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Abstract

Let (X, d, µ) be a metric measure space endowed with a distance d and a nonnegative, Borel, doubling
measure µ. Let L be a nonnegative self-adjoint operator on L2(X). Assume that the (heat) kernel associated
to the semigroup e−tL satisfies a Gaussian upper bound. In this paper, we prove that for any p ∈ (0,∞) and
w ∈ A∞, the weighted Hardy space Hp

L,S ,w(X) associated with L in terms of the Lusin (area) function and
the weighted Hardy space Hp

L,G,w(X) associated with L in terms of the Littlewood–Paley function coincide
and their norms are equivalent. This improves a recent result of Duong et al. [‘A Littlewood–Paley type
decomposition and weighted Hardy spaces associated with operators’, J. Geom. Anal. 26 (2016), 1617–
1646], who proved that Hp

L,S ,w(X) = Hp
L,G,w(X) for p ∈ (0, 1] and w ∈ A∞ by imposing an extra assumption

of a Moser-type boundedness condition on L. Our result is new even in the unweighted setting, that is,
when w ≡ 1.
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1. Introduction

In recent years the study of Hardy spaces associated with operators has attracted
a lot of attention. This topic was initiated by Auscher et al. [1], who introduced
the Hardy space H1

L(Rn) associated with an operator L whose heat kernel satisfies a
pointwise Poisson upper bound. Later, Duong and Yan [11, 12] introduced BMO-type
spaces (spaces of functions of bounded mean oscillation) associated with operators
and investigated the duality between H1

L(Rn) and BMOL∗(Rn), where L∗ denotes
the adjoint of L in L2(Rn). Recently, Auscher et al. [2] studied the Hardy space
H1 associated with the Hodge Laplacian on a Riemannian manifold. Meanwhile
Hofmann and Mayboroda [21] investigated Hardy spaces associated with a second-
order divergence form elliptic operator L on Rn with complex coefficients. The theory
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of the Hardy spaces Hp
L(X), 1 ≤ p <∞, on a metric measure space (X, d, µ) associated

with a nonnegative self-adjoint operator L satisfying Davies–Gaffney estimates was
developed in [20]. For more developments of the theory of Hardy spaces associated
with operators, we refer to [3, 8, 13, 22, 23, 30] and the references therein. Although
the assumptions on the operators L may vary from one paper to another, mostly the
considered operators are of three types: (a) operators satisfying pointwise Gaussian (or
Poisson) heat kernel bounds, (b) operators satisfying Davies–Gaffney-type estimates
and (c) operators satisfying bounded H∞ functional calculus. In the case where
L = −∆ + V is a Schrödinger operator with a locally integrable nonnegative potential
V , the Hp and BMO spaces associated with L were investigated by Dziubański and
Zienkiewicz [15, 16]. Note that such a Schrödinger operator L is a special example of
nonnegative self-adjoint operators satisfying Gaussian heat kernel upper bounds. But
it should be mentioned that the theory of Hardy spaces associated with such a special L
is more satisfactory. For instance, H1

−∆+V (Rn) can be characterized by the generalized
Riesz transform ∇(−∆ + V)−1/2; see [14].

It is also natural to consider weighted Hardy spaces Hp
L,w associated with an

operator L with an appropriate weight w. This was first done by Song and Yan [26],
who introduced the weighted Hardy spaces H1

L,w(Rn) associated with a Schrödinger
operator L = −∆ + V and proved that the generalized Riesz transform ∇L−1/2 is
bounded from H1

L,w(Rn) to H1
w(Rn), where H1

w(Rn) is the classical weighted Hardy
space introduced by Garcia-Cuerva [17]. Recently, Bui and Duong [4] studied
weighted Hardy spaces Hp

L,w(X), 0 < p ≤ 1, on a metric measure space (X, d, µ)
associated with a nonnegative self-adjoint operator L satisfying Davies–Gaffney
estimates. The spaces Hp

L,w(X) in [4] were defined by means of the Lusin (area)
function associated with the heat semigroup generated by L. In a more recent paper
[9], Duong et al. considered two kinds of weighted Hardy spaces on a metric measure
space (X, d, µ) associated with an operator L whose heat kernel satisfies the Gaussian
upper bound. One kind is defined by means of the Lusin (area) function associated
with the heat semigroup generated by L, while the other kind is defined by means of
the Littlewood–Paley function associated with the heat semigroup generated by L. A
main contribution in [9] is to establish the equivalence between these two kinds of
weighted spaces. However, to achieve this goal, Duong et al. in [9] needed to impose
an extra assumption of a Moser-type boundedness condition on the operator L.

