003 by the American Physical Society.]

done on this field and so would diminish the amount of magnetic energy available
to drive the instability. Thus, the kink has k · B0 = 0 where B0 is the unperturbed
magnetic field and so

k ·B0 =
2π

l
B0z +

m
a

B0φ = 0. (5.2)

If B0z and B0φ are positive, m must be negative and detailed kink stability analysis
shows that the most unstable mode has |m| = 1 and the longest possible l. The theory
of tokamak kink stability defines the so-called ‘safety factor’ as

q=
2πa

l
B0z

B0φ
(5.3)

so m=−1 and q= 1 correspond to satisfying the conditions for kink instability. In a
tokamak the meanings of toroidal and poloidal are reversed from the meanings in the
jet, i.e. the toroidal field in the jet corresponds to the poloidal field in a tokamak and
vice versa. In a tokamak a, l and B0z are typically fixed and so kink instability comes
from having excessive B0φ whereas in the jet a, B0φ and B0z are typically fixed while
l increases as the jet lengthens.

Hsu & Bellan (2003) observed the onset of the kink instability and showed via
probe measurements of the internal poloidal and toroidal magnetic fields for a large
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range of parameters that this onset was consistent with q dropping from an initial
value exceeding unity when l was small (i.e. jet was short) to l reaching a critical
value at which q = 1. This condition is known as the Kruskal–Shafranov kink
stability condition (Shafranov 1956; Kruskal & Tuck 1958) and this q= 1 condition
was observed to hold for various values of B0z and B0φ . The onset of kinking is
evident in the 11 µs frame of figure 3.

6. Rayleigh–Taylor instability

The kink instability is an exponentially growing helical instability so each segment
of the jet makes an exponentially growing lateral displacement from its original
position. This means that an observer located in the jet frame would experience
an effective gravity because the exponentially growing displacement implies an
exponentially growing velocity, i.e. an acceleration. The kink can be considered as
a destabilized close cousin of an Alfvén wave and so the characteristic kink growth
time is of the order of an Alfvén time where an Alfvén time is the transit time for
an Alfvén wave. Since the jet velocity is slower than the Alfvén velocity, the kink
time scale is much faster than the jet time scale and so jet motion can be neglected
on the kink time scale. The effective gravity points in the direction opposite to the
acceleration and so points towards the original axis of the jet. Because the plasma
density in the jet is greater than outside as a result of the confining properties of
the pinch force associated with the axial electric current flowing along the jet, the
situation in the accelerating jet frame is that of a heavy fluid (the jet main column)
on top of a light fluid (the region immediately exterior to the jet main column). The
words heavy, light and ‘on top of’ are consistent with the presence of the effective
gravitational field resulting from the lateral acceleration.

The situation of a heavy fluid on top of a light fluid is unstable and a rippling
perturbation will excite a Rayleigh–Taylor instability (RTI) where at each ripple there
is a downward motion of heavy fluid and an accompanying upward motion of light
fluid so that the gravitational potential energy of the system decreases and becomes
converted into the kinetic energy of the motion of the fluid in the ripples. When there
is no magnetic field the RTI growth rate γ is given by γ 2

= |kRT |g where |kRT |is the
ripple wavevector and g is the effective gravity. However, when there is a magnetic
field the growth rate changes to γ 2

= |kRT |g − (kRT · B)2/µ0ρ where the extra term
results from the work done on the equilibrium magnetic field by the perturbation
(Kruskal & Schwarzschild 1954). This means that the most unstable mode has kRT ·

B= 0 and a growth rate identical to the unmagnetized situation.
Moser & Bellan (2012a) reported clear evidence of a kink-instigated RTI and

measured a growth rate that was in reasonable agreement with γ 2
= |kRT |g where

|kRT | was determined from the ripple wavelength observed in photos, g was measured
from the second derivative of the lateral displacement of the kinking jet and γ was
measured from the time required for the RTI ripple amplitude to increase by a factor
e. Figure 9 from Moser & Bellan (2012a) shows the jet developing a kink during
the time 20–23 µs and then the onset of a RTI at 24 µs. The RTI ripples are much
shorter than the kink wavelength and the RTI grows much faster than the kink. Thus,
just as the jet motion can be ignored on the time scale of the kink instability, the kink
dynamics can be ignored on the time scale of the RTI. In each of the kink instability
and the RTI the slower dynamics (jet for the kink and kink for the RTI) provides
the appropriate environment for the instability but otherwise the slow dynamics can
be ignored.
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FIGURE 9. Kink instigation of a Rayleigh–Taylor instability. Disk electrode location
shown as dotted circle in top left frame and the jet travels from right to left. The top right
frame shows the kink wavelength while the bottom left frame shows the development of
Rayleigh–Taylor ripples. These ripples grow by a factor of e in one frame and so the
Rayleigh–Taylor instability is much faster than the kink. [Figure reproduced from Moser
and Bellan, Nature 482, 379 (2012).]

