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A Residue Formula for SU(2)-Valued
Moment Maps

Olga Plamenevskaya

Abstract. Jeffrey and Kirwan gave expressions for intersection pairings on the reduced space M0 =

µ−1(0)/G of a Hamiltonian G-space M in terms of multiple residues. In this paper we prove a residue

formula for symplectic volumes of reduced spaces of a quasi-Hamiltonian SU(2)-space. The definition

of quasi-Hamiltonian G-spaces was introduced by Alekseev, Malkin and Meinrenken.

1 Introduction

Let (M, ω) be a compact symplectic manifold with Hamiltonian action of a com-
pact Lie group G and µ be the corresponding moment map. Jeffrey and Kirwan [5]
gave expressions for general intersection pairings on the homotopy quotient M0 =

µ−1(0)/G in terms of multiple residues of certain integrals over connected compo-

nents of the fixed point set MT of the maximal torus T ⊂ G.
In [1, 2, 3], Alekseev, Malkin, Meinrenken and Woodward developed a theory

of quasi-Hamiltonian G-spaces with the moment map taking values in a Lie group
G. For such spaces, they introduce analogs of “classical” Hamiltonian reduction,

Liouville volumes, Duistermaat-Heckmann measure, localization formulas, etc. The
goal of this note is to obtain a quasi-Hamiltonian residue localization formula for the
special case G = SU(2).

We first introduce some notation. Let T = S1 ⊂ SU(2) be a choice of a Cartan

circle of G = SU(2) with t, g the corresponding Lie algebras. Fix a positive Weyl
chamber t+ ⊂ t. Let α be the unique positive root of t, and λ ∈ t∗ the fundamental
weight. We identify g and g∗ via a scalar product on g such that (α, α) = 2, and
write α = 2λ. Note that this choice of the inner product implies that Vol T =

√
2,

Vol G =
√

2/2π. We parameterize the alcove A ∼= [0, 1], t ∈ [0, 1] corresponding to
tλ ∈ t.

We shall briefly describe the results of [1, 2]. As we are concerned with the case
G = SU(2), we give below the formulas applied to SU(2) and do not state the results

for the general case of a compact connected group G. Let θ = g−1 d g and θ = d gg−1

denote the left- and right-invariant Maurer-Cartan forms on G = SU(2), and let χ
be the canonical closed bi-invariant 3-form on G,

χ =
1

12
(θ, [θ, θ]) =

1

12
(θ, [θ, θ]).

Definition 1 ([1]) A quasi-Hamiltonian G-space is a G-manifold with an invariant

2-form ω ∈ Ω(M)G and an equivariant map Φ ∈ C∞(M, G)G (the “moment map”),
such that:
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(i) The differential of ω is given by d ω = −Φ
∗χ.

(ii) The moment map satisfies

ı(vξ) =
1

2
Φ

∗(θ + θ, ξ).

(iii) At each x ∈ M, the kernel of ωx is given by

ker ωx = {vξ , ξ ∈ ker(AdΦ(x) +1)}.

Similarly to the Meyer-Marsden-Weinstein reduction, the quasi-Hamiltonian
reduced phase spaces are defined in the following way. Let g ∈ G be a regular value of
the moment map Φ, then the pre-image Φ

−1(g) is a smooth submanifold on which
the action of the centralizer Gg is locally free. The reduced space Mg = Φ

−1(g)/Gg is

a symplectic orbifold.

As in the Hamiltonian case, there is the volume form Γ on M, called the Liouville
form. For G = SU(2) it is defined as follows. By equivariance of the moment map
it suffices to define Γ for points x ∈ M such that Φ(x) ∈ T. If Φ(x) = exp(tλ), and

t 6= ±1/2, then

Γx =
1

cos πt
(exp ω)[top].

The denominator cos πt cancels the zeroes of exp ω arising because of condition (iii),
so Γ extends smoothly to all points of Φ

−1(T).

The Duistermaat-Heckman measure ̺ on G is now defined as the push-forward
of the Liouville form under the moment map,

̺ = Φ∗Γ.

We shall consider the DH function, i.e., the density of this measure with respect to
the Haar measure, and use the same notation for it, writing

̺ = ̺(g) d VolG .