Our aim in the present paper is to prove that the two kinds of weighted Hardy
spaces associated with operators introduced in [9] are equivalent, without assuming
the Moser-type boundedness condition on the operator L. Before we state our main
result, let us fix our setting. Let (X, d, µ) be a metric measure space, that is, d is a
distance on a set X and µ is a Borel measure with respect to the topology induced by
the distance d. We always assume that µ(X) =∞. Let B(x, r) denote the open ball with
center x ∈ X and radius r > 0, and set V(x, r) = µ(B(x, r)), the volume of B(x, r). We
often just use B instead of B(x, r). We assume that the metric measure space (X, ρ, µ)
satisfies the doubling condition, that is, there exists a constant C > 0 such that

V(x, 2r) ≤ CV(x, r) (1.1)
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for all x ∈ X and r > 0. Recall that a weight w ≥ 0 on X is said to belong to the
Muckenhoupt class Ap for a given p, 1 < p <∞, if( 1

µ(B)

∫
B

w(x) dµ(x)
)( 1
µ(B)

∫
B

w−1/(p−1)(x) dµ(x)
)p−1
≤ C

with the constant C independent of the ball B. The class A1 is defined by letting p→ 1,
that is, for every ball B ⊂ X,( 1

µ(B)

∫
B

w(x) dµ(x)
)
‖w−1‖L∞(B) ≤ C

with the constant C independent of the ball B. Let A∞ :=
⋃

1≤p<∞ Ap and, for any
w ∈ A∞, define

qw := inf{q ∈ [1,∞) : w ∈ Ap},

the critical index of w. For 1 < p <∞, the weighted Lebesgue space Lp
w(X) is defined

to be the space of all Lebesgue measurable functions f for which

‖ f ‖Lp
w(X) :=

∫
X
| f (x)|pw(x) dµ(x) <∞.

In the present paper, we assume that L is a densely defined operator on L2(X)
satisfying the following two properties:

(H1) L is a nonnegative self-adjoint operator on L2(X);
(H2) the kernel of e−tL, denoted by pt(x, y), is a measurable function on X × X and

satisfies a Gaussian upper bound, that is,

|pt(x, y)| ≤
C

V(x,
√

t)
exp

(
−

d2(x, y)
ct

)
(1.2)

for all t > 0 and x, y ∈ X, where C and c are positive constants.

Given an operator L satisfying (H1)–(H2) and a function f ∈ L2(X), consider the
following Lusin (area) function S L( f ) and Littlewood–Paley function GL( f ) associated
with the heat semigroup generated by L:

S L( f )(x) :=
(∫ ∞

0

∫
d(y,x)<t

|t2Le−t2L f (y)|2
dµ(y)
V(x, t)

dt
t

)1/2

and

GL( f )(x) :=
(∫ ∞

0
|t2Le−t2L f (x)|2

dt
t

)1/2
.

We shall be concerned with the weighted Hardy spaces Hp
L,S ,w(X) and Hp

L,S ,w(X) for
0 < p <∞ and w ∈ A∞, which we define by means of the Lusin (area) function and the
Littlewood–Paley function as follows.
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Definition 1.1. Let L be an operator satisfying (H1)–(H2) and w ∈ A∞.
(i) The Hardy space Hp

L,S ,w(X), 0 < p < ∞, is defined as the completion of { f ∈
L2(X) : ‖S L f ‖Lp

w(X) <∞} with norm
‖ f ‖Hp

L,S ,w(X) := ‖S L f ‖Lp
w(X).

(ii) The Hardy space Hp
L,G,w(X), 0 < p < ∞, is defined as the completion of { f ∈

L2(X) : ‖GL f ‖Lp
w(X) <∞} with norm

‖ f ‖Hp
L,G,w(X) := ‖GL f ‖Lp

w(X).

Under the assumptions (H1)–(H2) of L, Duong et al. [9] proved that Hp
L,S ,w(X) ⊂

Hp
L,G,w(X) for p ∈ (0, 1] and w ∈ A∞. However, in order to show the converse inclusion

Hp
L,G,w(X) ⊂ Hp

L,S ,w(X), they needed to impose the following extra assumption on the
operator L:

(H3) there exists some 0 < q < 1 such that every solution u(x, t) to the equation
L̃u := −utt + Lu = 0

on X × (0,∞) satisfies the following estimate for each ball B(Y0, r) ⊂ X×:

sup
Y∈B(Y0,r)

|u(Y)| ≤ C
( 1
V(y0, r)r

∫
B(Y0,2r)

|u(Y)|q dY
)1/q

for any Y0 = (y0, t0) ∈ X × (0,∞) and 0 < r < t0/2.

In [9], the assumption (H3) is called the Moser-type boundedness condition. Under
the assumptions (H1)–(H3) of L, Duong et al. [9] showed that Hp

L,G,w(X) ⊂ Hp
L,S ,w(X)

for p ∈ (0, 1] and w ∈ A∞. However, as mentioned in [9], it was not clear whether or
not Hp

L,G,w(X) ⊂ Hp
L,S ,w(X) when L merely satisfies (H1)–(H2). The aim of the present

paper is to give an affirmative answer to this question. Our main result can be stated
as follows.

Theorem 1.2. Assume that L satisfies (H1)–(H2). Let 0 < p < ∞ and w ∈ A∞. Then
the spaces Hp

L,S ,w(X) and Hp
L,G,w(X) coincide and their norms are equivalent.

As noted in [9], under the assumptions (H1)–(H2), the Lusin function S L( f ) and
the Littlewood–Paley function GL( f ) do not satisfy the standard regularity of the so-
called Calderón–Zygmund operators; thus, standard techniques of Calderón–Zygmund
theory [7, 29] are not applicable. The lack of smoothness of the kernel was indeed
the main difficulty of our problem. To overcome this obstacle, we shall establish a
generalized sub-mean-value inequality (see Lemma 3.4 below), which is inspired by
the ideas of Bui et al. [5, 6].