The standard model of the RTI assumes Cartesian geometry where the heavy
fluid lies above a plane and the light fluid lies below this plane so that ripples
develop at the planar interface. The jet situation is geometrically more complex
because the jet has a round cross-section so the RTI effectively occurs on the bottom
of a horizontally aligned cylinder. Because of this more complex geometry, it is
expected that the standard planar model will only predict the general tendency but
not the detailed dependence. In particular, the standard planar model is incapable
of determining the relationship between the ripple wavelength and the jet diameter
since the planar model effectively assumes infinite jet diameter. Zhai & Bellan (2016)
developed a model for the RTI in the case of a cylindrical plasma undergoing lateral
acceleration so that the ripples occur on the bottom of the cylinder where bottom is
defined with respect to the direction of the effective gravity. This model calculates the
coupling between a large number of azimuthal Fourier modes and so can characterize
situations where an instability occurs only at the cylinder bottom. Moser & Bellan
(2012a) observed strong RTI in argon plasma jets but only observed RTI in hydrogen
plasma jets on rare occasions and, when observed, the RTI was much weaker than
for the argon jets. Zhai & Bellan (2016) also observed this difference between argon
and hydrogen jets in experiments and resolved the difference in more detail as shown
in figure 10.

RTI growth rates in good agreement with observations for hydrogen and argon
jets were predicted by Zhai & Bellan (2016) as well as the wavelength of the
fastest growing ripple. The model decomposes the instability into a superposition
of azimuthal components each varying as exp(imφ) and shows that the lack of
azimuthal symmetry resulting from the one-sided push leads to a complicated coupling
between the different m modes. Solving for the dynamics involves inverting an infinite
matrix coupling the m modes to each other. The analysis further shows that there
is a continuum of behaviour between kink and Rayleigh–Taylor instabilities where
the kink here is a secondary instability not to be confused with the primary kink
instability that is providing the effective gravity. The parameter space is characterized
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FIGURE 10. Difference between argon and hydrogen jets. Argon jet has g = 4 ×
1010 m s−2 and shows clear evidence of Rayleigh–Taylor ripples superimposed on much
longer wavelength helical kink instability. Type I hydrogen jet has g = 3 × 1010 m s−2,
kinks, but has no Rayleigh–Taylor instability. Type II hydrogen jet has much larger
effective gravity of g= 1.5× 1011 m s−2, kinks, but exhibits a secondary instability that
has both Rayleigh–Taylor and fine-scale kink properties, namely ripples and a helical
shape. [Reprinted from Zhai and Bellan, Physics of Plasmas 23, 032121 (2016) with the
permission of AIP Publishing.]

by the dimensionless quantity Φ = ga/v2
Aφ where g is the gravity from the lateral

acceleration, a is the radius of the cylindrical flux tube (i.e. jet radius), and v2
Aφ is

the Alfvén velocity calculated using the azimuthal magnetic field. If Φ � 1 then
gravity is negligible and the secondary instability is a pure kink with a narrow
spectrum of azimuthal modes as shown in figure 11 whereas if Φ� 1 the instability
is pure Rayleigh–Taylor with a broad spectrum of azimuthal modes as also shown
in figure 11. The broad Fourier mode spectrum is required to have the instability
azimuthally localized to the bottom of the cylinder. When Φ is of order unity, the
instability has properties of both kink and Rayleigh–Taylor. Because v2

Aφ = B2
φ/µ0ρ,

the situation where Φ is of order unity is mass dependent such that Φ is proportional
to mass which means that all other parameters being equal, heavy jets are more
susceptible to the RTI than light jets. This was observed experimentally as argon
jets always had RTI whereas hydrogen jets only exhibited RTI when there was
extreme acceleration and furthermore the hydrogen jet RTI showed some kink-like
characteristics associated with having a narrow azimuthal mode spectrum. Figure 12
compares the predicted argon structure (broad azimuthal mode spectrum, perturbation
concentrated at an azimuthal location corresponding to the bottom and so giving
ripples) to the hydrogen structure (narrow azimuthal mode spectrum, perturbation
having only slight localization at the bottom and so giving a more helical, kink-like
structure). This is in good agreement with the observations shown in figure 10 where
it is seen that the argon jet has a Rayleigh–Taylor ripple structure whereas the Type
II hydrogen jet has a secondary instability that is more kink-like.

