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1. Introduction. A tournament Tn is a set of n nodes al9 a2,..., an such that every 

pair (ai9 a3) of distinct nodes is joined by exactly one of the oriented edges ataj or 

a fix. If a^j is in Tn, then we say that at dominates a3- and write a{->aj. 
The (automorphism) group G(Tn) of a tournament Tn is the group of all permuta­

tions <f> of the nodes of Tn such that </>(a)-></>(b) if and only if a->b. It is known [9] that 
there exist tournaments whose group is abstractly isomorphic to a given group H 
if and only if H has odd order; thus all tournament groups are solvable, by the 
Feit-Thompson Theorem [7]. 

If we label q=pn nodes with the elements of the Galois field GF(q) and let 
ai->aj if and only if aj — a{ is a square in GF(q), then the resulting configuration 
will be a tournament when #=3(mod 4), that is, if n is odd and /?=3(mod 4); we 
call this tournament the (quadratic) residue tournament Rq. Our main object here is 
to determine the group G(Rq) of the residue tournament Rq. 

The automorphism groups of certain other specific graphs and tournaments have 
been considered, for example, in [1], [2], [8]. References on the groups of graphs in 
general and tournaments in particular may be found in [11] and [10]. 

2. Preliminary results. Finding G(Rq) is equivalent to finding all permutations </> 
of the elements of GF{q) such that a{—a5 is a square in GF(q) if and only if ^ ( ^ ) -
(f>(aj) is a square in GF(q). In what follows we shall use the terminology and 
notation of Wielandt [15], and we will not repeat any of the usual definitions here. 

Let a be the power of a prime, say a =pk. Let ^(n, a) be the group of all permuta­
tions of GF(an) of the form x->bxa, where b is a non-zero element of GF(an) and a 
is an automorphism of GF(an) over GF(a). Let GL(n, a) denote, as usual, the 
general linear group of all non-singular n x n matrices with entries in GF(a). In a 
recent paper [12], D. S. Passman has proved the following result. 

THEOREM 1. Let a =pk, where p is a prime, and suppose G is a solvable subgroup 
ofGL(n9 a) such that 

an—l\ 
m J | G| for some divisor m ^ n ofn. 

Then either G<^(n, a) or else (n, a) = (2, 3), (2, 5), (2, 7), (2, 11), (2, 23), (2, 47), 
(4, 3) or (6, 2). 
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Let £f (n, p) denote the group of all permutations of the elements of GF(pn) of 
the form x->sx° + b, where s is a non-zero square of GF(pn), a is an automorphism 
of GF(pn) and b is arbitrary in GF(pn). 

3. Main result 

THEOREM 2. Ifq =pn = 3(mod 4), then G(Rq) = S?(n, p). 

Proof. It is clear that <9p(n,p)<G(Rq). The non-trivial squares and non-squares 
of GF(pn) are the nodes dominated by 0 and dominating 0, respectively. Con­
sequently, ^0(n9 p), the subgroup of £f(n, p) fixing 0, must permute the squares 
among themselves and the non-squares among themselves. Since S^0(n,p) is 
transitive on the (q—1)/2 squares and on the (q—1)/2 non-squares, it follows that 
G(Rq) is 3/2-transitive; hence it is either primitive or Frobenius ([15] p. 25). When 
« > 1 , the automorphism group of GF(pn) is non-trivial (fixing GF(p)), so that 
G(Rq) is not Frobenius. When n — 1, G(Rq) is also primitive because it is transitive 
of prime degree. 

To show that G(Rq)<£f(n,p) we first consider the case n= 1. Then <$f(l,p) is the 

group of 1^1 permutations of the form x->sx+b, since GF(p) admits only the 

identity automorphism. For any a^p in GF(p), it is well known [15, p. 5] that 

{Gm = \*™J\.\p°W\-\Ga0(Rq)\. 

But |Ga/?| = l for a solvable transitive group G of prime degree, by a result of 
Galois [15, p. 29]. Consequently, 

so G(Rq) = £f(l,p); this case may also be treated as a direct consequence of a 
classical theorem of Burnside (see, for example, Passman [13, p. 53]) which used 
the theory of group characters. 

Suppose now that n> 1. Let A be a minimal normal subgroup of the primitive, 
solvable group G=G(Rq). Then A is an elementary abelian /?-group of order pn 

([15] p. 28). Since G is primitive, G0 is maximal. Every normal subgroup of a primitive 
group is transitive, so A is not contained in G0; hence G=AG0. It is not difficult 
to show that A is its own centralizer C(A) in G since A is regular and abelian. 
Consequently, GQxG/C(A) and this is isomorphic to a subgroup of Aut^4, the 
automorphism group of A (see Scott [14] p. 50; Dixon [5], [6], [7] used these 
observations to treat other problems). Since Aut^4 is isomorphic to GL(n,p) [14, 
p. 125], we may regard G0 as being a solvable subgroup of GL(n,p). 

Now let m ̂  n be any divisor of n. Clearly (pn— l)/(pm— 1) is an integer, since it is 
the index of the multiplicative group of GF(pm) in the multiplicative group of 
GF(pn). Since ^0(n,p)<G0 we have 

\Go\ = t\^0(n9p)\ = tn?-~ 
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for some odd integer t, and it follows easily that ( />B- l) /(pm- l) divides |G0|. 
Therefore, the hypotheses of Theorem 1 are satisfied (when k = 1), and since n is odd 
we may conclude that GQ<^{n,p). 

Now G^ST(n,p) because ^(n,p) is transitive on the non-zero elements of 
GF(pn). Since £fQ{n9p) is of index 2 in &~(n,p)9 it follows that G0==Sf0(n,p). Hence 

\G\ = \A\\G0\ = p " - n ^ = \y(n,p)\, 

and since ^(n, p) < G we have that G = G(Rq) = ^(n, p). This completes the proof of 
Theorem 2. 

4. An application 

THEOREM 3. Let F be a finite field, where \F\ =pn== 3 (mod 4), and let <f> be a 

permutation of F which fixes the elements of the prime field KofF; a necessary and 
sufficient condition that </> be an automorphism of F is that <j>(a) — <f>(b) is a square in F 
if and only if a — b is a square in F. 

Proof. If <j> is an automorphism of F then the condition is clearly necessary. 
Theorem 2 says that the set of permutations of F satisfying the conditon forms 

the group G = ̂ (n,p). But the only elements of G which fix K are of the form 
x->xa, where a belongs to Aut F, since all others move either 0 or 1. This completes 
the proof of Theorem 3. 

It can be shown that Theorem 2 is actually a special case of a result due to W. M. Kantor 
(unpublished) which is stated without proof in the recent book by Dembowski [3, p. 98]. 
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