The layout of the paper is as follows. In Section 2, we recall some basic facts and
known results. In Section 3, we give the proof of Theorem 1.2.

Throughout, the letters ‘c’ and ‘C’ will denote positive constants which are
independent of the essential variables involved, but whose values may vary from one
occurrence to the next. By writing a ≈ b, we mean that the variables a and b are
equivalent, that is, there exist two positive constants C1 and C2 independent of a and b
such that C1a ≤ b ≤ C2a.
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2. Preliminaries

In this section we recall some basic facts and known results which will be needed
in the next section.

First note that the doubling condition (1.1) implies that there exist constants C and
n such that for all x ∈ X, r > 0 and λ ≥ 1,

V(x, λr) ≤ CλnV(x, r). (2.1)

The constant n plays the role of a dimension, though it need not even be an integer. In
the sequel we want to consider n as small as possible. Note that in general one cannot
take the infimum over such exponents n in (2.1). There also exist constants C and D,
0 ≤ D ≤ n, so that

V(y, r) ≤ C
(
1 +

d(x, y)
r

)D
V(x, r) (2.2)

uniformly for all x, y ∈ X and r > 0. Indeed, property (2.2) with D = n is a direct
consequence of (2.1) and the triangle inequality for the metric d. In the cases of the
Euclidean spaces and Lie groups of polynomial growth, D can be chosen to be 0.
Using the doubling condition (1.1), it is easy to show that for any N > n, there exists a
constant C (depending on N) such that for all x ∈ X and t > 0,∫

X
(1 + t−1d(x, y))−N dµ(y) ≤ CV(x, t). (2.3)

The following lemma is standard and thus we skip the proof.

Lemma 2.1. Suppose that N > n + D. Then there exists a constant C > 0 such that for
all measurable functions f on X, t > 0 and x ∈ X,∫

X

| f (y)|
V(y, t)(1 + t−1d(x, y))N dµ(y) ≤ CM( f )(x),

whereM is the Hardy–Littlewood maximal operator on (X, d, µ) defined by

M( f )(x) := sup
x∈B

1
µ(B)

∫
B
| f (y)| dµ(y).

Given a weight w on X, 0 < p ≤ ∞ and 0 < q ≤ ∞, we denote by Lp
w(`q) the space

of all sequences { f j} j of measurable functions on X such that

‖{ f j} j‖Lp
w(`q) := ‖‖{ f j(·)} j‖`q‖Lp

w(X) <∞.

Lemma 2.2 [18, Section 6.6]. Suppose that 1 < p < ∞, 1 < q ≤ ∞ and w ∈ Ap. Then
there exists a constant C > 0 such that

‖{M( f j)} j‖Lp
w(`q) ≤ C‖{ f j} j‖Lp

w(`q).

Given f ∈ L2(X), α > 0 and x ∈ X, we define

G∗α,L( f )(x) :=
(∫ ∞

0

∫
X

( t
t + d(x, y)

)nα
|t2Le−t2L f (y)|2

dµ(y)
V(x, t)

dt
t

)1/2
.
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Lemma 2.3. Assume that L satisfies (H1)–(H2). Let w ∈ A∞, 0 < p < ∞ and α >
2qw/min{p, 2}. Then there exists a constant C > 0 such that for all f ∈ L2(X),

‖G∗α,L( f )‖Lp
w(X) ≤ C‖S L( f )‖Lp

w(X).

Proof. The proof is standard; we refer the reader to [28, Theorem 4 in Ch. 4] and [19,
Lemma 3.2]. �

Let E(λ) be the spectral resolution of L. For any bounded Borel measurable function
F : [0,∞)→ C, by the spectral theory we can define the operator

F(L) =

∫ ∞

0
F(λ) dE(λ),

which is bounded on L2(X). The following result will be important to us.

Lemma 2.4 [10, Lemma 4.3]. Assume that L satisfies (H1)–(H2). Let R > 0 and s > 0.
For any ε > 0, there exists a constant C = C(s, ε) such that∫

X
|KF(

√
L)(x, y)|2(1 + R d(x, y))s dµ(x) ≤

C
V(y,R−1)

‖δRF‖2W∞(s/2)+ε(R)

for all even functions F ∈ W∞
(s/2)+ε(R) such that supp F ⊂ [−R,R], where KF(

√
L)(x, y)

is the kernel of the operator F(t
√

L), δRF(λ) := F(Rλ) and ‖F‖W∞s (R) :=
‖(I − d2/dλ2)s/2F‖L∞(R).

Note that Lemma 2.4 is slightly different from [10, Lemma 4.3], in which the
function F is required to be supported in [R/4,R]. But a careful examination of the
proof of [10, Lemma 4.3] shows that the assertion is still true if we assume that F is
even and supp F ⊂ [−R,R]. See also [24, Theorem 7.18].

We will also need the following two fundamental results.

Lemma 2.5 [25, Lemma 2]. Let w be an arbitrary weight on X, 0 < p, q ≤ ∞ and δ > 0.
Let {g j}

∞
j=−∞ be a sequence of nonnegative measurable functions on X and put

h`(x) =

∞∑
j=−∞

2−| j−`|δg j(x), x ∈ X, ` ∈ Z.

Then there exists a constant C = C(p, q, δ) such that

‖{h`}∞`=−∞‖Lp
w(`q) ≤ C‖{g j}

∞
j=−∞‖Lp

w(`q).

