
J. Austral. Math. Soc. 22 (Series A) (1976), 144-164.
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The aim of this paper is to enumerate all equivalence classes of perfect
septenary forms with A4 = 2. This is an important section of the complete enu-
meration of perfect septenary forms by the method which was outlined in Stacey
(1975). There are nine equivalence classes of these forms, four of which were
announced for the first time in Stacey (1975). This work forms part of the author's
D. Phil, thesis and was done at Oxford under the supervision of Dr. B. J. Birch.
Though many of the calculations required for the proof were first done by com-
puter, most of them can be done by hand. For the calculations of §5, use of
the computer was absolutely necessary; in contrast, in §4 the attempt to persuade
the computer to do most of the work was best abandoned. The computing was
done on the I.C.L. 1906A at Oxford University.

1. Definitions and notation

A perfect form is a positive definite quadratic form whose coefficients can
be determined from its minimum value at nonzero integral points and from
knowledge of the points where it attains this minimum. Positive definite n-ary
forms/and g are equivalent if there exists an integral unimodular transformation
Tand a positive constant c such tha t /T= eg, i.e. for all points x,f(xT) = cg{x).
A nonzero integral n-vector where / attains its minimum value (always assumed
to be one) is called a minimal vector off and an s x n matrix X(f) whose rows
in any order are the minimal vectors is called a minimal matrix of/. We always
require that only one of a minimal vector and its negative belong to X(f) although
they may be freely interchanged at any time. Clearly, if/is perfect, s ^ -\n{n + 1)
since / has \n(n + 1) coefficients to be determined.

Let A be an m x n submatrix of a minimal matrix. If the n-vector a or —a
is a row of A, we write a e A. If every row of A is a row of B then we write
A cz B, whilst if A c B and B c A, then A and B are equal as minimal submatrices.
A and B are equivalent if there exists an integral unimodular transformation T
such that AT = B. If/is equivalent to g, X(f) is equivalent to X(g). Conversely
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[2] Perfect septenary forms 145

if X(f) is equivalent to X(g) and / i s perfect, / i s equivalent to g. Aut(/4) is the
group of integral unimodular transformations T such that AT = A.

If m > n, we define Det(A) = 0. Otherwise Det(A) = g.c.d.{| determinant
(Ax)\: Ax is any mx m submatrix of A}. If all |determinant(Aa)\ = 0 then
Det(^4) = 0. We note that if m = n, Det(/1) = | determinant A \. If «,,-••,«„,
are integral n-vectors, Detluj, •••,t>m} is defined to be Det(F) where V is any
m x n matrix with these vectors as its rows.

Let r be any positive nonzero integer. If r > min{m,n}, Ar(A) = 0. Other-
wise Ar(A) = max{Det(/lJ | Ax is any r x n submatrix of A]. We define

The vector t> = (t>i,---,O is primitive if v # 0 and g.c.d. {vt,---,vn} = 1.
We define r[t>] = (vu---,vr) and [»]r = (vn+1-r,~-,vn), for any l ^ r | 7 .
[»]' is called the r-ending of i;. If z is an integral r-vector and A is a set (or matrix)
of minimal vectors, NA(z) = N(z) is the number of vectors in A with r-ending
congruent modulo 2 to z.

We denote by et the ith unit row vector. A matrix which contains elt •••,er

and no row vector not in the linear space generated by these vectors is called an
r-array. If B and C are m, x n and m2 x n matrices respectively, {B, C} is the
(ffij + m2) x n matrix whose rows are the rows of B followed by the rows of C.
The vectors of C are said to combine with respect to B if a linear combination
of every pair of vectors of C is a vector of B. Unless it is specifically stated other-
wise, vector always means row vector.

Two theorems are fundamental in all that follows.

THEOREM 1. If f is a positive definite quadratic form then

A^/W/XAjCOg 1

), A5(/) ^ 2

PROOF. Watson (1971).

THEOREM 2. Let f be an n-ary positive definite quadratic form with

Then • ^)-»i-
(i) ifn = 4andnt — 2,f is equivalent to

B4(xu--, x4) = X?= 1*i2 - xx(x2 + x3 + x 4 ) .

(ii) ifn = 6 and nx = 4 , / i s equivalent to

Bb(x\i •"> *6) = ^ lS ig j§6 xixj ~

(iii) if n = 7 anrf «j = 8 , / i s equivalent to

PROOF. Watson (1971).
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146 K. C. Stacey [3]

COROLLARY 3. Iffis a septenary form and A4(/) = 2 , then f is equivalent
to a form whose minimal matrix contains the 12 x 7 matrix Y4

12 whose rows
are et (1 ^ i ^ 4 ) , et + eA (1 ^ i ^ 3) , z = I * = 1 e j , z - e f (1 ^ i g 3) and

z + e4. IfX(f) contains four vectors yu y2, y3, yA, such that Det {yt, y2, y3, y4}
= 2 r/ien X(f) also contains the eight vectors | (y , ±y2 ±y3 ± y 4 ) -

PROOF. Note that if »e Y4
12 then [t>]3 = 0 and 4 [ t ] eX(B 4 ) .

DEFINITION 4. Let 4 be an o x 7 subset of a minimal matrix X(f) containing
en for some 2 ^ n ^ 6 and all (a — 1) vectors of X(f) which are in the subspace
generated by eu •••,en-^. An integral vector v is a fitting vector of A if

(i) t > # c and [v-erf- = 0,
(ii) for any y e ^ , such that t> s y + en (modulo 2) then {y,v,en} is a depen-

dent set of vectors,
(iii) for any ylty2eA such that v = yl+y2 + en (modulo 2) either

[v,y1,y2, en} is dependent or the four vectors \{v — en±yi± y2) belong to A.
We denote by F(A) the set of fitting vectors of A. Two fitting vectors v,

w e F(A) are compatible if v — w + en e F(A). A set of m fitting vectors of A is
compatible if its vectors are pairwise compatible.

LEMMA 5. Let A be a matrix as in Definition 4 and let {wlt •••, H>m} be a

set of m n-vectors with [M>; — c n ] 8 ~ " = 0 for all 1 S i :S m. If {A,w1,---,wm}

is a subset of a minimal matrix of a positive definite form then wLe F(A) for

all 1 si i ^ m and {wj, •••,wm} is a compatible set of fitting vectors.

