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The Contraction Principle for Multivalued
Mappings on a Modular Metric Space with
a Graph

Monther Rashed Alfuraidan

Abstract. We study the existence of ûxed points for contraction multivalued mappings in modular
metric spaces endowed with a graph. _e notion of a modular metric on an arbitrary set and the
correspondingmodular spaces, generalizing classical modulars over linear spaces like Orlicz spaces,
were recently introduced. _is paper can be seen as a generalization of Nadler and Edelstein’s ûxed
point theorems to modular metric spaces endowed with a graph.

1 Introduction

Fixed point theorems for monotone single-valued mappings in a metric space en-
dowed with a partial ordering have been widely investigated. _ese theorems are
hybrids of the two most fundamental and useful theorems in ûxed point theory: Ba-
nach’s contraction principle [19,_eorem 2.1] and Tarski’s ûxed point theorem [15,33].
Generalizing the Banach contraction principle formultivaluedmappings, Nadler [25]
obtained the following result.

_eorem 1.1 ([25]) Let (X , d) be a complete metric space. Denote by CB(X) the
set of all nonempty closed bounded subsets of X. Let F∶X → CB(X) be a multivalued
mapping. If there exists k ∈ [0, 1) such that

H(F(x), F(y)) ≤ k d(x , y)

for all x , y ∈ X , where H is the Hausdorò metric on CB(X), then F has a ûxed point
in X.

A number of extensions and generalizations of Nadler’s _eorem were obtained
by diòerent authors; see, for instance, [13,20] and references cited therein. _e Tarski
theorem was extended to multivalued mappings by diòerent authors; see [5, 14].

Ran and Reurings [31] initially investigated the existence of ûxed points for single-
valuedmappings in partially orderedmetric spaces. _ey proved the following result.
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4 M. R. Alfuraidan

_eorem 1.2 ([31]) Let (X , ⪯) be a partially ordered set such that every pair x , y ∈ X
has an upper and lower bound. Let d be a distance on X such that (X , d) is a complete
metric space. Let f ∶X → X be a continuous monotone (either order preserving or order
reversing) mapping. Suppose that the following conditions hold:
(i) _ere exists a k ∈ (0, 1) with

d( f (x), f (y)) ≤ k d(x , y), for all x ⪰ y.

(ii) _ere exists an x0 ∈ X with x0 ⪯ f (x0) or x0 ⪰ f (x0).
_en f is a Picard Operator (PO), that is, f has a unique ûxed point x∗ ∈ X and for
each x ∈ X, limn→∞ f n(x) = x∗.

A�er this, various authors considered the problem of existence of a ûxed point for
contraction mappings in partially ordered sets; see [6, 11, 18, 27] and references cited
therein. Nieto, Pouso, and Rodriguez-Lopez [27] proved the following theorem.

_eorem 1.3 ([27]) Let (X , d) be a complete metric space endowed with a partial
ordering ⪯. Let f ∶X → X be an order preserving mapping such that there exists a k ∈
[0, 1) with

d( f (x), f (y)) ≤ k d(x , y), for all x ⪰ y.

Assume that one of the following conditions holds:
(i) f is continuous, and there exists an x0 ∈ X with x0 ⪯ f (x0) or x0 ⪰ f (x0);
(ii) (X , d , ⪯) is such that for any nondecreasing (xn)n∈N , if xn → x, then xn ⪯ x for

n ∈ N, and there exists an x0 ∈ X with x0 ⪯ f (x0);
(iii) (X , d , ⪯) is such that for any nonincreasing (xn)n∈N , if xn → x, then xn ⪰ x for

n ∈ N, and there exists an x0 ∈ X with x0 ⪰ f (x0).
_en f has a ûxed point. Moreover, if (X , ⪯) is such that every pair of elements of X has
an upper or a lower bound, then f is a PO.

J. Jachymski [16] extended the above theorem to metric spaces endowed with a
graph. In [16, 22] one can ûnd the generalization of the results of [11, 27, 29, 30] to
single-valued mappings in metric spaces with a graph. Subsequently, Beg, Butt, and
Radojević [7] tried to extend the results of [16] to multivalued mappings, but their
extension was not carried correctly (see [4]).

Recently, the author in [3] studied the existence of ûxed points for multivalued
mappings inmodular function spaces endowedwith a graph. He proved the following
theorem.