As in the Hamiltonian setting, the Duistermaat-Heckmann measure is related to vol-

umes of the reduced spaces. Let g ∈ G be a regular value of Φ, and Mg the corre-
sponding reduced space. Then ̺ is smooth at g. Let k be the cardinality of a generic
stabilizer for Gg-action on Φ

−1(g). Then for the reduced space at g = exp(tλ) with
t ∈ (0, 1) we have

(1) Vol(Mg) = k
2 sin πt√

2
̺(g),

and for central elements g = ±e

(2) Vol(Mg) = k
2π√

2
̺(g).
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In the case of Hamiltonian torus actions, the localization formula by Berline-
Vergne[4] gives an expression for the Fourier-Laplace transform of the DH function

in terms of integrals over fixed point manifolds of the torus subgroup generated by ξ,

∫

M

eiπ〈Φ,ξ〉 exp ω =

∑

F∈F(ξ)

∫

F

exp(ωF)

Eul(νF, ξ)
eiπ〈Φ,ξ〉,

where Eul(νF, ξ) is the equivariant Euler class. The quasi-Hamiltonian counterpart
of this formula, valid for arbitrary compact connected Lie group G, deals with the
Fourier coefficients of the Duistermaat-Heckmann function, which localize on the

fixed point manifolds of certain circle subgroups of G.
Let F be the set of connected components F ⊂ M of the fixed point set of the

Cartan circle T ⊂ SU(2). Each F ∈ F is a symplectic manifold with the pull-back
ωF of ω as a 2-form. By equivariance, the restriction Φ|F is constant and sends F to

a point of T. Write ΦF = exp(µFλ), introducing the numbers µF ∈ (−1, 1], and let
Φ

nλ
F stand for eπinµF . We denote by F+ the set of components F ∈ F with Φ ∈ A, that

is, µF ≥ 0. Orientations of M and F induce the orientation on the normal bundle νF ,
and the T-equivariant Euler class Eul(νF, · ) is defined.

Recall that irreducible representations of SU(2) are labelled by their highest
weights nλ, n = 0, 1, 2, . . . . The dimension of the representation Vn with the highest
weight nλ is dim Vn = n + 1. Let χn denote the character of Vn.

Theorem 1 (quasi-Hamiltonian localization formula, [2]) The Fourier coefficients

of the DH function are given by

(3) 〈̺, χn〉 = dim Vn

∑

F∈F

∫

F

exp(ωF)

Eul(νF, 2πi(n + 1)λ)
Φ

(n+1)λ
F .

The DH function is then reconstructed as ̺(g) =
1

Vol G

∑

n〈̺, χn〉χn(g−1).

2 The Residue Formula

The purpose of this note is to obtain a quasi-Hamiltonian residue formula for the
Liouville volumes of the reduced phase spaces for SU(2)-actions. Because of (1) and

(2), this is equivalent to giving a formula for the DH function ̺(g). Since ̺(g) is a
function of conjugacy classes, it suffices to evaluate it at the elements of the Cartan
circle, g = exp(tλ).

Theorem 2 The function ̺(t) is a sum of contributions ̺F(t) of the components

F ∈ F+,

̺(exp(tλ)) =

∑

F∈F+

̺F(exp(tλ)),

where ̺F(exp(tλ)) corresponding to µF ∈ (0, 1) are given by

(4) ̺F(exp(tλ)) = −4π2i√
2

1

sin πt
Res0

zeπizµF sin(πtz)

e2πiz − 1

∫

F

exp(ωF)

Eul(νF, 2πizλ)
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for 0 < t < µF , and

(5) ̺F(exp(tλ)) =
4π2i√

2

1

sin πt
Res0

zeπiz(µF +1) sin
(

zπ(1− t)
)

e2πiz − 1

∫

F

exp(ωF)

Eul(νF, 2πizλ)

for µF < t < 1.

If µF = 0 or 1, (4) and (5) are valid if the right hand side is multiplied by 1/2.

If t = 0 or t = 1 is a regular value of ̺(exp(tλ)) (i.e., e or −e is a regular value of

the moment map), then

̺F(e) = −4π2i√
2

Res0

z2eπizµF

e2πiz − 1

∫

F

exp(ωF)

Eul(νF, 2πizλ)
,(6)

̺F(−e) =
4π2i√

2
Res0

z2eiz(µF+π)

e2πiz − 1

∫

F

exp(ωF)

Eul(νF, 2πizλ)
.(7)

Note that in the case G = SU(2) the Jeffrey-Kirwan formula for the Liouville
volume of µ−1(0)/G (i.e., the value of the standard DH function at zero) gives

̺(0) = −1

2
Res0 z2

∑

F∈F+

eizµT (F)

∫

F

eiωF

Eul(νF, z)
,

F+ denoting the set of the components F for which µT(F) > 0. Even in the case of

Hamiltonian G-spaces our formulas look different as we work with discrete Fourier
series instead of continuous Fourier transform used in[5].

In the proof of the Theorem, we shall use the following lemma.

Lemma 1 Let f (z) be a rational function with the only pole at zero, such that

f (z)→ 0 as z →∞. Then for 0 < γ < 2π

(8)
∑

m∈Z,m6=0

eimγ f (m) = −2πi Res0

f (z)eiγz

e2πiz − 1
,

and for −2π < γ < 0

(9)
∑

m∈Z,m6=0

eimγ f (m) = −2πi Res0

f (z)eiγz

1− e−2πiz
.