PROOF. For each i, {/4,wJ must satisfy (ii) and (iii) above because (ii) ensures
that A3({>4, w,}) ^ 2 and (iii) ensures that either A4({/1, w,}) # 2 or A4({^, w,-}) = 2
and Corollary 3 holds for A. Hence WJGF(A). Given any pair i, j such that
1 ^ i <j ^ m, {/I, Wj, Wj} is equivalent to {A, w^Wj + en, — Wj + 2en). Hence,
by the first part, wt — Wj + eneF(A) so w( and Wj are compatible. Consequently
{»•>!,.•••,M>m} is a compatible set of fitting vectors.

The concepts of fitting vectors and compatibility are basic to our method
of enumerating perfect forms. We will find all inequivalent minimal matrices
which obey Theorem 1 and contain Y4

12 (necessary, by Corollary 3) by extend-
ing y 4

2 , one dimension at a time, by all inequivalent suitably sized compatible
sets of fitting vectors. To eliminate equivalent compatible sets, the following
observations are useful.

LEMMA 6. Let A be as in Definition 4 and let w be an integral n-vector.
(i) / / [M>]8~" is primitive, {A\{en},w} is equivalent to A.
(ii) IfveF{A), Te Aut(A) andenT = en then {A,v} is equivalent to {A,vT}.
(iii) Ifv,weF(A) then {A,v,w} is equivalent to {A, — v + 2en,w~v + en}.
(iv) Jfv,weF(A) then {A,v} is equivalent to {A, — v+ 2en}.

PROOF. This is obvious.
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[4] Perfect septenary forms 147

2. The 5-arrays

Henceforth, let / denote a perfect septenary form with A4(/) = 2. We will
carry out the enumeration of forms by finding all inequivalent minimal matrices
which obey Theorem 1, contain y4

12 and are large enough to be minimal mat-
rices of perfect forms, i.e. have at least thirty rows. The matrix requires thirty
rows because Y4

12 has twelve rows but defines only ten coefficients. We first
describe the 5-arrays which must be contained in the minimal matrices.

LEMMA 7. / / X(f) => YA
12, A6( /) < 4 and v;we X(f)\Y4

12, then [»]3 is
primitive and if [t>]3 = [H>]3 (modulo 2) then [i>]3 = + [M>]3 .

PROOF. Let v = (vl,---,v7). Since » e X ( / ) \ y 4
1 2 , [»]3 ¥= 0. If a positive in-

teger k divides vs,v6,v7 then 2k divides D = Det{e1,e2,e3,el + e2 + e3 + 2e4,v}.
As A5(/) S 2 and D ^ 0, k = 1 so [»]3 is primitive.

If A6(/) < 4, then D = T>et{eue2,e3,el + e2 + e3 + 2e4,v,w} ^ 3 for all
v,weX(f). Hence if [ » ] 3 s [H>]3 (mcd2) then the vectors e1,e2,e3,el + e2 + e3 +
2e4tv,w must be dependent otherwise D S; 4 . Consequently [«]3 = }'[H>]3 and
since [»]3 is primitive, y = ± 1.

DEFINITION 8.

y5
20 = {v. [y]2 = 0 and 5[»] is a

minimal vector of the perfect quinary form Z iS ;< ; s f,xtXj — xi(x2 + x3)}.

LEMMA 9. The fitting vectors o/{y4
I 2 ,e5} are

(i) y + e5, - y + e5 for all y e Y4
2

(ii) ± (e, + ej) + e5 for all 1 ^ j < j g 3

± (e, + ej + 2e4) j - e5 for all 1 <; i <j ^ 3

+ (e( + Cy + 2ek + 2e4) + e5 for all 1 ^ i, y, k ^ 3, i <j and k ^ i, k ^ j .

If v is any fitting vector of (Yi) and X{f)=> {y4
12,e5,»} then there exists an

integral unimodular transformation S such that X(f)S=> Ys
20.

PROOF. The calculation of fitting vectors is straightforward from Definition 4.
If v is any fitting vector of (ii) above, transformations as in Lemma 6(ii) and (iv),
can be found to show that {y4

12,e5,»} is equivalent to {Y4
i2,e5,e! + e2 + e5} = B.

By applying Corollary 3 to B we see that if X(g) => B then X(g) also contains
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[5]

and an integral unimodular S exists such that {B, C}S = Y.20

PROPOSITION 10. / is equivalent to a perfect form whose minimal matrix
20

5 > '5 Ul J 5contains 7 ' 5 , Yl6or Y,

PROOF. If A6(/) = 4, by Theorem 2 , / i s equivalent to a form g(x1,---,x7)
such that g{x1, - , x 6 , 0 ) = B6(xu---,x6). Since there exists a 6 x 6 unimodular
transformation Tsuch that Ys

20 <= X(B6)Tthe result follows.
Hence we may assume A6(/) g 3 and X(f) is y4

12 . By Lemma 7, vectors
in X(f)\Y4

12 have at most seven different 3-endings, yet, for / to be perfect,
AT(/)\Y4

12 contains at least eighteen vectors. Consequently one nonzero 3-ending
occurs at least 3 times so we may choose w e X ( / ) \ y 4

2 such that N ( [ H ] 3 ) ^
N(O] 3 ) for all weX(f)\Yl2 and IV([w]3) ^ 3. By Lemma 7 and Lemma 6(i),
there exists an integral unimodular transformation T such that {Y4

l2,u}T =
{y4

12,e5} and X(f)Tcontains at least two vectors v, H> with [u]3 = [M>]3 = [c5]3

v,w ^ es. Now to satisfy Theorem 1, D and w must belong to F({y4
12 ,e5}). By

Lemma 9 and Lemma 6(iii), if {« — es,w — es,v — rv} <£ y 4
2 , there exists an

integral unimodular S such that X(fTS) => y5
20. On the other hand, it is fairly

easy to see that, using the equivalences of Lemma 6, there are just two inequiv-
alent sets of compatible fitting vectors, producing y5

15 and y5
16, which have the

property that {v-es,w-es,v-w} c y4
12 for all suitable pairs v, w. The propo-

sition is thereby proved.