Lemma 2.6 [25, Lemma 3]. Let 0 < r ≤ 1, and let {b j}
∞
j=−∞ and {d`}∞`=−∞ be two

sequences taking values in respectively (0,∞] and (0,∞). Assume that there exists
N0 > 0 such that d` = O(2`N0 ) as `→∞, and that for every N > 0 there exists a finite
constant CN such that

d` ≤ CN

∞∑
j=`

2−( j−`)Nb jd1−r
` , ` ∈ Z.
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Then, for every N > N0,

dr
` ≤ CN

∞∑
j=`

2−( j−`)Nrb j, ` ∈ Z,

with the same constants CN .

3. Proof of Theorem 1.2

Denote by S(R) the Schwartz class on R. For M ∈ N and Φ ∈ S(R), we set

‖Φ‖SM(R) := sup
0≤ν≤M

sup
λ∈R

(1 + |λ|)M+2n+1|Φ(ν)(λ)|,

where Φ(ν) is the νth-order derivative of Φ. We have the following smooth functional
calculus.

Lemma 3.1. Assume that L satisfies (H1)–(H2). Then, for any N > 0, there exists a
constant C > 0 such that for every even function Φ ∈ S(R), the kernel KΦ(t

√
L)(x, y) of

the operator Φ(t
√

L) satisfies the estimate

|KΦ(t
√

L)(x, y)| ≤ C‖Φ‖SM(R)V(x, t)−1(1 + t−1d(x, y))−N ,

where M is the smallest even integer that satisfies M > N + n + 1.

Proof. First we show that, for any N > 0 and m > n/2, there exists a constant C =

C(N,m) such that

|K(I+t2L)−m (x, y)| ≤ CV(x, t)−1(1 + t−1d(x, y))−N . (3.1)

Indeed, by the formula

(I + t2L)−m =
1

Γ(m)

∫ ∞

0
e−ut2Le−uum−1 du

and the Gaussian upper bound (1.2),

|K(I+t2L)−m (x, y)| ≤ C
∫ ∞

0
|Ke−ut2L (x, y)|e−uum−1 du

≤ C
∫ ∞

0

1
V(x, u1/2t)

exp
(
−

d2(x, y)
cut2

)
e−uum−1 du

≤ C
∫ ∞

0

1
V(x, u1/2t)

(
1 +

d(x, y)
u1/2t

)−N
e−uum−1 du.

From this, the fundamental inequality(
1 +

d(x, y)
u1/2t

)−N
≤

(
1 +

d(x, y)
t

)−N
(1 + u1/2)N
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and the fact that

V(x, t) = V(x, u−1/2u1/2t) ≤ C(1 + u−1/2)nV(x, u1/2t)

(which is a consequence of (2.1)),

|K(I+t2L)−m (x, y)|

≤
C

V(x, t)

(
1 +

d(x, y)
t

)−N ∫ ∞

0
(1 + u−1/2)n(1 + u1/2)Ne−uum−1 du

≤
C

V(x, t)

(
1 +

d(x, y)
t

)−N
,

which verifies (3.1).
Since Φ(t

√
L) = (I + t2L)mΦ(t

√
L)(I + t2L)−m,

KΦ(t
√

L)(x, y) =

∫
X

K(I+t2L)mΦ(t
√

L)(x, z)K(I+t2L)−m (z, y) dµ(z).

Hence, for any N > 0, by (3.1) and the fundamental inequality

(1 + t−1d(x, y))N(1 + t−1d(z, y))−N ≤ (1 + t−1d(x, z))N ,

V(x, t)(1 + t−1d(x, y))N |KΦ(t
√

L)(x, y)|

≤ C
∫

X
|K(I+t2L)mΦ(t

√
L)(x, z)|(1 + t−1 d(x, z))N dµ(z). (3.2)

Let ϕ0 ∈ C∞0 (R) be an even function such that ϕ0(λ) = 1 on {|λ| ≤ 1/2} and ϕ0(λ) = 0
on {|λ| ≥ 1}. Define ϕ(λ) = ϕ0(λ) − ϕ0(2λ), λ ∈ R. Then supp ϕ ⊂ {1/4 ≤ |λ| ≤ 1},
and ϕ0(λ) +

∑∞
`=1 ϕ(2−`λ) = 1 for λ ∈ R. Let m ∈ (n/2, 3n/4), and set F0(λ) = ϕ0(λ)

(1 + λ2)mΦ(λ) and F`(λ) = ϕ(2−`λ)(1 + λ2)mΦ(λ), ` = 1, 2, . . . . Then supp F0(t·) ⊂
[−t−1, t−1], supp F`(t·) ⊂ [−2`t−1, 2`t−1], F0(t

√
L) = ϕ0(t

√
L)(1 + t2L)mΦ(t

√
L),

F`(t
√

L) = ϕ(2−`t
√

L)(1 + t2L)mΦ(t
√

L), ` = 1, 2, . . .

and

K(I+t2L)mΦ(t
√

L)(x, z) =

∞∑
`=0

KF`(t
√

L)(x, z). (3.3)

By the Cauchy–Schwartz inequality, (2.3), Lemma 2.4 and (2.1), we have, for ` =

1, 2, . . . ,∫
X
|KF`(t

√
L)(x, z)|(1 + t−1d(x, z))Ndµ(z)