7. Consequences of the Rayleigh–Taylor instability

The RTI is observed to instigate several associated phenomena that have significant
effects on the jet. These phenomena appear to be associated with the one-sided nature
of the RTI as ripples develop only on the trailing side of the laterally accelerated jet
because only on this side is there a heavy fluid effectively on top of a light fluid. The
one-sided nature of the ripples means that the jet cross-section is constricted where the
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FIGURE 11. Azimuthal mode spectrum for argon and hydrogen situations. The hydrogen
spectrum is narrow and is almost a single mode which corresponds to the kink-like helical
behaviour. The argon spectrum is broad and so contains sufficient modes to produce a
delta-function profile in φ space, corresponding to ripples on the cylinder bottom but not
at other angles. [Reprinted from Zhai and Bellan, Physics of Plasmas 23, 032121 (2016)
with the permission of AIP Publishing.]

ripples eat into the jet; this constriction means that there will be an increase of the
axial electric current density in the jet. It is observed that when the jet cross-section
becomes sufficiently constricted to be of the order of the ion skin depth di = c/ωpi,
the jet appears to break. High speed movies of both the visible and extreme ultra-
violet (EUV) optical emission from the jet show that there is dimming of the visible
emission and an enhancement of the EUV emission (Chai, Zhai & Bellan 2016) at
the RTI location. This suggests that there is a substantial density depletion at the RTI
location as visible emission scales as the square of the density. This also suggests
that there is a substantial heating of the electrons in the remaining density since hot
electrons are required to excite bound electrons in the remaining ions to high enough
energy states to have strong EUV emission. Additional evidence for the existence
of energetic electrons is a change in the nature of the emitted atomic line spectrum.
Before the RTI occurs, the observed atomic lines are mainly from singly ionized argon
with negligible neutral emission and negligible emission from doubly ionized argon
or from higher ionized states. However, during the RTI the line emission is primarily
from doubly ionized argon and there is some emission from triply ionized argon. This
change in emission spectra indicates that the electrons have been substantially heated
during the RTI. The width of the ion lines also increases indicating that there is
ion heating as well. Measurements of high frequency magnetic oscillations show an
onset of such oscillations when the RTI occurs suggesting that the RTI also instigates
generation of waves (Chai et al. 2016).

The working hypothesis at the present time (Marshall & Bellan 2017) is that the
increase of electric current density J as a result of the RTI constricting the jet cross-
section means that the electron drift velocity vd = J/ne with respect to ions increases.
When vd becomes comparable to some characteristic wave phase velocity, the ions can
be considered as a mono-energetic beam flowing at this velocity through the electrons.
Such a beam is unstable with respect to kinetic beam instabilities and so a rapidly
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FIGURE 12. Top shows superimposed azimuthal modes for argon jet and bottom shows
similar for hydrogen jet. The broad mode spectrum for argon enables the perturbation to
be highly localized at one azimuthal angle (i.e., the bottom) whereas the broad hydrogen
mode spectrum provides only a small amount of localizations. [Reprinted from Zhai and
Bellan, Physics of Plasmas 23, 032121 (2016) with the permission of AIP Publishing.]

growing kinetic instability develops. This instability tends to scatter electrons and so
acts as an effective resistivity. The net effect is that the RTI causes the plasma to
become highly resistive compared to before the RTI and so the RTI location can be
considered as being like an opening switch in an electric circuit. Since the remaining
part of the circuit has substantial inductance, the opening switch is in series with an
inductive circuit. There will be a large inductive voltage at the location of the opening
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switch and the electric field associated with this voltage drop will accelerate electrons
to high energy.

8. Numerical simulation compared to experiment
Zhai et al. (2014) modelled the Caltech jet experiment using a three-dimensional

numerical MHD code. This code, originally developed to model astrophysical jets,
was modified to incorporate the boundary conditions and parameters of the Caltech
experiment. The code results were quite similar to the experimental observations and
support the analytic interpretations presented here. In particular, synthetic movies
made from the code were very similar to movies of the actual experiment. The
synthetic movies showed the line average of the square of the density which is the
quantity measured by a camera in the actual experiment since the optical emission
scales as density squared and the jet is optically thin so the image is a line average.

An important realization resulting from the construction of the numerical simulation
code was that ideal MHD is incapable of modelling the experimental boundary
conditions. This is because these boundary conditions involve injection of magnetic
flux at the boundary whereas ideal MHD does not permit injection of magnetic
flux. Thus, a localized fictitious non-ideal region had to be inserted to model the
flux injection at the electrodes. Specifically, the MHD induction equation (2.2) had
a non-physical term added to the right hand side such that this term acted as a
localized source of magnetic flux. The non-physical term was located just below the
z= 0 plane so the physical region, i.e. positive z region, excluded this fictitious source.
This scheme allowed for injection of toroidal magnetic flux into the physical region,
i.e. driving a poloidal current going from the inner to outer electrode. However, this
raised the question of what happens in a real astrophysical jet and suggested that the
source region of a real astrophysical jet must involve physics beyond the realm of
ideal MHD. This non-MHD physics is discussed in § 10.