THEOREM 11. A perfect septenary form with A4 = 2 is equivalent to a form
f with

(i) A7(/) = 8

or (ii) A7(/) = 4 = A6(/)

or (iii) A7(/) ^ 4, A6(/) g 3, X(f) ^ y6
36 where Y6

36 is the 36 x 7 matrix with
rows v such that [c]1 = 0 and 6[t>] is a minimal vector of the perfect senary

form E6(x) = X isig,g6*,Xj - X1U2 + *3)

or (iv) A7(/) ^ 4, A6(/) ^ 3, X(f)
unimodular T

, 2 0 X(f) Y*6T for any integral
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[6] Perfect septenary forms 149

or (v) A7(/) ^ 4, A6(/) ^ 3, * ( / ) ^ 74
126u/ X(f) 4> Y5

20T for any integral
unimodular T. In this case we may also insist that either X(f)
N(z) g 3 for all nonzero integral z or X(f) => Y.16

Y5
15 and

PROOF. The preceding theorems, lemmas and propositions. Note that
V 3 6 -N V 2 0

In the remaining sections we will treat in turn each of the above five cate-
gories, finding all equivalent classes of perfect forms which fall in each.

3. Categories (i), (ii) and (Hi) of Theorem 11

PROPOSITION 12. 7/A7(/) = 8,/is equivalent to E-,, the absolutely extreme
form in seven variables.

PROOF. Theorem 2.

PROPOSITION 13. There is no perfect form with A7(/) ^ 4 and X(/)ZD y36.

PROOF. If X(f) => y6
36, thirty-six vectors determine twenty-one coefficients

and so at least seven more vectors are required for X(f). Consequently X{f)
has at least forty-three minimal vectors and so by Watson (1971a),/is equivalent
to £7 and A7(/) = 8.

We now turn to consider category (ii). By Theorem 2 we may assume that
X(f) => y6

30, the 30 x 7 minimal matrix whose rows v are such that [u]1 = 0
and 6[t>] is a minimal vector of B6. Since A6(/) = A7(/), for all v eX(f)\Y%°,
I [»]' I = 1 so that, for any such v, there exists an integral unimodular Tsuch that
{y6

30,»}7= {y6
30,e7}; hence we may assume that X(f) zz> {Y6

30,e7} = A.
Following Barnes (1957), p. 469 we display the symmetry of A by using

the transformation U with determinant —2,

U

1 1

1 - 1

0

0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 1 0 0

0 0 0 1 0

0 0 0 0 1

0

0

0

0 0 0 0 0 0 1

Yi°U has thirty rows e.+ e ^ l S K j S 6) and Aut(y6
30) contains the group

U£fU~l, where £f is the group of transformations which permute and arbitrarily
change the signs of the first six components of the 7-vectors.
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150 K. C. Stacey [7]

LEMMA 14. F(A)V has the following members:
(i) I ijE^i + en for all |e,| = |E,-| = 1, 1 g i <j ^ 6,
(ii) e1+'Lijk_heiei for all \ei\ = \ej\ = \ek\ = \eh\ = i, I ^ i <j < k < h ^ 6,

(iii) 2eiei + e7 for \e,\ = 1, 1 £ j £ 6,

(iv) any vector congruent modulo 2 to T,J=l et with seventh component

equal to + 1 .

If X(f) contains {A,v} then, by repeated use of Corollary 3, X{f) also contains

the submatrix I{v) defined by

(v)/((Z,,y8le l + e7)C/-1) = *
(vi) /(( I.ijk,beiei + e-;)U-i)U = {emem + epep + en \ m < p; m,pe {i,j, k,h}}
(vii) J((2ei«, + e^V-^U = {Biet ± e} + e7 11 g j < 6, i # ;} ,
(viii) ifv s Z.L^j (modulo 2) then /(rt/"1) = </>.

PROOF. A straightforward calculation. Although the results have been given
in transformed coordinates, the calculations must be performed in the original
coordinates.

PROPOSITION 15. / / X(f) contains a submatrix equivalent to
{/4,(2eiCj'+ e7)l/""1}, then f is equivalent to the perfect septenary form with
forty-two minimal vectors, B7(x) = X is;gyg7xtXj — xlx2.

PROOF. X(f) also contains the ten vectors of I((2eiei + e^U'1) and this
complete matrix defines the form.

PROPOSITION 16. The minimal matrix of every perfect form of category (ii)
contains a submatrix equivalent to {A,(2eiei + e^U'1}.

PROOF. Let us assume X(f) contains no submatrix equivalent to
{A,{2siei + e^U"1}. Consequently no two different vectors of X(f)U\AU are
congruent modulo 2.

If X(f) contains any vector v = ( X ij,h,ketei + ei)U~1, it also contains
I(v) and {A,»,/(»)} is equivalent to B = {A, w = ( Z le^U'1,^)}. B contains
thirty-eight minimal vectors and determines a form with two parameters. If
zeF(A), z is compatible with B\A and {B,z} satisfies the hypothesis of this
proposition then it can readily be seen that {B, z} is equivalent to
{BAe.+e^ + e^U-1}, {B,{e, + e3 + e^U'1} or {B,( I ^ O ^ " 1 } • On ap-
plying Corollary 3 to each of these arrays, it is seen that each implies the presence
of at least four more fitting vectors in X(f). Consequently X(f) has at least
forty-three minimal vectors and by Watson (1971a),/is equivalent to £7 .

Thus it remains to assume that X(f) contains no subset equivalent to
{A,( 13<!,)[/-'} or to {A,(2el +e7)L/-1}. The vectors of X(f)U\AU are thus
of the form (i) and (iv) of Lemma 14, and for all pairs v, weX(f)U\AU,
v — w + e7 is also of form (i) or (iv). But it is not hard to see that it is impossible
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to obtain a compatible set of more than five such vectors, whilst X(f)eA requires
at least six vectors. The result follows.

Hence we have shown by Propositions 16 and 15 that B7 is the only perfect
form belonging to category (ii). Thus categories (i), (ii) and (iii) contain only
two forms £7 and B1.

4. Category (iv) of Theorem 11

In this section it is assumed that X{f) => YJ°, but X(f)$ Y6
36T, X(f) 4> Y6

36 T
for any integral unimodular T. Following Barnes (1957), p. 482 we define

P =
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1

which has detP = 3 and which transforms Y|° to the matrix Y with rows
<r, - ej (1 <; i <j ^ 5) and e, + e} + ek (1 ^ i <j < k ^ 5). The following
lemma shows that when calculations involve only tests of equality and congruence
modulo 2 (in particular, calculation- of fitting vectors and testing compatibility)
we can work with Y instead of Y5

20to take advantage of its obvious symmetry.
Results can be transformed back to Y5

20 without loss; in particular
F({Yi°,e6}P) = F({Yi°, e6})P. We also note that Aut(Y5

20) contains PSfP-x

where £f is the group of transformations permuting the first five coordinates.