≤ C
(∫

X
|KF`(t

√
L)(x, z)|2(1 + 2`t−1d(x, z))2(N+n+1)dµ(z)

)1/2
V(x, t)1/2

≤ CV(x, 2−`t)−1/2V(x, t)1/2‖δ2`t−1 [F`(t·)]‖2W∞N+n+1+ε
(R)

≤ C2`n/2‖δ2`t−1 [F`(t·)]‖2W∞N−n−1+ε
(R)

= C2`n/2‖λ 7→ ϕ(λ)(1 + 22`λ2)mΦ(2`λ)‖2W∞N+n+1+ε
(R). (3.4)
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Recall that if s is an even integer, then ‖F‖W∞s (Rn) ≈
∑s

k=0 ‖d
kF/dλk‖L∞(R); see, for

example, [27, Ch. V, Section 6.6]. Since M is the smallest even integer that satisfies
M > N + n + 1, by taking ε sufficiently small we have M > N + n + 1 + ε and thus

‖λ 7→ ϕ(λ)(1 + 22`λ2)mΦ(2`λ)‖W∞N+n+1+ε
(R)

≤ ‖λ 7→ ϕ(λ)(1 + 22`λ2)mΦ(2`λ)‖W∞M (R)

≤ C‖Φ‖SM(R)2`M sup
1/4≤|λ|≤1

(1 + 2`|λ|)2m−(M+2n+1)

≤ C‖Φ‖SM(R)2`(2m−2n−1).

Substituting this into (3.4) yields∫
X
|KF`(t

√
L)(x, z)|(1 + t−1d(x, z))Ndµ(z)

≤ C‖Φ‖SM(R)2−`[(3n/2)+1−2m]. (3.5)

Analogously, ∫
X
|KF0(t

√
L)(x, z)|(1 + t−1d(x, z))Ndµ(z) ≤ C‖Φ‖SM(R). (3.6)

Since m ∈ (n/2, 3n/4), we have (3n/2) + 1 − 2m > 0. Hence, combining (3.2), (3.3),
(3.5) and (3.6),

V(x, t)(1 + t−1d(x, y))N |KΦ(t
√

L)(x, y)|

≤ C
∞∑
`=0

∫
X
|KF`(t

√
L)(x, z)|(1 + t−1d(x, z))Ndµ(z) ≤ C‖Φ‖SM(R),

which readily implies the desired estimate. �

Lemma 3.2. Assume that L satisfies (H1)–(H2). Suppose that Φ,Ψ ∈ S(R) are even
functions, and that

Ψ(ν)(0) = 0, ν = 0, 1, . . . , 2κ (3.7)

for some positive integer κ. Then, for any N > 0, there exists a constant C such that
for all j, ` ∈ Z with j ≥ `,

|KΦ(2−`
√

L)Ψ(2− j
√

L)(x, y)| ≤C‖λ 7→ λ2κΦ(λ)‖SM1 (R)‖λ 7→ λ−2κΨ(λ)‖SM2 (R)

× 2−2( j−`)κV(x, 2−`)−1(1 + 2`d(x, y))−N ,

where M1 (respectively M2) is the smallest even integer that satisfies M1 > N + n + 1
(respectively M2 > N + 2n + D + 2).

Proof. Since

Φ(2−`
√

L)Ψ(2− j
√

L) = 2−2( j−`)κ[(2−2`L)κΦ(2−`
√

L)][(2−2 jL)−κΨ(2− j
√

L)],
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KΦ(2−`
√

L)Ψ(2− j
√

L)(x, y)

= 2−2( j−`)κ
∫

X
K(2−2`L)κΦ(2−`

√
L)(x, z)K(2−2 jL)−κΨ(2− j

√
L)(z, y) dµ(z).

The condition (3.7) implies that the function λ 7→ λ−2κΨ(λ) is smooth at 0 and belongs
to S(R). Hence, by Lemma 3.1,

|K(2−2`L)κΦ(2−`
√

L)(x, z)|

≤ C‖λ 7→ λ2κΦ(λ)‖SM1 (R)V(x, 2−`)−1(1 + 2`d(x, z))−N

and

|K(2−2 jL)−κΨ(2− j
√

L)(z, y)|

≤ C‖λ 7→ λ−2κΨ(λ)‖SM2 (R)V(z, 2− j)−1(1 + 2 jd(z, y))−(N+n+D+1),

where M1 (respectively M2) is the smallest even integer that satisfies M1 > N + n + 1
(respectively M2 > N + 2n + D + 2). From all above and the inequality V(z, 2− j)−1 ≤

(1 + 2 jd(z, y))DV(y, 2− j)−1 (which is a consequence of (2.2)),

|KΦ(2−`
√

L)Ψ(2− j
√

L)(x, y)|

≤ C2−2( j−`)κ‖λ 7→ λ2κΦ(λ)‖SM1 (R)‖λ 7→ λ−2κΨ(λ)‖SM2 (R)V(x, 2−`)−1

× V(y, 2− j)−1
∫

X
(1 + 2`d(x, z))−N(1 + 2 jd(z, y))−(N+n+1)dµ(z). (3.8)

By the inequality

(1 + 2`d(x, z))−N(1 + 2 jd(z, y))−N ≤ (1 + 2`d(x, y))−N ( j ≥ `)

and (2.3),∫
X

(1 + 2` d(x, z))−N(1 + 2 j d(z, y))−(N+n+1) dµ(z) ≤ CV(y, 2− j)(1 + 2` d(x, y))−N .