9. Jet–cloud collision experiment
The collision of an MHD-driven jet with a target cloud has been investigated in the

experiments (Moser & Bellan 2012b; Seo & Bellan 2017). This investigation involves
injecting a cloud of neutral gas in the path of the jet. The cloud is injected using
a fast pulsed gas valve and the cloud location at the time the jet impacts the cloud
can be adjusted by changing the time at which the fast gas valve opens. The fast gas
valve is connected to a metal tube aligned to point towards the jet so the injected
cloud travels towards the jet. The cloud velocity is just the thermal velocity of room
temperature gas, i.e. a few hundred metres per second whereas the jet velocity is tens
of kilometres per second. Thus, the cloud is effectively a stationary target for the jet.

Having a hydrogen jet impact an argon cloud causes an abrupt decrease in the jet
velocity and a simultaneous increase of the density of the jet at the stagnation region.
This has been measured using a translatable laser interferometer that measures the
plasma density as a function of both axial position and time (Seo & Bellan 2017).
Figure 13 shows a plot from Seo & Bellan (2017) of the line-averaged density n(z, t)
for the situation where a jet collides with a target cloud located at 280 mm. The
velocity, determined from the slope of the red dashed line, is initially 70 km s−1

but slows to 20 km s−1 at 280 mm where the jet impacts the target cloud and the
jet density increases. The slowing down is presumed to be collisional because the
collisional mean free path is small compared to the physical dimensions. However,
the electric currents and the magnetic flux are largely maintained as their minimal
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FIGURE 13. Density (colour) as function of time and position. The jet velocity is given
by the slope of the high density crest which is highlighted by the red dotted line. The
jet collides with a target cloud at 280 mm. The slope decreases indicating slowing down
of the jet and the density increases (yellow region). The density scale (color bar on right)
is in units of m−3. [Reprinted from Seo and Bellan, Review of Scientific Instruments 88,
123504 (2017) with the permission of AIP Publishing.]

dissipation is related to the large Lundquist number in the experiment. This flux
conservation is observed as an approximately twofold amplification of the magnetic
field in the jet tip which is compressed as it collides with the cloud (Moser & Bellan
2012b); the magnetic field amplification corresponds to an increase of the magnetic
flux density as a result of the compression. This compression and field amplification
should be relevant to the situation of an astrophysical jet colliding with a molecular
cloud as such a collision also involves a large Lundquist number together with a
collisional mean free path small compared to the system dimensions.

10. Accretion disk launching of jets

As discussed in Bellan (2016a) the laboratory experiment layout sketched in
figure 14 could conceivably be reflected to be as in figure 15 so as to have
bidirectional jets originating from a common power supply and common mass source.
Figure 15 is analogous to the sketch of an accretion disk launching bidirectional
astrophysical jets shown in figure 16. Consideration of the symmetry and boundary
conditions relating these sketches shows that the accretion disk must provide a mass
source for the bidirectional jets and that the accretion disk must also act as an
electrical power supply that drives the poloidal electric current flowing in the jets.
The poloidal flux would have to be a symmetric function of z and the poloidal current
would have to be an antisymmetric function of z, i.e. ψ(r, −z, t) = ψ(r, z, t) and
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FIGURE 14. Laboratory layout. Gas is injected from both the disk and the annulus.
[Figure from Bellan, Monthly Notices Royal Astronomical Society 458, 4400 (2016).]

I(r, −z, t) = −I(r, z, t). These symmetries are such that (J × B)r is symmetric with
respect to z while (J×B)z is antisymmetric with respect to z; this can be verified by
consideration of the magnetic terms on the right hand sides of (2.24a) and (2.24c).
These symmetries provide radial confinement for both positive and negative z while
also accelerating bidirectional jets away from the z= 0 plane.

In order to sustain the outward mass flux from the z = 0 plane there must be a
radially inward mass flux in the z = 0 plane. This would come from a portion of
the mass accreting onto the accretion disk and corresponds to the gas injection in
the laboratory experiment. However, a quasi-steady radially inward motion of plasma
in the z= 0 plane is not consistent with ideal MHD. This is because the jet motion
involves distending poloidal flux that is anchored in the accretion disk, i.e. anchored
in the z= 0 plane. Since Eφ =−r−1∂V/∂φ− (2πr)−1∂ψ/∂t where V is an electrostatic
potential, the symmetry in φ and invariance of ψ in the z= 0 plane show that Eφ = 0
in the z= 0 plane. Since the jets are bidirectional, Uz= 0 in the z= 0 plane. Because
ψ is finite in the z = 0 plane, ∂ψ/∂r and hence Bz is finite in the z = 0 plane.
Finally, accretion means that Ur is finite and negative in the z=0 plane. The azimuthal
component of the ideal MHD Ohm’s law is
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FIGURE 15. Laboratory set-up and reflection.

Eφ +UzBr −UrBz = 0 (10.1)

and it is seen that only the last term, i.e. −UrBz, is finite in this equation in the z= 0
plane. Because only one term is finite it is impossible to satisfy this equation in the
z= 0 plane and so in the z= 0 plane ideal MHD cannot describe the plasma flow and
magnetic symmetries prescribed above.
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FIGURE 16. Sketch of astrophysical jet. Reproduced from Paul M. Bellan, Plasma Phys.
Control. Fusion 60, 014006 (2018). c© IOP Publishing Ltd. CC BY 3.0.