_eorem 1.4 ([3, _eorem 3.3]) Let ρ ∈ R be convex. Let C ⊂ Lρ a be nonempty
ρ-closed subset that has the following property. For any sequence { fn}n∈N in C, if fn
ρ-converges to f and ( fn , fn+1) ∈ E(G) for n ∈ N, then ( fn , f ) ∈ E(G). Assume that
ρ satisûes the ∆2-type condition and C is ρ-bounded. Let T ∶C = V(G) → C(C) be a
monotone increasing G-contraction mapping and let CT ∶= { f ∈ C ∶ ( f , g) ∈ E(G) for
some g ∈ T( f )}. If CT ≠ ∅, then the following statements hold:
(i) For any f ∈ CT , T ∣[ f ]G̃ has a ûxed point.
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(ii) If f ∈ C with ( f̄ , f ) ∈ E(G), where f̄ is a ûxed point of T, then there exists a
sequence { fn} such that fn+1 ∈ T( fn), for every n ≥ 0, and { fn} ρ-converges to f̄ .

(iii) If G is weakly connected, then T has a ûxed point in G.
(iv) If C′ ∶= ⋃{[ f ]G̃ρ

∶ f ∈ CT}, then T ∣C′ has a ûxed point in C.

_e aim of this paper is to discuss the existence of ûxed points for multivalued
Lipschitzianmappings deûned on some subsets of modular metric spaces X endowed
with a graphG. _esemodularmetric spaces were introduced in [9,10]. However, the
approach we take is identical to the one used by the authors in [1]. Indeed, we look at
the modular metric spaces as the nonlinear version of the classical modular spaces as
introduced by Nakano [26] on vector spaces andmodular function spaces introduced
by Musielack [24] and Orlicz [28]. In [1] the authors deûned and investigated the
ûxed point property in the framework of modular metric spaces and introduced the
analogue of Banach Contraction Principle theorem in modular metric spaces.

In 1961, Edelstein [12] generalized the Banach Contraction Principle to mappings
satisfying a less restrictive Lipschitz inequality such as local contraction. _is result
has been generalized to multivalued version by Nadler [25]. On the other hand, Mi-
zoguchi and Takahashi [23] improved Reich’s result [32] and proved the existence of
ûxed points for multivalued mappings with closed bounded values.

In this work, we obtain a multivalued version of the result of [2, _eorem 4.1] to
modular metric spaces endowed with a graph. We also extend the results of Nadler
[25] and Mizoguchi and Takahashi [23] to modular metric spaces with a graph.

2 Preliminaries

Let X be a nonempty set. _roughout this paper we will write

ωλ(x , y) = ω(λ, x , y),
for all λ > 0 and x , y ∈ X for a function ω∶ (0,∞) × X × X → (0,∞).

Deûnition 2.1 ([9,10]) A functionω∶ (0,∞)×X×X → [0,∞] is said to be amodular
on X if it satisûes the following axioms:
(i) x = y if and only if ωλ(x , y) = 0, for all λ > 0;
(ii) ωλ(x , y) = ωλ(y, x), for all λ > 0, and x , y ∈ X;
(iii) ωλ+µ(x , y) ≤ ωλ(x , z) + ωµ(z, y), for all λ, µ > 0 and x , y, z ∈ X.

If instead of (i), we have only the condition (i’)

ωλ(x , x) = 0, for all λ > 0 and x ∈ X ,
then ω is said to be a pseudomodular on X. A modular ω on X is said to be regular if
the following weaker version of (i) is satisûed:

x = y if and only if ωλ(x , y) = 0, for some λ > 0.

Finally, ω is said to be convex if for λ, µ > 0 and x , y, z ∈ X, it satisûes the inequality

ωλ+µ(x , y) ≤
λ

λ + µ
ωλ(x , z) +

µ
λ + µ

ωµ(z, y).
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Note that for a pseudomodular ω on a set X, and any x , y ∈ X, the function λ →
ωλ(x , y) is nonincreasing on (0,∞). Indeed, if 0 < µ < λ, then

ωλ(x , y) ≤ ωλ−µ(x , x) + ωµ(x , y) = ωµ(x , y).

Deûnition 2.2 ([9, 10]) Let ω be a pseudomodular on X. Fix x0 ∈ X. _e two sets

Xω = Xω(x0) = {x ∈ X∶ωλ(x , x0) → 0 as λ →∞},
X∗

ω = X∗
ω(x0) = {x ∈ X ∶ ∃λ = λ(x) > 0 such that ωλ(x , x0) < ∞}

are said to be modular spaces (around x0).