Substituting this into (3.8) yields the desired estimate. �

For our purpose we introduce a Fefferman–Stein-type maximal function. Given
f ∈ L2(X), α > 0 and (x, t) ∈ X × (0,∞), define

M∗α,L( f )(x, t) := ess sup
y∈X

|t2Le−t2L f (y)|
(1 + t−1 d(x, y))α

.

Lemma 3.3. Let w be an arbitrary weight on X, 0 < p <∞ and α > 0. Then there exists
a constant C > 0 such that for all f ∈ L2(X),

‖S L( f )‖Lp
w(X) ≤ C

∥∥∥∥∥(∫ ∞

0
[M∗α,L( f )(·, t)]2 dt

t

)1/2∥∥∥∥∥
Lp

w(X)
.
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Proof. Observe that for all α > 0, t > 0 and x ∈ X,

1
V(x, t)

∫
B(x,t)
|t2Le−t2L f (y)|2 dµ(y)

≤ ess sup
y∈B(x,t)

|t2Le−t2L f (y)|2 ≤ 2nα[M∗σ,L( f )(x, t)]2.

Applying the norm
∫ ∞

0 | · |dt/t on both sides gives the pointwise estimate

[S L( f )(x)]2 ≤ 2nα
∫ ∞

0
[M∗α,L( f )(x, t)]2 dt

t
,

which readily yields the desired estimate. �

Lemma 3.4. Assume that L satisfies (H1)–(H2). Then, for any µ > 0, r > 0 and α > D/2,
there exists a positive constant C such that for all f ∈ L2(X), ` ∈ Z, x ∈ X and t ∈ [1, 2],

[M∗α,L( f )(x, 2−`t)]r

≤ C
∞∑
j=`

2−( j−`)µr
∫

X

|(2− jt)2Le−(2− jt)2L f (z)|r

V(z, 2−`)(1 + 2` d(x, z))αr dµ(z). (3.9)

Proof. We follow the ideas developed by Bui et al. [5, 6], which were simplified by
Rychkov [25]. Let Φ0(λ) := e−λ

2
, Φ(λ) := λ2e−λ

2
for λ ∈ R. Then

(2− jt)2Le−(2− jt)2L f = Φ(2− jt
√

L) f .

Let η0, η ∈ S(R) be nonnegative even functions such that |η0(λ)| , 0⇐⇒ |λ| < 2 and
|η(λ)| , 0⇐⇒ 1/2 < |λ| < 2. Then set ω(λ) := η0(λ)Φ0(λ) +

∑∞
`=1 η(2−`λ)Φ(2−`λ),

λ ∈ R. Finally, let Ψ0(λ) := η0(λ)/ω(λ), Ψ(λ) := η(λ)/ω(λ), λ ∈ R. Then Ψ0,Ψ are
even Schwartz functions on R, supp Ψ0 ⊂ [−2, 2], supp Ψ ⊂ [−2,−1/2] ∪ [1/2, 2] and

Φ0(λ)Ψ0(λ) +

∞∑
j=1

Φ(2− jλ)Ψ(2− jλ) = 1, ∀λ ∈ R. (3.10)

Replacing λ with 2−`tλ in (3.10), we see that for all ` ∈ Z and t ∈ [1, 2],

Φ0(2−`tλ)Ψ0(2−`tλ) +

∞∑
j=1

Φ(2−( j+`)tλ)Ψ(2−( j+`)tλ) = 1, ∀λ ∈ R.

It then follows from the spectral theory that for all f ∈ L2(X), ` ∈ Z and t ∈ [1, 2],

f = Φ0(2−`t
√

L)Ψ0(2−`t
√

L) f +

∞∑
j=1

Φ(2−( j+`)t
√

L)Ψ(2−( j+`)t
√

L) f
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with convergence in the sense of L2(X) norm. Hence, for almost every y ∈ X,

Φ(2−`t
√

L) f (y)

= Φ0(2−`t
√

L)Ψ0(2−`t
√

L)Φ(2−`t
√

L) f (y)

+

∞∑
j=1

Φ(2−`t
√

L)Ψ(2−( j+`)t
√

L)Φ(2−( j+`)t
√

L) f (y)

=

∫
X

KΦ0(2−`t
√

L)Ψ0(2−`t
√

L)(y, z)Φ(2−`t
√

L) f (z) dµ(z)

+

∞∑
j=1

∫
X

KΦ(2−`t
√

L)Ψ(2−( j+`)t
√

L)(y, z)Φ(2−( j+`)t
√

L) f (z) dµ(z). (3.11)

Let N ≥ α and let κ be an integer such that 2κ − α − n/r ≥ µ. Since Ψ vanishes near
the origin, (3.7) is valid for all κ ∈ N. Hence, by Lemma 3.2, there exists a constant
C = C(κ,N) such that for all ` ∈ Z, j ∈ {1, 2, . . .} and t ∈ [1, 2],

|KΦ(2−`t
√

L)Ψ(2−( j+`)t
√

L)(y, z)|

≤ C‖λ 7→ λ2κΦ(tλ)‖SM1 (R)‖λ 7→ λ−2κΨ(tλ)‖SM2 (R)

× 2−2 jκV(z, 2−`)(1 + 2`d(y, z))−(N+D),

where M1 (respectively M2) is the smallest even integer that satisfies M1 > N + n +

D + 1 (respectively M2 > N + 2n + 2D + 2). Obviously, for fixed M1 and M2, there
exists a constant C = C(Φ,Ψ,M1,M2) such that

sup
t∈[1,2]

‖λ 7→ λ2κΦ(tλ)‖SM1 (R)‖λ 7→ λ−2κΨ(tλ)‖SM2 (R) ≤ C.