Equation (10.1) is just (2.53) as can be seen using (2.28) and (2.29). In the z= 0
plane Uz = 0 by symmetry so (2.53) would then reduce in the z= 0 plane to

∂ψ

∂t
+Ur

∂ψ

∂r
= 0 (10.2)

and using ψ = Bzπr2 at small r, this would give

∂Bz

∂t
+ 2

Ur

r
Bz = 0, (10.3)

which would lead to a non-physical unbounded exponential growth of Bz if Ur is
negative, i.e. if there is accretion. Besides showing why the ideal MHD Ohm’s law is
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incompatible with an accretion disk linked by a constant poloidal flux, this analysis
also shows why a poloidal field stabilizes the sausage (necking) instability in a Z-
pinch since the necking (inward Ur) would result in an infinite amplification of Bz.
Instead of the magnetic energy decreasing as required for an instability, the magnetic
energy would become infinite.

The requirement that steady-state electric current must flow nearly along poloidal
flux surfaces depends on the poloidal Larmor radius being microscopic. If the poloidal
Larmor radius becomes comparable to the system size, then particles can flow across
poloidal flux surfaces. Having an extremely large poloidal Larmor radius corresponds
to having an extremely small charge-to-mass ratio. The author showed in Bellan (2007,
2008, 2016a,b, 2017) that, if for some reason, the two terms in (2.26) have the same
magnitude and are equal and opposite, then charged particles can cross poloidal flux
surfaces and in the presence of gravity will spiral in towards the origin. This situation
is not required for all the particles and in fact it is envisaged that only a tiny subset
would have Pφ = 0. The relative scaling of the two terms in (2.26) can be seen by
writing vφ = rφ̇ and ψ ∼ Bzπr2 so the two terms scale as

mr2φ̇ :
qBz

2
r2 (10.4)

or as
φ̇ :ωc, (10.5)

where ωc= qBz/m is the cyclotron frequency and φ̇ is assumed to be of the order of
the Kepler angular velocity since it is presumed that an accretion disk is undergoing
Kepler orbital motion. Since cyclotron frequencies are typically many orders of
magnitude larger than Kepler frequencies, the second term in (2.26) is normally
many orders of magnitude larger than the first term. However, if for some reason
the effective charge-to-mass ratio q/m is reduced so that ωc becomes of the order
of the Kepler frequency there will be a strong interaction between the magnetic and
gravitational forces and the resulting motion will be neither a Kepler orbit nor a
cyclotron orbit.

As both Kepler and cyclotron orbits are single-particle motions, it is necessary to
examine the motion using single-particle theory. Since we are interested in behaviour
in the z= 0 plane, we first consider the situation of a particle in this plane subject to
a magnetic field in the z direction and to a gravitational field in the radial direction.
The Lagrangian in this situation is

L=
1
2

m(v2
r + r2φ̇2)+ qrφ̇Aφ +

mMG
r

(10.6)

and the associated Hamiltonian is

H =
1
2

m(v2
r + r2φ̇2)−

mMG
r

. (10.7)

The canonical angular momentum defined as Pφ = ∂L/∂φ̇ is given by (2.26) where
ψ = 2πrAφ has been used as seen from Bz = r−1∂/∂r(rAφ) = (2πr)−1∂ψ/∂r. The
Hamiltonian can be expressed as

H = 1
2 mv2

r + χ(r), (10.8)
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where

χ(r)=

(
Pφ −

q
2π
ψ(r)

)2

2mr2
−

mMG
r

(10.9)

is an effective potential. If there is no magnetic field then ψ = 0 in which case χ
becomes the Kepler effective potential and the particle executes Kepler orbits. If there
is no gravity, then χ is the effective potential for cyclotron orbits (Schmidt 1979;
Bellan 2006). If Pφ = 0 there exists a qualitatively different, intermediate type of orbit
that is neither Kepler nor cyclotron. In the Pφ = 0 situation, the effective potential
reduces to

χ(r)=

( q
2π
ψ(r)

)2

2mr2
−

mMG
r

. (10.10)

At small r, mathematical regularity requires ψ to be proportional to r2 and so at small
r, ψ 'Bzπr2 where Bz is constant. Because ψ2/r2

∼ r2 it is seen that unlike the Kepler
situation, χ does not diverge as r→ 0 and so centrifugal force does not exist for a
particle having Pφ = 0. The radial force acting on such a particle is

Fr =−
∂χ

∂r
=−r

(q
2

Bz

)2

m
−

mMG
r2

(10.11)

and so is inward at all values of r which means that the Pφ = 0 particle falls in
towards r= 0. The motion is an inward spiral because Pφ = 0 implies

φ̇ =−
qBz

2m
=−

1
2
ωc. (10.12)

Since Pφ is a constant of the motion, if a particle initially satisfies (10.12) and so
initially has Pφ = 0, it will always have Pφ = 0.