We obviously have Xω ⊂ X∗
ω . In general this inclusion can be proper. It follows

from [9, 10] that if ω is a modular on X, then the modular space Xω can be equipped
with a (nontrivial) distance, generated by ω and given by

dω(x , y) = inf{λ > 0 ∶ ωλ(x , y) ≤ λ},
for any x , y ∈ Xω . If ω is a convex modular on X, then according to [9, 10] the two
modular spaces coincide, i.e., X∗

ω = Xω , and this common set can be endowed with
the distance d∗ω given by

d∗ω(x , y) = inf{λ > 0 ∶ ωλ(x , y) ≤ 1},
for any x , y ∈ Xω . _ese distances will be called Luxemburg distances.
First attempts to generalize the classical function spaces of the Lebesgue type Lp

spaces were made in the early 1930’s by Orlicz and Birnbaum in connection with or-
thogonal expansions. _eir approach consisted of considering spaces of functions
with some growth properties diòerent from the power type growth control provided
by the Lp-norms. Namely, they considered the function spaces deûned as follows:

Lϕ = { f ∶R→ R; ∃λ > 0 ∶ ρ(λ f ) = ∫
R
ϕ( λ∣ f (x)∣) dx < ∞} ,

where ϕ∶ [0,∞] → [0,∞]was assumed to be a convex function increasing to inûnity,
i.e., the function, which to some extent, behaves similarly to power functions ϕ(t) =
tp . Modular function spaces Lϕ furnishes a wonderful example of a modular metric
space. Indeed deûne the function ω by

ωλ( f , g) = ρ( f − g
λ

) = ∫
R
ϕ( ∣ f (x) − g(x)∣

λ
) dx ,

for all λ > 0, and f , g ∈ Lϕ . _en ω deûnes a modular metric on Lϕ . Moreover, the
distance d∗ω is exactly the distance generated by the Luxemburg norm on Lϕ .
For more examples on modular function spaces, the reader can consult Kozlowski

[21] and, for modular metric spaces, [9, 10].

Deûnition 2.3 Let Xω be a modular metric space.
(i) _e sequence {xn}n∈N in Xω is said to be ω-convergent to x ∈ Xω if and only if

ω1(xn , x) → 0, as n →∞. _en x will be called the ω-limit of {xn}.
(ii) _e sequence {xn}n∈N in Xω is said to be ω-Cauchy if ω1(xm , xn) → 0, as

m, n →∞.
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(iii) A subset M of Xω is said to beω-closed if theω-limit of aω-convergent sequence
of M always belong to M.

(iv) A subset M of Xω is said to be ω-complete if any ω-Cauchy sequence in M is a
ω-convergent sequence and its ω-limit is in M .

(v) A subset M of Xω is said to be ω-bounded if we have

δω(M) = sup{ω1(x , y); x , y ∈ M} < ∞.

In general if limn→∞ ωλ(xn , x) = 0, for some λ > 0, then we cannot have
limn→∞ ωλ(xn , x) = 0, for all λ > 0. _erefore, as it is done in modular function
spaces, we will say that ω satisûes the ∆2-condition if limn→∞ ωλ(xn , x) = 0, for
some λ > 0 implies limn→∞ ωλ(xn , x) = 0, for all λ > 0. In [9, 10], one will ûnd a dis-
cussion about the connection between ω-convergence and metric convergence with
respect to the Luxemburg distances. In particular, we have

lim
n→∞ dω(xn , x) = 0 if and only if lim

n→∞ωλ(xn , x) = 0, for all λ > 0,

for any {xn} ∈ Xω and x ∈ Xω . And in particular we have that ω-convergence and dω
convergence are equivalent if and only if the modular ω satisûes a the ∆2-condition.
Moreover, if the modular ω is convex, then we know that d∗ω and dω are equivalent
which implies

lim
n→∞ d

∗
ω(xn , x) = 0 if and only if lim

n→∞ωλ(xn , x) = 0, for all λ > 0,

for any {xn} ∈ Xω and x ∈ Xω [9, 10].

Deûnition 2.4 Let (X ,ω) be a modular metric space. We will say that ω satisûes
∆2-type condition if for any α > 0, there exists C > 0 such that

ωλ/α(x , y) ≤ C ωλ(x , y),
for any λ > 0, x , y ∈ Xω , with x ≠ y.