LEMMA 17. / / v = (vu •••,v1) is an integral vector, so is vP; whilst if
£ j 5

= 1 Pj = 0 (modulo 3), vP'1 is also integral. If p ^ 0 (modulo 3) Det{w1,w2,
•••,wn} = 0 (mod p) if • and only if Det{wtP, •••,wnP} = 0 (mod p) and
Det{wlt-,wm} = 0 if and only ifDetfaP.-.wJP} = 0.

PROOF. This is obvious after calculating P~i and noting that, provided g.c.d.
{p,detP} = 1, vP = 0 (modulo p) implies v = 0 (modulo p).

LEMMA 18. F({y5
20, e6})P consists of:

(0 ±y+e6for all yeYi0,
(ii) ± ( S ? - !« , - 2ej) + e6 for all 1 g j £ 5,

(iii) ± ( I f=i e, + ej) + e6 for all l g ; | 5 ,
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(iv) ± (2c, + ej) + e6for all 1 ^ i, j ^ 5; i # j , .

(v) C; + Cji + et — «A + c6 /or a// 1 ^ i,j,k,h ^ 5; i,j,k,h distinct.
If X(f) contains {YJ0 ,e6,v} then X(f) also contains the submatrix /(») de-
fined by:

(vi) I((± y + e6)P~l)P = <f> for all y e Y™,

(vii) /(( Z 5 , . ! e, - 2ej + e6)P~ ')P = {«, + es + e, + e6 , cr - e} + e6 \ 1 ^
r,s,t^ 5, r, 5, / distinct, j $ {r, s, t}},

( v i i i ) / ( ( Z ^ j C i + c . + c J P - 1 ) / 5 = {« , + « . + « y + « 6 | l ^ r < 5 ^ 5 ,

(ix) /(2c,

(x) I(et

e6)P~ l) = {c,

-ek~eh
e6)P~ ')P = {er - es

^ r g 5,

r e {i,j}, s e {k, h}} uj \

{et + ej + et + e6, -ek - eh - e, + e6 j t e { 1 , •••, 5} \ { i , ; , k, h}}.

PROOF. Calculation from the definition of fitting vectors. The matrices /(»)
are calculated by repeated use of Corollary 3. By Lemma 17, Ys

20 can be used
throughout. Its obvious symmetry simplifies the calculations a great deal

PROPOSITION 19. If X(f)P contains a subset equivalent to {Y,e6, X ;5=iC, —
2ej + e6} (1 £ 7 £ 5) then A6(/) ^ 4 .

PROOF. Any such X{f) is equivalent to a minimal matrix X(g) containing
{y5

2V6, v = (1,1,1,1, - 1 , 1 , 0 ) ^ - 1 , / ( » ) } . These thirty minimal vectors com-
pletely determine a perfect senary form equivalent to B6 and A6(B6) = 4.

LEMMA 20. Ifv is a fitting vector of Y*° of type (iii), (iv) or (v) of Lemma 18,
then C(v)= {Y^°,e6,»,/(»)} is equivalent to C((2,1,1,1,1, l ,0)P"1) .

PROOF. AS Sf c Aut( y |°P) and P ^ P " 1 cAut(y5
20), we need consider only

P = (1,2,0,0,0,1,0), w2P = (0 ,1 ,1 , -1 , -1 ,1 ,0 ) , w3P = (2,1,1,1,1,1,0)
and

0 1 0 0 0 0 0

0 0 0-1 1 0 0

1 0 1-10 0 0

1 1 0 - 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

= C(w2).

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

1 0 0 1 1 1 0

0 0 0 0 0 0 1
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[10] Perfect septenary forms 153

PROPOSITION 21. If v, weX(/)\Y5
20 and [w>]2 = [»]2 (modulo 2) then

W2 = ±M2-
PROOF. Let us assume that [H>] 2 = [t>]2 (modulo 2) but [u]2 J= + [H-]2. X(f)

may be transformed in such a way that X{f)T=> {Y5
20, w = —e6 + eltv} where

[»]2 = (1,1). If «0 = » (mod 2) and [i>0]
2 = (1,1) then there exists an integral

unimodular S such that {Y$0,w,v}S = {Y5
20, w,v0}. Hence we may assume

that vPe {(1,-1,0,0,0,1,1) , (1,1, - 1 , - 1 , 0 , 1 , 1 ) , (1,1,1,1,0,0,1,1), ( - 2 , - 1,
0,0,0,1,1), (1 ,1 ,1 ,1 , -1 ,1 ,1 )} . Since A3(/) * 2, vP = (1 , -1 ,0 ,0 ,0 ,1 ,1) and
vP = (1,1,1,0,0,1,1) are immediately excluded. Repeated application of Corol-
lary 3 shows that with the four remaining choices of v,

where e,<r = et for 1 ^ / :g 5 and e6a = e7, e7a = e6. Now the case vP =
(1,1,1,1, — 1,1, l)may be excluded by Proposition 19. Thus it remains to consider
only vPe { ( -2 , -1 ,0 ,0 ,0 ,1 ,1) , ( - 2 , - 1 , - 1 , - 1 , -1 ,1 ,1 )} . By Lemma 20, these
cases are equivalent so we take vP = ( —2, —1,0,0,0,1,1). B then defines a two
parameter form:

b(x1;---,x7) = £ 7 ( x , , - - - , x 7 ) - x 2 ( ( l - e ) x 6 + (1 - >/)x7),

so at least two more vectors Mj and u2 are required for X(f).'H [ M J 2 = (1,0)
(modulo 2), then by using A7(/) < 4, it is easy to see that + [ u j 2 G {(l,0),(l,2),
( 1 , - 2 ) } . But if [ J I J 2 = +(1,0) then X(f) contains more than twenty-eight
minimal vectors in the 6-space defined by x7 = 0; hence by Watson (1971a)
X{f) belongs to category (i), (ii) or (iii). Otherwise we have + [ i / J 2 e {(1,2),
(1, -2 )} but in these cases either det([M!]2,(l, -1 ) ) = 3 or d e U ^ ] 2 , (1,1)) = 3
and then, since A5(Y5

20) = 2, A7(/) ^ 6 so / belongs to category (i). A similar
argument shows that [« i ] 2 s (0,1) (modulo 2) is also impossible, thus
[Hi]2 = [H2]2 — (1,1) (modulo 2). In order that the two parameters e and r\
of b(x) can be determined, [ u j 2 # [«2]2 a n d since A 7 ( / ) < 4 , we may take
[«2]2 = (1,1) and [«2]2 = ( - l , l ) .