A particle that spirals in towards r= 0 thus crosses poloidal flux surfaces and since
having Pφ = 0 is only possible for one sign of particle, only one sign of particle could
cross poloidal flux surfaces in the z = 0 plane. This would correspond to a radial
electric current in the z=0 plane which is just what is needed to complete the poloidal
electric circuit.

Two possible ways for having the required extremely small charge-to-mass ratio are
(i) charged dust grains and (ii) very weakly ionized plasma. Charged dust grains were
discussed in Bellan (2008) where it was shown that dust can be charged by various
means such as electron impact, photo-ionization, or nuclear processes and typically
the equilibrium charge-to-mass ratio of a dust grain is very small compared to that
of an electron or ion. Thus, if a dust grain had a charge-to-mass ratio such that at
an initial time the dust grain satisfied (10.12) where φ̇ is a Kepler angular frequency,
the dust grain would spiral in towards r= 0 and so constitute a radial current. While
this situation appears possible in principle, it is ‘highly tuned’ as it requires a precise
charge-to-mass ratio for at least some dust grains. This situation has been explored in
detail in Bellan (2008).

The situation of a weakly ionized plasma appears more likely because this situation
is not highly tuned; this situation was discussed in Bellan (2016a, 2017). Here the low
charge-to-mass ratio occurs because of collisions between ions and the much larger
number of neutrals so that as soon as an ion gains momentum from an electromagnetic
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force, the ion immediately shares this momentum via collisions with nearby neutrals.
If α denotes the ionization fraction, then one ion shares its momentum with α−1

nearby neutrals and so the centre of mass of the ion and the α−1 neutrals behaves like
a particle that has the charge of the ion and the mass of the α−1 neutrals. Thus the
centre of mass of a clump consisting of an ion and α−1 neutrals moves like a particle
with charge-to-mass ratio given by αq/m. If, for example, the ionization fraction were
α= 10−12, the cyclotron frequency of the metaparticle represented by the clump would
be 12 orders of magnitude smaller than that of an ion and so could easily become
comparable to a Kepler frequency. This α−1-fold reduction of effective ion cyclotron
frequency in a weakly ionized plasma has been previously noted in other contexts by
Song, Vasyliunas & Ma (2005) and by Pandey & Wardle (2008).

The ionization fraction in an accretion disk is not uniform but instead is stratified
such that α is essentially zero at the accretion disk midplane and then rises to unity
at the edge of the accretion disk. This means that all values of α from zero to unity
exist in the accretion disk and so there will always be some location where α is such
that Pφ = 0 for a metaparticle. This metaparticle will spiral inwards and because it
contains an ion, the inward spiral corresponds to an inward radial current.

The inward spiralling metaparticles will accumulate near r = 0 setting up an
accumulation of positive charge there. The electrons that originally neutralized the
metaparticles cannot spiral in because the electrons do not satisfy Pφ = 0 and so
are frozen to poloidal flux surfaces. The electrons can, however, move out of the
plane of the accretion disk along poloidal flux surfaces and thus can move by this
means towards the origin so as to neutralize the accumulated positive charge. The
combined motion of radially inward metaparticles in the accretion disk and electrons
moving inward along poloidal flux surfaces in the region exterior to the accretion
disk constitute a poloidal electric current having the same topology as in the Caltech
jet experiment. This poloidal electric current creates a toroidal magnetic field and
the interaction between poloidal current and toroidal magnetic field drives jet motion.
This is sketched in figure 17. The combined system thus has accretion (inward
moving metaparticles), radial electric current, jets and a mass supply for the jets.

The neutralization of the radial electric field by the electrons is only partial and
a sufficient radial electric field remains to satisfy the Faraday’s law requirement that
the voltage drop associated with this field corresponds to the rate at which toroidal
flux is being injected into the jet. The angular momentum of the accreting material is
removed by the magnetic force and is done in such a way as to conserve canonical
angular momentum.

Metaparticle behaviour can also be deduced by subtracting the zero mass limit of
the electron equation of motion from the MHD equation of motion. It should be noted
that by making the substitution ue = ui − J/ne'U− J/ne the zero mass limit of the
electron equation of motion becomes the generalized Ohm’s law. In the presence of
gravity and taking into account the separate contributions to the total pressure from
the ions, electrons and neutrals, the MHD equation of motion can be expressed as

ρ
dU
dt
= J×B−∇(Pi + Pe + Pn)− ρg. (10.13)

The electron fluid equation of motion with electron mass neglected is

0= neqe(E+ ue ×B)−∇Pe. (10.14)
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FIGURE 17. Poloidal flux surfaces shown as curved black lines. Metaparticles flow
radially inwards (horizontal blue arrows) in accretion disk. Electrons outside disk flow
along poloidal flux surfaces and produce electric current (blue arrows pointing radially
outward and following flux surfaces) that completes poloidal circuit. Accumulation of
metaparticles at small radius shown as plus signs and left behind neutralizing electrons
shown as minus signs. [Figure from Bellan, Monthly Notices Royal Astronomical Society
458, 4400 (2016).]