Note that if ω satisûes the ∆2-type condition, then ω satisûes the ∆2-condition.
_e above deûnition will allow us to introduce the growth function in the modular
metric spaces as in the linear case.

Deûnition 2.5 ([2]) Let (X ,ω) be amodular metric space. Deûne the growth func-
tion Ω by

Ω(α) = sup{
ωλ/α(x , y)
ωλ(x , y)

; λ > 0, x , y ∈ Xω , x ≠ y} ,

for any α > 0.

_e following properties were proved in [2].

Lemma 2.1 ([2, Lemma 2.1]) Let (X ,ω) be a modular metric space. Assume that ω
is a convex regular modular that satisûes the ∆2-type condition. _en
(i) Ω(α) < ∞, for any α > 0,
(ii) Ω is a strictly increasing function, and Ω(1) = 1,
(iii) Ω(αβ) ≤ Ω(α)Ω(β), for any α, β ∈ (0,∞),
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(iv) Ω−1(α)Ω−1(β) ≤ Ω−1(αβ), where Ω−1 is the function inverse of Ω,
(v) for any x , y ∈ Xω , x ≠ y, we have

d∗ω(x , y) ≤
1

Ω−1(1/ω1(x , y))
.

_e following technical lemma will be useful later on in this work.

Lemma 2.2 ([2]) Let (X ,ω) be a modular metric space. Assume that ω is a convex
regular modular that satisûes the ∆2-type condition. Let {xn} be a sequence in Xω such
that

ω1(xn+1 , xn) ≤ K αn , n = 1, . . . ,
where K is an arbitrary nonzero constant and α ∈ (0, 1). _en {xn} is Cauchy for both
ω and d∗ω .

Note that this lemma is crucial, since themain assumption on {xn}will not be enough
to imply that {xn} is ω-Cauchy, since ω fails the triangle inequality.

Let us ûnish this section with the needed graph theory terminology, which will be
used throughout.
A directed graph (digraph) G is called an oriented graph if whenever (x , y) ∈

E(G), (y, x) ∉ E(G). If x , y are vertices of the digraph G, then a directed path from
x to y of length N is a sequence {x i}N

i=0 of N + 1 vertices of N such that

x0 = x , xN = y and (x i , x i+1) ∈ E(G), i = 0, 1, . . . ,N .

Let (X ,ω) be a modular metric space, and let M be a nonempty subset of Xω . Let
∆ denote the diagonal of the cartesian product M × M. _roughout, we consider a
directed graphGω such that the setV(Gω) of its vertices coincides withM, and the set
E(Gω) of its edges contains all loops, i.e., E(Gω) ⊇ ∆. We assume Gω has no parallel
edges (arcs), so we can identifyGω with the pair (V(Gω), E(Gω)). Our graph theory
notations and terminology are standard and can be found in any graph theory books.
For example, the reader can consult [8, 17]. Moreover, we can treat Gω as a weighted
graph (see [17, p. 309]) by assigning to each edge the distance between its vertices.
At this point we introduce some notation that will be used through the reminder

of this work. For a subset M of modular metric space Xω , set

CB(M) = {C ∶ C is nonempty ω-closed and ω-bounded subset of M}.

Deûnition 2.6 Let (X ,ω) be a modular metric space, M be a nonempty subset of
Xω . A multivalued mapping T ∶M → CB(M) is called:
● a Gω-contraction if there exists a constant k ∈ [0, 1) such that for any u, v ∈ M with

(u, v) ∈ E(Gω) and any U ∈ T(u) there exists V ∈ T(v) such that

(U ,V) ∈ E(Gω) and ω1(U ,V) ≤ k ω1(u, v).
● a (ε, k) − Gω-uniformly locally contraction if there exists a constant k ∈ [0, 1) such

that for any u, v ∈ M with (u, v) ∈ E(Gω), ω1(u, v) < ε and any U ∈ T(u) there
exists V ∈ T(v) such that

(U ,V) ∈ E(Gω) and ω1(U ,V) ≤ k ω1(u, v).
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A point x ∈ M is called a ûxed point of T whenever x ∈ T(x). _e set of ûxed points
of T will be denoted by Fix(T).

We will say that M satisûes property (P) if and only if
(P) for any sequence {xn}n∈N in M, if x ω-converges to z as n →∞ and (xn , xn+1) ∈

E(Gω), then (xn , z) ∈ E(Gω), for all n.
_e above property plays a very important role in the proofs of the main results of

this work.