As B has thirty-eight minimal vectors, (5[«1],0,0) must belong to + Y5
20;

otherwise X(f) has at least six more vectors ending in (1,1) and this is forbidden
by Watson (1971a). If ux = (yu - , y s , 0 , 0 ) , / ( « , ) = 1 =/(>>„ •-,>'5,0,0) + 1 +
{e-r])y2 = 2 + (z-n)y2. Since | y 2 [ g l , for any (yu---,y5,0,0)e Ys

20, we
immediately have \e-r]\ = 1 and so either (0,1,0,0,0, - 1 , 1 ) or (0, -1 ,0 ,00 , - 1 ,
1) belongs to X(f). But on applying Corollary 3 again, it is seen that X(f) con-
tains a subset equivalent to Y6

36 . The result follows.

LEMMA 22. The largest set of vectors from Y5
20 which combine with res-

pect to Y5
20 has four members. Under Aut(Y5

20) there are two inequivalent sets
of three combining vectors and one set of four combining vectors.
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PROOF. The transformation

- 1 - 1 0 0 0 0 0

0 0 - 1 1 0 0 0

0 0 - 1 0 1 0 0

S= 0 - 1 - 1 0 0 0 0

- 1 0 - 1 0 0 0 0

0 0 0 0 0 1 0

^ 0 0 0 0 0 0 1

takes y5
20 to the matrix with rows c, + ej (1 ^ i ^ j g 5). y5

20S is stabilized
by Sf, the group of all permutations and arbitrary changes of sign of the first
five components; indeed by Barnes(1957, p. 469) Aut(y5

20) = SSfS'* . It is now
easy to find the inequivalent combining sets of y5

20 S. When transformed to become
subsets of Ys°P, the inequivalent combining sets are:

r l - 1 0 0 0 0 0-|

I 1 0 - 1 0 0 0 0 J '

1 - 1 0 0 0 0 0

1 0 - 1 0 0 0 0

1 0 0 - 1 0 0 0

' 1

1

.. 1

0

0

0

- 1

- 1

0

0

0

1

0

0

1

0

0

0

0^

0

0,

1

1

1

1

- 1

0

0

0

0

- 1

0

0

0

0

- 1

0

0

0

0

- 1

0

0

0

0

0

0

0

0

LEMMA 23. / / X(f) belongs to category (iv) if is equivalent to a minimal
matrix with N(l,0) 2: N(z) for all integral 2-vectors z # 0 (modulo 2) which
contains

(i) A = {Y5
2O,e6,v = (-2,-l ,0,0,0,l ,0)P-1,J(»)} if Nxlf)(z) > 5 for some

integral 2-vectors z ^ 0 (modulo 2),
or (ii) B = {Y5

2O,e6} v {(e, - e} + e6)P~l \ 2 ^ j ^ 5} if NXU)(z) ^ 5 for all
integral 2-vectors z =£ 0 (modulo 2).

A defines the eight parameter form a(xu •••,x7) = £6(x1, •••,x6)-(l-e)x2x6 +
X] = 1yfX;X7, whilst B defines the form b(x1,---,x7) = E(xu •••,x6)-(l-e)x1x6

+ £ ] = i Jixi^n • E6 was defined in Theorem 11.
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PROOF. Choose a vector veX(f)\Y£° with N([»]2) as large as possible. If
a positive integer k divides [«]2 , then

/c-A5(y5
20) = 2 / c < A 6 ( / ) < 4

so k = 1. Hence [»]2 is primitive and there exists an integral unimodular Tsuch
that {y5

2O,t>}T= {y5
20,e6}. As Y5

20 determines fifteen coefficients, X(f)T re-
quires at least thirteen vectors not in y5

20: hence NX(f)T(l,0) ^ 5. Consequently
by Proposition 21, there are at least five vectors with 2-ending (1,0). Let
X(/)T=> {y5

2o,c6,e}. By Proposition 19, vP is not of the type (ii) of Lemma 18
whilst if vP is of the type (iii), (iv) or (v) of Lemma 18, X(f)T contains a subset
equivalent to A and N( 1,0) = 8. Note that, by Watson (1971a), NX(f)T (1,0) = 8 .

The case remains where all vectors of X(f)T\{Y^°,e6} which end in (1,0)
are of the type (i) of Lemma 18. In order to ensure that X(f)T does not contain
a subset equivalent to A, we also insist that if v,weX(f)T\{Y^°,e6} then
v - w + e6 is also of type (i) (by Lemma 6(iii)). This means that the set of vectors
of X(f)T ending in (1,0) is a combining set with respect to y5

20. Lemma 22
now immediately shows that all suitable such arrays are equivalent to B.

PROPOSITION 24. X(f) is equivalent to a minimal matrix which has

N(0,1) = JV(1,1) and contains one of

(i) G, =,4U{*7,«> = ( -2 , -1,0,0,0,0,1)?"1, /(»)},
(ii) G2 = A U {«,,» = ( -1 , -2 ,0 ,0 ,0 ,0 , DP"1,/(»)},
(iii) G3 = Av{e7,v = (-2,-1,-1,-1, -1,0,1)P~\/(»)},
(iv) G4 = AU{ei,v = ( - 1 , - 2 , - 1 , - 1 , - 1 , (U)P-1,/(»)},
(v) A and two sets of vectors ending respectively in (0,1) and (1,1) or

( — 1,1) which combine with respect to Y5
20,

(vi) B and two sets of vectors ending respectively in (0,1) and (1,1) or
( — 1,1), which combine with respect to y5

20.

PROOF. By Lemma 23, X(f) is equivalent to a minimal matrix X(g) con-
taining CE{A,B} and having N(\,0) = N(z) for all integral 2-vectors z # 0
(modulo 2). If A"(0) ^{C,»} then as A5(y5

20) = 2 , 2 I 0 ] 1 j = A7(g) ^ 4 so
j [u]11 = 2 . Since [»] ' = 1 (modulo 2) for v $ C, we deduce [u]1 = + 1. Choose
teX(g)\C such that N([»]2) ^ N([w]2) for all w e I ( j ) \ C . Then there exists T
such that {C,v}T= {C,e-,} and N^((,)r(0,1) ^ ATX.9)7.(1,1). The remaining part
of the proposition is proved by considering F(Y^° Ue7) = F{Y$0 KJ e6)o where
eta = e, for 1 ^ i :g 5, e6ff = c7 and C7CT = c 6 . On considering Aut(C), the
result follows similarly to Lemma 23.