This is a one-dimensional case of a lemma of Szenes [7]; although in [7] the ratio-
nal function f is required to be of order−2 or less, the result holds true for functions
of order−1 as well.

Proof of Theorem 2 We shall make use of Theorem 1 and sum up the Fourier series.
Introduce the functions ˜̺F(exp(tλ)) with the Fourier coefficients

(10) 〈 ˜̺F, χn〉 = dim Vn

∫

F

exp(ωF)

Eul(νF, 2πi(n + 1)λ)
Φ

(n+1)λ
F ,
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so that by (3)

̺(t) =

∑

F∈F

˜̺F(t).

Recall that all the characters of SU(2) are real and have the property χn(g) =

χn(g−1), so we can just write ̺(g) =
2π√

2

∑

〈̺, χn〉χn(g). Further, the character χn is

given at g = exp(tλ) by the Weyl character formula,

χn(exp(tλ)) =
sin(π(n + 1)t)

sin πt
.

Substituting this into (10) and putting together the Fourier series, we get

˜̺F(exp(tλ)) =
2π√

2

∑

n≥0

n + 1

2i sin πt
(eπi(n+1)t−eπi(n+1)t )

∫

F

exp(ωF)

Eul(νF, 2πi(n + 1)λ)
Φ

(n+1)λ
F .

We now gather the components F ∈ F of the fixed point set into pairs F, F ′
= Fw

with F ∈ F+ by means of the Weyl element w =
(

0 1
−1 0

)

. For F ∈ F with µF 6= 0, 1 we
let ̺F = ˜̺F + ˜̺F ′ . If µF = 0 or 1, then F = F ′, and we denote ̺F = ˜̺F =

1
2
(˜̺F + ˜̺F ′).

Then
̺(exp(tλ)) =

∑

F∈F+

̺F

(

exp(tλ)
)

.

Use the change of variables y = xw to relate the functions ˜̺F and ˜̺F ′ . For h ∈ S1 we
have hw = wh−1, so the action of 2πinλ at νF ′ corresponds to the action of−2πinλ
at νF . The form ω is invariant, then

∫

F ′

exp(ωF ′)

Eul(νF ′ , 2πinλ)
=

∫

F

exp(ωF)

Eul(νF,−2πinλ)
.

By the equivariance of the moment map, ΦF ′ = Φ
−1
F .

Now pick together the terms with eπi(n+1)t from ˜̺F and those with e−πi(n+1)t from
˜̺F ′ , and vice versa. Substituting m = n + 1 and Φ

nλ
F = eπinµF , we get

(11) ̺F(exp(tλ))

=
2π√

2

1

2i sin πt

∑

m∈Z,m6=0

m(eπim(t+µF ) − e−πim(t−µF ))

∫

F

exp(ωF)

Eul(νF, 2πimλ)
.

(Here we assume that ΦF 6= ±e; otherwise a factor 1/2 is needed).
We assume that the moment map has regular points. It follows that the codimen-

sion of F in M must be at least 4. Then the rational function 1/Eul(νF, 2πizλ) is of

order of at least 1/z2. It means that (11) consists of two series to which the Lemma
applies.

If t < µF , both series sum up by means of (8), and we get

̺F(t) = −4π2i√
2

1

sin πt
Res0

zeπizµF sin(πtz)

e2πiz − 1

∫

F

exp(ωF)

Eul(νF, 2πizλ)
,
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which is exactly (4). If t > µF , we use both (8) and (9), and obtain the formula (5).
To get the formulas for ̺F with ΦF = ±e we must divide (4) and (5) by 2.

If e or −e are the regular values of the moment map, we can consider the limits
t → 0 and t → 1 to obtain the formulas (6) and (7), respectively.

Example 1 We apply the obtained residue formulas to the following example of a

quasi-Hamiltonian SU(2)-space from [2]. The space is constructed as follows. Take
C

2 equipped with its natural symplectic form and defining SU(2)-action, and let
Φ0 : C

2 → su(2) be its classical moment map. Let Y1 = Y2 ⊂ C
2 be the open ball

given as the pre-image Φ
−1
0 (G · [0, λ)), and Φ1,0 = Φ2,0 the restrictions of Φ0. Then

Y3 = Φ
−1
1,0 ((0, λ))

as a Hamiltonian U(1)-space is equivariantly symplectomorphic to

Y ′
3 = Φ

−1
2,0 ((−λ, 0))

via the isomorphism (z, ξ)→ (z, ξ − λ). We now glue the spaces Y1 and Y2 together

along their boundaries by means of the embeddings

Y1 ← SU(2)×U (1) Y3 → Y2,

and obtain a sphere S4 with SU(2) acting by rotations.
The action has two fixed points, one with Φ = e, the other with Φ = −e.The Euler

classes are given by Eul(νF, ξ) = ∓〈λ, ξ〉2 for ξ ∈ t, so Eul(νF, 2πizλ) = ±π2z2.
Denoting by ̺0, ̺1 the contributions of the fixed points, we write

̺
(

exp(tλ)
)

= ̺0

(

exp(tλ)
)

+ ̺1

(

exp(tλ)
)

.