3 The Main Results

_e following result, where the directed graph Gω is deûned on a subset M of the
modular metric space (X ,ω), can be seen as a generalization of Nadler’s ûxed point
result [25] to modular metric spaces endowed with a graph.

_eorem 3.1 Let (X ,ω) be a modular metric space. Suppose that ω is a convex
regular modular that satisûes the ∆2- type condition. Assume that M = V(Gω) is a
nonempty ω-complete subset of Xω satisfying property (P). Let T ∶M → CB(M) be a
Gω-contraction map and let MT ∶= {x ∈ M ∶ (x , y) ∈ E(Gω) for some y ∈ T(x)}. If
MT ≠ ∅, then T has a ûxed point.

Proof Let x0 ∈ MT ; then there exists an x1 ∈ T(x0) with (x0 , x1) ∈ E(Gω). Since T
is a Gω-contraction, there exists x2 ∈ T(x1) such that (x1 , x2) ∈ E(Gω) and

ω1(x1 , x2) ≤ kω1(x0 , x1).
Similarly, there exists x3 ∈ T(x2) such that (x2 , x3) ∈ E(Gω) and

ω1(x2 , x3) ≤ k ω1(x1 , x2).
By induction we build {xn} in M with xn+1 ∈ T(xn) and (xn , xn+1) ∈ E(Gω) such
that

ω1(xn+1 , xn) ≤ k ω1(xn , xn−1),
for every n ≥ 1. Hence,

ω1(xn+1 , xn) ≤ kn ω1(x1 , x0),
for every n ≥ 0. _e technical Lemma 2.2 implies that {xn} is ω-Cauchy. Since M is
ω-complete, {xn} ω-converges to some point z ∈ M. Since (xn , xn+1) ∈ E(Gω), for
every n ≥ 1, (xn , z) ∈ E(Gω) by property (P). Since T is aGω-contraction, there exists
zn ∈ T(z) such that

ω1(xn+1 , zn) ≤ k ω1(xn , z),
for every n ≥ 1. Hence

ω2(zn , z) ≤ ω1(zn , xn+1) + ω1(xn+1 , z) ≤ k ω1(xn , z) + ω1(xn+1 , z),
for every n ≥ 1. Since {xn} ω-converges to z, we conclude that limn→∞ ω2(zn , z) = 0.
_e ∆2- type condition satisûed by ω implies that limn→∞ ω1(zn , z) = 0, i.e., {zn}
ω-converges to z. Since T(z) is ω-closed, we conclude that z ∈ T(z), i.e., z is a ûxed
point of T . _is completes the proof of _eorem 3.1.
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Edelstein [12] has extended the classical ûxed point theorem for contractions to
the case when X is a complete ε-chainable metric space, and the mapping T ∶X → X
is an (ε, k)-uniformly locally contraction. _is result was extended by Nadler [25] to
multivalued mappings. Here we investigate Nadler’s result in modular metric spaces
endowed with a graph. First let us introduce the ε-chainable concept inmodular met-
ric spaces with a graph. Our deûnition is slightly diòerent from the one used in the
classical metric spaces, since the modular functions can fail the triangle inequality.

Deûnition 3.1 Let (X ,ω) be a modular metric space and let M = V(Gω) be a
nonempty subset of Xω . M is said to be ûnitely ε-chainable (where ε > 0 is ûxed) if
and only if there existsN ≥ 1 such that for any a, b ∈ M with (a, b) ∈ E(Gω) there is an
N , ε-chain from a to b (that is, a ûnite set of vertices x0 , x1 , . . . , xN ∈ V(Gω) = M such
that x0 = a, xN = b, (x i , x i+1) ∈ E(Gω) and ω1(x i , x i+1) < ε, for all i = 0, 1, 2, . . . ,N −
1).

We have the following result.

_eorem 3.2 Let (X ,ω) be a modular metric space. Suppose that ω is a convex
regular modular that satisûes the ∆2-type condition. Assume that M = V(Gω) is a
nonempty ω-complete, ω-bounded subset of Xω which satisûes the property (P) and
is ûnitely ε-chainable, for some ûxed ε > 0. Let T ∶M → CB(M) be an (ε, k) −
Gω-uniformly locally contraction map. If MT ∶= {x ∈ M ∶ (x , y) ∈ E(Gω) for some
y ∈ T(x)} ≠ ∅, then T has a ûxed point.