LEMMA 25. There is no perfect form of category (iv) which contains a
subset equivalent to Gj or G4.
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PROOF. The coefficients of a(x) defined by G are y^ = y3 = y4 = y5 = y7 = 1
and by G4 are 1 = y, = y7, y3 = y4 = y5 = 0. As all vectors in A'(/)\G1 and
X(f)\G4 have the same 2-ending (by Proposition 21) in neither case can the
parameters e and y2 be determined separately.

LEMMA 26. T/iere is no perfect form of category (iv) whose minimal matrix
contains a subset equivalent to G2 or G3.

PROOF. G determines the form a(x) with the relations y, = y7 = 1,
1 -f y2 = y3 = y4 = y5 and G3 determines the form a(x) with the relations
yl = y7 = 1, y2 = y3 = y4 = y5. Hence if we assume X(f) => G,- (i = 2 or 3),
X(f) requires at least three minimal vectors with 2-ending congruent modulo 2
to (1,1). Since A5(/) = 2 and A7(/) g 4 we see that if «eX(/) \G( then
W 2 e ± {(1,0, ( -1 ,1)}- ^ the vectors of A-(/)\Gj do not combine with respect
to y5

20, then by Lemmas 6 and 18, NX ( / , (1, 1) 5; 8 and A^/) contains at least
forty-four minimal vectors. But, by Watson (1971a),/ is equivalent to E-, and
does not belong to category (iv). Hence the vectors »•>,, •••, wk of X(f)\Gj combine
with respect to Ys

20.

It can be easily seen that if the minimum value of a{x) is one, 0 5S e ^ 1,
whilst if e = 0 or £ = 1, X{f) => Y£6T for some integral unimodular T. Con-
sequently, the value of e must not be integral. Let M>; = (wn, •••,wn) where
wi6 I = w,-7 = 1. For both G2 and G3, e is determined from a system of three

equations: ewj2wj6 + y3wn(wJ2 + wj3 + wJ4 + wJ5) + ybwjb\Vj-, = integer for
suitable j e {1, •••, A:}. Assume, without loss of generality that ye {1,2,3}. Consider
the determinant of the set of equations

D =

w12w16 (wi2 + wi3 + vv)4 + wls)w17 w17w16

W22W26

w3 2w3 6 . w31w36

Since w17 = w27 = w37 = 1, wi6 = w26 + w36 6 {+1 , — 1} and wit n>2, rv3 com-
bine with respect to y5

20,

1

0

0+ D = yn + yn + y^ +

where yt = (yu,---,yn) and yi = (yzi, •••,yn) a r e 2 combining vectors of
Ys

20. But it is easily seen that {(z2,z3 + z4 + z5) | (z, ,z2 , - , z , ) 6 Y5
20} =
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{±(1,0), ±(0,1) , ± ( 1 , - 2 ) , ± (0,0)}. Since e is not an integer, | D | must not
be 0 or 1. Consequently we must have (yl2,y 13 + yu + yis)e {( + l , 0 ) , ( - 1,0)}
and (y22,y23 + ^24 + y2s)e{(h - 2 ) , ( - l , 2 ) } . But then yx and y2 do not com-
bine with respect to y5

20. The lemma is thereby proved.
It remains now to consider cases (v) and (vi) of Proposition 24. We require

first the following lemma.

LEMMA 27. If yu---,yseY*° and {yi,y2,yi,y4} is a combining set with
respect to Y^°thenD = det{y1,---,y5}<2.If{yuy2,y3} combines with respect
to Y$°then D<2 unless {y\,y2,y3} is equivalent to

1 - 1 0 0 0 0 0

1 0 - 1 0 0 0 0

PROOF. D ^ A5(y5
20) = 2. If {yi,---,>'4}

 i s a combining set, by Lemma 22,
it can be transformed to {e1—eJ\j = 2,3,4,5JP"1 and as no vector of Y^°P
is congruent modulo 2 to e2 + e3 + e4 + e5 , clearly D # 2. If {yl,y2,y3} is a
combining set we can assume it to be {e^—Cj j = 2,3,4} or {et— e2, el—e3,
ei + e4 + es} a n d i1 ' s e a s y t o check that D can be two only in the latter case.

PROPOSITION 28. If X(f) belongs to cases (v) or (vi) of Proposition 24, then
X(f) is equivalent to a minimal matrix containing At = {A^^, A2 = {A,E2},
Bt = {B, E2} where El = {elt el-e2 + e-,, ey - e3 + e1, er + e4 + e5 + e7}P~1

and E2 = e2 e7, e3-e4

PROOF. Since X(f) belongs to cases (v) or (vi) of Proposition 24, we assume
X(f) contains A or B. As has been noted before X(f) j> Y<*6T for any integral
unimodular T implies that the coefficient e of a(x) or b(x) is not an integer. It
may also again be assumed that e 7 ? X ( / ) and that JV^(/)(1,O) ^ NX(fj(0,1)
= NX(/)(l> !)• The coefficients e, yl5 •••,y6 of a(x) or b(x) are determined by seven
vectors wt, •••,wr with [w,]2 = (0,1) and zu---,zt with [z,]2 = [zy]2 e
{(1,1), ( -1 ,1)} for all 1 ^ 1 < j ^ t. Here t = 7 - r and r + 1 ^ t. On writing
M>; = (wn, •••, wn) and zt = (zn,---,zn) the equations which determine the
coefficients are

= integer for ;' = 1, ••• r

BzikzJ6 + I ytZjiZj-, = i n t e g e r f o r j = 1, ••• t

where k = 1 or k = 2 according as X(f) contains B or A. Since 6 is not an in-
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teger the determinant D of these equations is not 0, 1 or — 1. The sets
{>•>!, ••-,*>,} and {zt,-->,z,} combine with respect to y5

20, so by Lemma 22, r ^ 4.
A s l + r ^ 7 — r w e need consider only r = 4 and r = 3 .