Using J= niqiui + neqeue, subtraction of (10.14) from (10.13) gives

ρ
dU
dt
=−neqeE+ niqiui ×B−∇(Pi + Pn)− ρg. (10.15)

Since the plasma is weakly ionized, the overall mass density is essentially the neutral
mass density, i.e. ρ= nnmn where mn and nn are respectively the neutral particle mass
and number density. Dividing (10.15) by ρ and invoking quasi-neutrality neqe=−niqi
gives

dU
dt
= α

qi

mn
(E+ ui ×B)−

∇(Pi + Pn)

nnmn
− g. (10.16)
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Because the ions collide frequently with the neutrals, the mean ion velocity ui is
nearly the centre of mass velocity U which is essentially the neutral centre of mass
velocity. The ion and centre of mass velocity are presumed to be of order the Kepler
velocity which by assumption greatly exceeds thermal velocities. The pressure gradient
term scales as v2

T/r which is much smaller than the centrifugal force U2
φ/r and so the

pressure gradient term can be dropped. Thus, (10.16) reduces to

dU
dt
= α

qi

mn
(E+U×B)− g, (10.17)

which is the equation of motion of a single particle having charge-to-mass ratio
αqi/mn in the presence of electric, magnetic and gravitational fields. Thus, a fluid
element of a weakly ionized plasma behaves as a metaparticle and so if the fluid
element has Pφ = 0, it will spiral in towards the star.

11. Summary
Because the ideal MHD equations have no intrinsic scale, they apply over

an enormous range all the way from laboratory experiments to non-relativistic
astrophysical jets. Although not in equilibrium because unbalanced forces provide
acceleration, jets can be considered to be in a quasi-steady state. Analysis of jets
requires subdividing the jet into different regions as the physics of these regions
differ.

The launching region has an applied electromotive force that injects toroidal
magnetic flux, a mass source and frozen-in poloidal flux. The main column is highly
collimated, has approximate radial force balance and a modified Bernoulli relation in
the axial direction. The jet tip has a retarding force associated with the splaying out
and axial bunching of the poloidal field lines near the tip. This retarding force causes
a bunching up of the axial flow near the tip and this axial compression squeezes
the frozen-in toroidal flux so as to increase the toroidal magnetic field. This increase
corresponds to increasing the pinch force and so the jet continuously collimates at
the tip as it propagates.

Jets become susceptible to the kink instability on reaching a critical length and, at
least in laboratory experiments, the effective gravity from the lateral acceleration of
the kink instability provides the setting for a Rayleigh–Taylor secondary instability.
The Rayleigh–Taylor instability can choke the current flowing in the jet and cause
the jet to break. Jets become compressed when they impact a target cloud.

Ideal MHD is inadequate to describe the launching region because magnetic flux
must be injected into the plasma in this region whereas ideal MHD requires the
magnetic flux in the plasma frame to be unchanging. However, by including Hall
terms in the Ohm’s law, flux is no longer frozen in and so can be injected. In order
to have a complete path for the electric current flowing in a jet, the current must
flow across poloidal flux surfaces but this is forbidden in ideal MHD because charged
particles cannot move continuously across poloidal flux surfaces as would be required
for a continuous electric current across flux surfaces.

If the particle charge-to-mass ratio is orders of magnitude smaller than that of an
ion or electron, a particle effectively develops such a large orbit that it is no longer
frozen to poloidal flux surfaces. This extremely small charge-to-mass ratio is feasible
for charged dust grains and an equivalent situation occurs when the plasma is very
weakly ionized and highly collisional. In this latter case, each ion is effectively bound
to a large number of neutrals so the combination of the ion and its bound neutrals
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moves like a metaparticle having a very small charge-to-mass ratio. Particles with a
critical small charge-to-mass ratio spiral in towards the star and this motion provides
the electric current needed to complete the circuit of the poloidal electric current
flowing from the disk to the jet and back to the disk. This poloidal electric current
creates the toroidal magnetic field the gradient of which is responsible for driving the
jet.
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Appendix A. Relation to other experiments
The Imperial College Z-pinch experiment (Lebedev et al. 2005) differs from the

experiment described here in that the Imperial College experiment has no poloidal
magnetic field and is surrounded by a cocoon of high-pressure gas. The Imperial
College experiment was described as a magnetic tower which is consistent with
having a cocoon of high-pressure gas but appears to be at variance with the force-free
assumption intrinsic to the magnetic tower model. This is because a force-free
magnetic field implies existence of both toroidal and poloidal field components
to give ∇ × B = λB. An important feature of the Imperial College Z-pinch was the
observation by Suzuki-Vidal et al. (2010) of episodic behaviour where the jet velocity
was modulated by instabilities at the source with the result that faster jet segments
would catch up with slower segments and create shocks.