Proof Since M is ûnitely ε-chainable, there exists N ≥ 1 such that for any a, b ∈ M
with (a, b) ∈ E(Gω) there is a ûnite set of vertices x0 , x1 , . . . , xN ∈ M such that x0 = a,
xN = b, (x i , x i+1) ∈ E(Gω) and ω1(x i , x i+1) < ε, for all i = 0, 1, 2, . . . ,N − 1. For any
x , y ∈ M with (x , y) ∈ E(Gω), deûne

ω∗(x , y) = inf{
i=N−1
∑
i=0

ω1(x i , x i+1)} ,

where the inûmum is taken over all N , ε-chains x0 , x1 , . . . , xN from x to y. SinceM is
N , ε-chainable, ω∗(x , y) < ∞, for any x , y ∈ M with (x , y) ∈ E(Gω). Using the basic
properties of ω, we get

ωN(x , y) ≤ ω∗(x , y),
for any x , y ∈ M with (x , y) ∈ E(Gω). Moreover, if ω1(x , y) < ε, then we have
ω∗(x , y) ≤ ω1(x , y), for any x , y ∈ M with (x , y) ∈ E(Gω). Fix x ∈ MT . Set z0 = x.
Choose z1 ∈ T(z0) with (z0 , z1) ∈ E(Gω). Let x0 , x1 , . . . , xN be an N , ε-chain from
z0 to z1. Since T is an (ε, k) − Gω-uniformly locally contraction map, there exist
y0 , y1 , . . . , yN in M such that:
(a) y i ∈ T(x i), for any i = 1, . . . ,N ;
(b) (y i , y i+1) ∈ E(Gω), for any i = 0, . . . ,N − 1;
(c) ω1(y i , y i+1) ≤ k ω1(x i , x i+1), for any i = 0, . . . ,N − 1.
It is easy to check that y0 = z0 , y1 , ⋅ ⋅ ⋅ , yN is an N , ε-chain from z0 to yN ∈ T(z1). Set
yN = z2. Using the fact that T is an (ε, k) − Gω-uniformly locally contraction map,
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we get
ω∗(z1 , z2) ≤ k ω∗(z0 , z1).

By induction, we construct a sequence {zn} ∈ M with (zn , zn+1) ∈ E(Gω) such that

ω∗(zn , zn+1) ≤ k ω∗(zn−1 , zn),
and zn+1 ∈ T(zn), for any n ≥ 1. Obviously we have ω∗(zn , zn+1) ≤ kn ω∗(z0 , z1), for
any n ≥ 1. Since ω satisûes the ∆2-type condition, there exists C > 0 such that

ω1(zn , zn+1) ≤ C ωN(zn , zn+1) ≤ C ω∗(zn , zn+1) ≤ C kn ω∗(z0 , z1),
for any n ≥ 1. Lemma 2.2 implies that {zn} is ω-Cauchy. SinceM is ω-complete, then
{zn} ω-converges to some z ∈ M. We claim that z is a ûxed point of T . Indeed we
ûrst note that (zn , z) ∈ E(Gω) for any n ≥ 1 by the property (P). Using the ideas
developed above, there exists vn ∈ T(z) such that

ω∗(zn+1 , vn) ≤ k ω∗(zn , z),
for any n ≥ 1. By ω properties, we have

ωN+1(vn , z) ≤ ω1(zn+1 , z) + ωN(zn+1 , vn) ≤ ω1(zn+1 , z) + k ω∗(zn , z),
for any n ≥ 1. Since {zn} ω-converges to z, there exists n0 ≥ 1 such that for any n ≥ n0,
we have ω1(zn , z) < ε. Hence, ω∗(zn , z) ≤ ω1(zn , z), for any n ≥ n0, which implies

ωN+1(vn , z) ≤ ω1(zn+1 , z) + k ω1(zn , z),
for any n ≥ n0. _erefore, we have limn→∞ ωN+1(vn , z) = 0. _e ∆2- type condition
satisûed by ω implies that limn→∞ ω1(vn , z) = 0, i.e., {vn} ω-converges to z. Since
vn ∈ T(z) and T(z) is ω-closed, we conclude that z ∈ T(z), i.e., z is a ûxed point of
T . _is completes the proof of _eorem 3.2.
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