Let us first assume r — 4 . On simplifying we have

0
0
0
0

' 2 *

wnw12

w41

'31

••• w 4 5

•"' 2 1 5

••• ?35

0 i
0
0
0
1
1
1

0
0
0
0

w12

^ 2 5

where zl - z3 = >
a n d zt~ z2 =

and yt - ^ a e ^

e y5
20

As Z) # 0, ( ^ u , ^ ) # (0,0). Define ^0 by y0 = »[>,] if y u = 0, y0 = 5[y2]
if y2k = 0 and y0 = ^ i - j ^ ] otherwise. Then, since |z,-] g 1 for all 1 ^ i g 5
and (zi,---,zs,0,0)eYi° we have \D\ = D c H 5 ^ ] , 5 ^ ] . ' ^ ^ ' ^ . ^ ) . But
by Lemma 27, | D | e (0,1} so there is no suitable minimal matrix for r = 4 and
we assume the other possibility, r — 3. Treating D similarly we arrive at
\D\ = D e t f K ] , 5 O 2 ] , 5[H>3], y0, yt} where (5[M>;], 0, 0), (yh 0, 0)ey5

20 ;
{w1,M'2>»V3} is a combining set with respect to Y5

20 and (j>0,0,0), (j'!,0,0)e Y5
20.

By Lemma 27, D$ {0,1,-1} only if {'[M^], 5[M>2],
 5[M>3]} is equivalent under

Aut(y5
20) to {(1,-1,0,0,0,0,0), (1,0,-1,0,0,0,0), (1,0,0, l,l,0,0}P~K On

examining such combining sets inequivalent on A and B, the proposition
follows.

PROPOSITION 29. If X(f) belongs to cases (v) or (vi) of Proposition 24, / is
equivalent to the form 4>6{xu •••,x7) = Z isigyg?*;*/ - i(^i^2 + xxx4 + xtx6

+ x2x5 + x2x6 + 2x3x4 + 2x3xs + 2x3x6 + x4x5 + x6x7).

PROOF. On calculating the coefficients for the arrays of Proposition 28 we
have for At and Bt yt = 1 + a + P, y2 = y3 = - 1 , y4 = a, y5 = £, y6 = y
whilst for ^ 2 and B2 yx = - 1 , y2 = /?, y3 = a, y4 = a - 1, ys = a - 1, y6 = y.
Consequently no minimal matrix containing A2 which satisfies Proposition 21
can determine separately the parameters e and fi, so A2 is not a suitable subset
of X{f). Once again if the minimum value of/ is to be one and/belongs to
category (iv) we require 0 < £ < 1.
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If X{f) => B, the determinant of the definining equations is

±D= | Z U Z 1 6 (2^+2^)2^ {Zll+Zl5)zll Zl

" Z 2 i z 26
Z31Z36
Z41Z46 • •

159

>"34

Z46Z47

for combining set {ylty2,;
of vectors in Y5

20.

But it is simple to check for such a set {y1.y2.y3}, De {0, ± 1} s o that a is an
integer. Consequently, Bx is not a suitable subset of X( / ) . Similarly for B2 we
require

+ D =

{0,1,-1}

and again it is easy to check that this never happens for a combining set

With AY we require

y15

As{(W2,w1 + w4,Wi + w5)|H>e+y5
20} = ±{(0,1,1), (0,0,1), (0,1,0), (1,0,1),

(1,1,0), (1,0,0), (1 , -1 ,0) , (1 ,0 , -1) , (0,1,-1)} there are combining sets for
which IDI = 2, although not for which | D | > 2. Since 0 < e < 1, we have in
consequence, e = \. Also if a or /? is integral, the minimal matrix contains further
minima with x6 = 0, so we have a, /? e { ± £}. Since 11 + a + /? | < 1 (otherwise
we have another unsuitable minimal vector), we therefore have a = $ = — £.
Then since /(0,0,1,0,0, -1 ,1) = 1 - y ^ 1 we have y ^ 0, hence y = 0 ,
y = — ̂  or 7 = — 1 . But the form with y = — \ is not perfect whilst if 7 = 0
or }> = — 1 we obtain perfect forms as given in the proposition.

Thus, the above lemmas, and propositions have proved that there is only
one class of perfect forms belonging to category (iv), namely those equivalent
to ^6(x1 ( •••,x7) which has thirty-six minimal vectors and determinants 4/27.
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5. Category (v) of Theorem 11

In this section we search for all perfect forms/ such that A4(/) = 2 and X(f)
contains no set of twenty minimal vectors in a 5-space. By Proposition 10, it can
be assumed that X(f) => Y5

16 or, if N(z) :g 3 for all nonzero 3-vectors z, that
X ( / ) D y 5

1 5 . Further, in the proof of Proposition 10, it is shown that if
v, w 6 Ar(/)\Y4

12 and [t>]3 s [H>]3 (modulo 2) then v and w combine with respect

to y4
12.

LEMMA 30. / / X(f)^ Ys
r where r = 15 or 16 and v,»eX(f)\Y5

r then
[ r ] 2 is primitive (or maybe zero if r = 15) and [«]2 = [K>]2 (modulo 2) implies
that [v]2 = ± [w] 2 .

PROOF. If [D] 2 # 0 and k divides [t>]2 then k-A5(Y5
r) = 2k ^ A6(/") g 3

so fc = 1 and [D] 2 is primitive. Now assume that [w]2 = [H>]2 ^ 0 (modulo 2)
and [D] 2 # + [H>]2. Z ( / ) may then be transformed by an integral unimodular
transformation Tso that X(/)Tcontains {^5', wT = e6,vT} where [t)T]2 = (1,2).
Also if v0T= t>T(modulo 2) and [«0T]2 = ±(1,2) then {Ys

r,e6,v0T} is equiv-
alent to {Ys

r,e6,vT}. Using this transformation and Aut(y/) it can be readily
seen that if r = 16, we must consider vTe {(1,0,0,0,1,1,2), (0,1,0,0,1,1,2),
(0,0,0, 1,1,1,2)} and if r = 15, vTe {(1,0,0,0,1,1,2), (0,1,0,0,1,1,2), (1,1, C,
1,1,1,2), (0,0,0, 1,1,1,2)}. As the case of r = 15 is similar, we consider only
r = 16. Ifi)T= (1,0,0,0,1,1,2) then clearly A3(X(f)) = 2. Ift>T= (0, 1,0,0,1,1,2)
then, by Corollary 3 another sixteen minimal vectors belong to X(fT). After cal-
culating the coefficients defined by this array, it can be seen that there are even
more minimal vectors and twenty vectors belong to the 5-space x6 = x7 = 0.
]f » T = (0,0,0,1,1,1,2), by Corollary 3 twelve more vectors belong to X(fT)
and there are twenty vectors in the 5-space x2 = x3 = 0. Hence if r = 16,
[u]2 = [H>]2 (modulo 2) implies that [D] 2 = ± [H>]2. The proof for r = 15 is
done by a similar examination of cases.