Hence,

|KΦ(2−`t
√

L)Ψ(2−( j+`)t
√

L)(y, z)|

≤ C2−2 jκV(y, 2−`)−1(1 + 2`d(y, z))−(N+D)

≤ C2−2 jκV(z, 2−`)−1(1 + 2`d(y, z))−N , (3.12)

where the constant C depends on Φ,Ψ and N, but does not depend on ` ∈ Z,
j ∈ {1, 2, . . .} and t ∈ [1, 2]. Analogously,

|KΦ0(2−`t
√

L)Ψ0(2−`t
√

L)(y, z)| ≤ CV(z, 2−`)−1(1 + 2`d(y, z))−N . (3.13)

Putting (3.12) and (3.13) into (3.11),

|Φ(2−`t
√

L) f (y)|

≤ C
∞∑
j=0

2−2 jκ
∫

X

|Φ(2−( j+`)t
√

L) f (z)|
V(z, 2−`)(1 + 2` d(y, z))N dµ(z)

= C
∞∑
j=`

2−2( j−`)κ
∫

X

|Φ(2− jt
√

L) f (z)|
V(z, 2−`)(1 + 2` d(y, z))N dµ(z). (3.14)
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To prove (3.9), we first consider the case 0 < r ≤ 1. Dividing both sides of (3.14)
by (1 + 2`t−1d(x, y))α, in the left-hand side taking the supremum over y ∈ X, in the
right-hand side making use of the inequalities V(z, 2−`) ≥ V(z, 2− j) (for all j ≥ `) and
(1 + 2`t−1d(x, y))(1 + 2`d(y, z)) ≥ C(1 + 2`d(x, z)) (for all t ∈ [1, 2]), we obtain, for all
t ∈ [1, 2] and x ∈ X,

M∗α,L( f )(x, 2−`t)

≤ C
∞∑
j=`

2−2( j−`)κ
∫

X

|Φ(2− jt
√

L) f (z)|
V(z, 2− j)(1 + 2` d(x, z))α

dµ(z). (3.15)

To proceed, we further observe that

|Φ(2− jt
√

L) f (z)|

≤ |Φ(2− jt
√

L) f (z)|r[M∗α,L( f )(x, 2−`t)]1−r(1 + 2 jt−1d(x, z))α(1−r). (3.16)

From (3.15), (3.16) and the inequality

(1 + 2 jt−1d(x, z))α(1−r)

(1 + 2`d(x, z))α
≤ C

2( j−`)α

(1 + 2 jd(x, z))αr ( j ≥ `, t ∈ [1, 2]),

M∗α,L( f )(x, 2−`t)

≤ C
∞∑
j=`

2−( j−`)(2κ−α)
∫

X

|Φ(2− jt
√

L) f (z)|r

V(z, 2− j)(1 + 2 j d(x, z))αr dµ(z)

× [M∗α,L( f )(x, 2−`t)]1−r. (3.17)

We claim that for any fixed α > D/2, f ∈ L2(X), x ∈ X and t > 0, there exists N0 > 0
such that

M∗α,L( f )(x, 2−`t) <∞, ∀` ∈ Z (3.18)

and
M∗α,L( f )(x, 2−`t) = O(2`N0 ) (`→∞). (3.19)

To see this, we first note that the Gaussian upper bound (1.2) for pt(x, y) is further
inherited by the time derivatives of pt(x, y); in particular,∣∣∣∣∣ ∂∂t

pt(x, y)
∣∣∣∣∣ ≤ C

tV(x,
√

t)
exp

(
−

d2(x, y)
ct

)
, ∀t > 0

for almost every x, y ∈ X; see, for example, [24, Theorem 6.18]. This implies that

|Ku2Le−u2L (y, z)| =
∣∣∣∣∣[−t

∂

∂t
pt(y, z)

]∣∣∣∣∣
t=u2

∣∣∣∣∣ ≤ CV(y, u)−1(1 + u−1d(y, z))−(n+1)/2.

Hence, by the Cauchy–Schwartz inequality and (2.3), for almost every y ∈ X,

|u2Le−u2L f (y)| ≤
∫

X
| f (z)||Ku2Le−u2L (y, z)| dµ(z)

≤ ‖ f ‖L2(X)V(y, u)−1
(∫

X
(1 + u−1 d(y, z))−(n+1) dµ(z)

)1/2

≤ C‖ f ‖L2(X)V(y, u)−1/2.
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This along with (2.2) yields that for α > D/2,

M∗α,L( f )(x, u) ≤ C ess sup
y∈X

[(1 + u−1 d(x, y))−α‖ f ‖L2(X)V(y, u)−1/2]

≤ C‖ f ‖L2(X)V(x, u)−1/2.