Using the formula (4) (with factor 1/2), we get

̺1

(

exp(tλ)
)

=
2π2i√

2

1

sin πt
Res0

zeπizt/sin(πtz)

e2πiz − 1

1

Eul(ν1, 2πzλ)
.

Computing the residue, we get

̺1

(

exp(tλ)
)

=
t√

2 sin πt
.

In the same way

̺0

(

exp(tλ)
)

=
1− t√
2 sin πt

,

hence

̺
(

exp(tλ)
)

=
1√

2 sin πt
.

Now use (1), and get Vol Mg = 1. This is obviously the correct answer, because the
reduced spaces are just points.
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Example 2 Let us now apply our residue formula to an SU(2)-space SU(2)2n ob-
tained by means of a fusion product introduced in [1].

Given a quasi-Hamiltonian G × G-space M with 2-form moment map Φ =

(Φ1, Φ2), we can consider M as a G-space with a diagonal G-action. Then M with
moment map Φ̃ = Φ1Φ2 and 2-form ω̃ = ω + 1

2
(Φ∗

1θ, Φ∗
2θ) is a quasi-Hamiltonian

G-space. Taking two quasi-Hamiltonian G-spaces M1, M2, we consider the diagonal
G-action on the G× G-space M1 ×M2, and obtain the fusion product M1 ⊛ M2.

Now, following [1], consider a double D(SU(2)), that is, the SU (2)×SU(2)-space
SU(2)× SU(2) defined as follows. The group action is given by

(a, b)(g1,g2)
= (g1ag−1

2 , g2bg−1
1 ),

the moment map is Φ = (Φ1, Φ2), where

Φ1(a, b) = ab, Φ2(a, b) = a−1b−1,

and the 2-form is

ωD =
1

2
(a∗θ, b∗θ) +

1

2
(a∗θ, b∗θ).

We can get a G-space D(SU(2)), applying fusion to D(SU(2)). The group SU(2) acts
by conjugation on each factor of D(SU(2)) = SU(2)× SU(2), and the moment map
is Φ(a, b) = aba−1b−1

= [a, b].

We shall consider the quasi-Hamiltonian SU(2)-space SU(2)2n obtained as a fu-
sion product of n copies of D(SU(2)). The fixed point set of the T-action has only one

component F, which is a product of 2n copies of T ⊂ SU(2). The moment map Φ

sends this set to e, so we must insert the factor 1/2 into the formula (5). To compute
the Euler class Eul(νF, · ), note that the normal bundle is trivial and can be identified
with (g/t)2n, and Eul(νF, 2πzλ) = z2n(〈2λ, 2πiλ〉〈−2λ, 2πiλ〉)n

= (2z)2nπ2n.

For the double D(SU(2)), the form exp(ω̃T×T) coincides with the Riemannian

volume form induced by our choice of the inner product on g. As the restriction of
the moment map to the torus in the fusion product is trivial, at points of the torus
this form remains intact under fusion. Then the form exp(ωF)[top] on F = T2n is just
the Riemannian volume form, and we have

∫

exp(ωF) = (Vol T)2n
= 2n.

Substituting everything into (5), we get

̺
(

exp(tλ)
)

=
2π√

2

i

2nπ2n−1 sin πt
Res0

eπiz sin
(

zπ(1− t)
)

z2n−1(e2πiz − 1)
.

This can be re-written as

̺
(

exp(tλ)
)

=
i
√

2

2nπ2n−2(2n− 2)! sin πt

∂2n−2

∂z2n−2

( eπiz sin
(

zπ(1− t)
)

e2πiz − 1

)

∣

∣

∣

∣

z=0

.
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If n = 1, for the space D(SU(2)) we get

̺(exp(tλ)) =
1− t

2
√

2 sin πt

for t ∈ (0, 1).
To find the volumes of the reduced spaces, note that the generic stabilizer is just

the center of SU(2), which consists of two points. Using (1), we have

Vol(Mg) = 1− t.

As shown in [3], fusion products can be interpreted as moduli spaces of flat con-
nections on surfaces, so the above computation yields the answer given by Witten’s

formula for symplectic volumes of the corresponding moduli spaces [8, 6, 3].
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