The procedure for completing Ys
r (r = 15, 16) to a minimal matrix is now

established. Since equations from Y5
r determine (r — 2) coefficients, there exists

an integral 2-vector z ^ 0 (mod 2) such that Ys
r U {v | v e X(f), [v]2 = z (mod 2)}

determines at least (r + 3) coefficients. On transforming one such vector v to e6,
it can be shown that X(f) contains one of the fourteen inequivalent double
subscripted 6-arrays listed below. Define

A2 = { I ' sVe.e i + e6, el+e2+e3 + e4 + e6}

A3 = {y5
15, e6, e2+e6, ~e3-e^ + e6}

D2 = {Y™, <6, <i + e6, - e2 - e4 + e6}

C\ = {y56. ee. ei + e6, ex + e4 + e6, -e2 -e3-e4 + e6}
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, e6, el + c4 + e6, ex + e6, e, + e3 + e4 + e6}

161

C3 = {Yl6, «e. «i + ee> -«z ~ «4 + c6. el+e3 + e4.+ e6}.

Let w = - e 5 +«6
 an<i " = es +e6- The fourteen inequivalent 6-arrays are:

A3l = +u,el+e2

D22 = {D2) H-, c3 + w)

C31 = {C3,w,e3 + w}

C32 = {C3,M>}

C33 = {C3, e3 + w}

Cn = {Cuw}

C12 = {Cu ev-e2 + w}

C21 = {C2,»}

C22 = {C2, e1-e2 + u}

C23 = icu ei + «» 2 ci +

C24 = {C23) et~e2 + u}

u, -e3 - e4 + u}

u]

u}

PROPOSITION 31. There are six equivalence classes of perfect forms with
k4 = 2 which have no set of twenty minimal vectors in a 5-space. They are
epresented by:

<t>ig(x) = x 4 0 0-2-2-2 -2
0 4 0-2 1 1 1
0 0 4 - 2 1 0 0

-2-2-2 4 0 0 1
- 2 1 1 0 4 0 0
- 2 1 0 0 0 4 2
- 2 1 0 1 0 2 4

https://doi.org/10.1017/S1446788700015251 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700015251


162

(j)q(x) = X 4
1
2
2

K.

1
4
2
2

C. Stacey

2
2
4
L

2
2
1
4

2
2
1
1

2
2
1
2

2
2
2
2

2 2 1 1
1 4 2

[19]

K5(x) = x 6 3 3
3 6 3
3 3 6
3 3 2

-3 - 3 - 3
-2 0 - 3
-3 - 2 - 3

3 - 3 - 2 - 3
3 - 3 0 - 2
2 - 3 - 3 - 3
6 0 0 0
0 6 1 2
0 1 6 1
0 2 1 6

K6(x) = x [ 6 0 0 - 3 - 3 - 1 - 1 '
0 6 0 - 3 1 - 3 - 3
0 0 6 - 3 1 1 1

- 3 - 3 - 3 6 0 2 2
-3 1 1 0 6 - 2 - 2
- 1 - 3 1 2 - 2 6 2
- 1 - 3 1 2 - 2 2 6

K7(x) = x 4 0 0 - 2 0 0 - 2 "
0 4 0 - 2 1 0 1
0 0 4 - 2 0 - 2 1

-2 - 2 - 2 4 - 1 1 1
0 1 0 - 1 4 0 - 2
0 0 - 2 1 0 4 - 2
2 1 1 1 - 2 - 2 4

x ,

K8(x) = x 4
0
0
2
2
2
1

0
4
0

- 2
1
1

_ 2

0
0
4

- 2
1

- 1
0

- 2
- 2
- 2

4
0
1
1

- 2
1
1
0
4
2
0

- 2
1

- 1
1
2
4
0

1
- 2

0
1
0
0
4
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The first two forms above are "well-known" and have thirty-four and
thirty-two pairs of minimal vectors respectively. K5, K6 and K8 each have
thirty minimal vectors and K7 has thirty two. These perfect forms were announced
for the first time in Stacey (1975).

PROOF. Unfortunately the calculations involved in extending all the 6-arrays
are long and a computer is required. The computation required approximately
fifteen minutes on the Oxford Computing Centre's 1906A after considerable
experimentation to find a workable method.

The success of the computation depends largely on having an efficient al-
gorithm for implementing Corollary 3. For the computation the notion of com-
patible fitting vectors is extended so that if A is one of the 6-arrays listed above
<!, weF({A,e7}), v and w are compatible if and only if

(i) v-w + e7eF({A,e7}),
(ii) [»]3 = [M>]3 (modulo 2) implies v and w combine with respect to YA

12,
(hi) whenever Det{w1,H'2,M'3,H'4} = 2 for wt e {A, v, w} implies, by Corol-

ary 3, the existence of v0 with [VQ]1 = + 1 in X(f), then voeF{(A,e7}) and
he pairs {v,v0} and {w,v0} satisfy (i) and (ii) above.

The 6-arrays are extended in the following way. If v e X{f) \A then
[e]1 | A5(Y5

r) = 2 j [»] ' | g A6(/) < 4, so that [e]1 = ± 1. Choose a veX(f)\A
uch that iV([u]2) 5: N(0,1), N(l, 1). There exists an integral unimodular trans-
brmation T such that vT = e7, AT = A and X(f)T has the property that
V(l,0) 2: JV(0,1) ^ JV(1,1). The usual counting argument on the number of
loefficients to be determined gives a bound on N(0,1) and all suitably sized
:ompatible subsets of fitting vectors with 2-ending (0,1) can then be found. There
ire about 400 of these. The computer programme made elementary use of the
:quivalences of Lemma 6 to eliminate redundant arrays and always made full
ise of Corollary 3. The arrays can then be completed by searching for compatible
ubsets of F({A,e7}) with 2-ending congruent to (1,1) modulo 2. If a sufficiently
arge array is produced, it is tested to see if it defines a perfect form. The perfect
brms are then divided into equivalence classes by hand.

PROPOSTION 32. Ks(x) is not equivalent to either of the perfect forms l}7 of
\arnes (1959) or R7 (5,2) of Scott (1964) although all three have thirty mini-
lal vectors and, when the minimum value is one, determinant 3 4 - 2 ~ n .

PROOF. A4(L
2
7) = A4(R7(5,2)) = 1 but A4{K8) = 2 .
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