The LULI laser experiment (Abertazzi et al. 2014) had a strong externally imposed
homogeneous poloidal magnetic field (z direction) that had dimensions much larger
than the plasma jet so the observed collimation was essentially the plasma flowing
along this imposed axial magnetic field. Also, rather than having peak density on
axis, the axis region was observed to be a cavity with density peaking somewhat
off axis. Axial plasma flow at the rim of the cavity was observed to focus at the
jet tip and form a shock that heated the plasma. The LULI experiment is thus quite
different from the Caltech experiment because the LULI experiment does not have an
axial stretching of poloidal magnetic field by the pressure of toroidal magnetic field
as was sketched in figure 1. Also, although self-generated toroidal magnetic fields are
presumed to exist, they are claimed to have negligible effect and so the jet velocity is
entirely from the hydrodynamic pressure gradient established by the laser pulse. Thus,
the LULI experiment has no MHD acceleration of the jet and no MHD confinement,
only a channelling of a hydrodynamic flow by an imposed axial magnetic field.

The University of Rochester experiment (Li et al. 2016) does not have an externally
imposed magnetic field but instead has self-generated magnetic fields produced by the
Biermann battery effect, i.e. ∂B/∂t∼∇n×∇T . It is argued that two field structures
created by this effect merge and then, by means of reconnection, form a field that
can be decomposed into toroidal and poloidal components. The jet is assumed to
be thermally launched rather than magnetically accelerated but is also assumed to
carry frozen-in toroidal and poloidal magnetic fields. Periodic structures observed by
proton radiography are interpreted as kink instabilities. This interpretation is made
because the embedded toroidal magnetic field is presumed to be strong relative to
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Caltech Imperial Coll. LULI Univ. of Rochester

Technology Spheromak Z-pinch Laser ablation Laser ablation
Reference length 10 cm 0.5 cm 0.2 cm 0.5 cm
Reference time 5 µs 0.1 µs 0.01 µs 0.001 µs
Poloidal field Yes No Yes Yes
Toroidal field Yes Yes Negligible Yes
Gas pressure confines No Yes Yes No
Pressure peaked on axis Yes Yes No Yes
Jet accelerated by MHD Yes Yes No No
Jet accelerated by laser No No Yes Yes
Cost per shot Negligible Moderate High High

TABLE 1. Comparison of relative properties of different jet experiments. The poloidal
field in the Caltech experiment is produced by an external coil and the toroidal field
from an electric current flowing from electrodes. The toroidal field in the Imperial College
experiments also comes from an electric current flowing from electrodes. The poloidal field
in the LULI experiment comes from a pair of coils that are far from the plasma. The
poloidal and toroidal fields in the University of Rochester experiment are assumed to be
produced by the merging of currents produced by the Biermann battery mechanism.

the embedded poloidal magnetic field so that the Kruskal–Shafranov kink threshold
is exceeded.

Some relative properties of the Caltech, Imperial College, LULI and University of
Rochester experiments are summarized in table 1. The cost per shot in the Caltech
experiment is negligible because nothing is destroyed during a shot so another shot
can be made within about two minutes; this allows scans of parameters over many
shots to determine measurements of parametric dependence as for example was shown
in figure 7 or for the threshold of the kink instability as was reported in Hsu &
Bellan (2003). The Imperial College, LULI, and University of Rochester experiments
involve destruction of the structure creating the jet and also destruction of portions
of the diagnostics. This means that the structures creating the jet and parts of the
diagnostics need to be replaced after each shot; this greatly constrains the number of
shots so that interpretation of the experiments is mainly done by comparison of one or
a few shots to numerical models. In contrast, it is possible in the Caltech experiment
to scan parameters or move a probe over many shots to establish an experimentally
measured scaling or an experimentally determined spatial profile. The time-dependent
interior magnetic field profile of the Caltech experiment has been measured directly
by magnetic probes and these measurements have been confirmed by spectroscopic
measurement of Zeeman line splitting (Shikama & Bellan 2013). The interior magnetic
field profile in the Imperial College experiment has been estimated using comparisons
with computer models; a single-point magnetic probe measurement has been made
but the calibration was uncertain (Suzuki-Vidal et al. 2014). The interior magnetic
field in the LULI experiment is imposed by an external solenoid and is presumed
to be straight. The interior magnetic field in the University of Rochester experiment
has been determined indirectly by applying a model of caustics to proton radiography
images. The Z-pinch and laser plasmas have magnetic fields, plasma densities and
plasma temperatures that are several orders of magnitude larger than in the Caltech
plasma.
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