Hence, (3.18) is true. Moreover, if ` ≥ 0, by (2.1),

M∗α,L( f )(x, 2−`t) ≤ C‖ f ‖L2(X)V(x, 2−`t)−1/2 ≤ C2`n/2V(x, t)−1/2,

which shows (3.19) with N0 = n/2. From (3.17), (3.18), (3.19) and Lemma 2.6,[
M∗α,L( f )(x, 2−`t)

]r

≤ C
∞∑
j=`

2−( j−`)(2κ−α)r
∫

X

|Φ(2− jt
√

L) f (z)|r

V(z, 2− j)(1 + 2 j d(x, z))αr dµ(z)

≤ C
∞∑
j=`

2−( j−`)(2κ−α−n/r)r
∫

X

|Φ(2− jt
√

L) f (z)|r

V(z, 2−`)(1 + 2` d(x, z))αr dµ(z),

where we used V(z, 2− j)−1 ≤ 2( j−`)nV(z, 2−`)−1 (for all j ≥ `). This implies the desired
estimate (3.9), since 2κ − α − n/r ≥ µ and Φ(λ) = λ2e−λ

2
.

The proof of (3.9) for r > 1 is much easier. Indeed, from (3.14) with µ + ε instead
of 2κ (since we can take κ arbitrarily large), and with α + (D + n + 1)/r′ instead of N,
where 1/r + 1/r′ = 1,

|Φ(2−`t
√

L) f (y)|

≤ C
∞∑
j=`

2−( j−`)(µ+ε)
∫

X

|Φ(2− jt
√

L) f (z)|
V(z, 2−`)(1 + 2` d(y, z))α+(D+n+1)/r′ dµ(z)

≤ C
∞∑
j=`

2−( j−`)(µ+ε)
(∫

X

|Φ(2− jt
√

L) f (z)|r

V(z, 2−`)(1 + 2` d(y, z))αr dµ(z)
)1/r

≤ C
( ∞∑

j=`

2−( j−`)µr
∫

|Φ(2− jt
√

L) f (z)|r

V(z, 2−`)(1 + 2` d(y, z))αr dµ(z)
)1/r

,

where we applied Hölder’s inequality for the integrals and the sums, and used (2.2) and
(2.3). Raising both sides to the power r, dividing both sides by (1 + 2`t−1d(x, y))αr, in
the left-hand side taking the supremum over y ∈ X and in the right-hand side using the
inequality (1 + 2`t−1d(x, y))αr(1 + 2`td(y, z))αr ≥ C(1 + 2`d(x, z))αr (for all t ∈ [1, 2]),
we obtain the desired estimate (3.9) for r > 1. �

Lemma 3.5. Assume that L satisfies (H1)–(H2). Let w ∈ A∞, 0 < p < ∞ and α >
(n + D)qw/min{p, 2}. Then there exists a constant C > 0 such that for all f ∈ L2(X),∥∥∥∥∥( ∫ ∞

0
[M∗α,L( f )(·, t)]2 dt

t

)1/2∥∥∥∥∥
Lp

w(X)
≤ C‖GL( f )‖Lp

w(X).
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Proof. Let Φ(λ) := λ2e−λ
2
, λ ∈ R. Since α > (n + D)qw/min{p, 2}, there exists a

number r such that 0 < r < min{p, 2}/qw and αr > n + D. From Lemma 3.4, we see
that for any µ > 0 there exists a constant C such that for all f ∈ L2(X), ` ∈ Z, x ∈ X and
t ∈ [1, 2],

[M∗α,L( f )(x, 2−`t)]r ≤ C
∞∑
j=`

2−( j−`)µr
∫

X

|Φ(2− jt
√

L) f (z)|r

V(z, 2−`)(1 + 2` d(x, z))αr dµ(z).

Taking the norm (
∫ 2

1 | · |
2/r(dt/t))r/2 on both sides and applying the Minkowski

inequality and Lemma 2.1,(∫ 2

1
[M∗α,L( f )(x, 2−`t)]2 dt

t

)r/2

≤ C
∞∑
j=`

2−( j−`)µr
∫

X

( ∫ 2
1 |Φ(2− jt

√
L) f (z)|2 dt

t
)r/2

V(z, 2−`)(1 + 2` d(x, z))αr dµ(z)

≤ C
∞∑
j=`

2−( j−`)µrM

[(∫ 2

1
|Φ(2− jt

√
L) f (·)|2

dt
t

)r/2]
(x)

≤ C
∞∑

j=−∞

2−| j−`|µrM

[(∫ 2

1
|Φ(2− jt

√
L) f (·)|2

dt
t

)r/2]
(x).

Applying Lemma 2.5 in the space Lp/r
w (`2/r) and Lemma 2.2,∥∥∥∥∥(∫ ∞

0
[M∗α,L( f )(·, t)]2 dt

t

)1/2∥∥∥∥∥
Lp

w(X)

=

∥∥∥∥∥{(∫ 2

1
[M∗α,L( f )(·, 2−`t)]2 dt

t

)r/2}∞
`=−∞

∥∥∥∥∥1/r

Lp/r
w (`2/r)

≤ C
∥∥∥∥∥{M[(∫ 2

1
|Φ(2− jt

√
L) f (·)|2

dt
t

)r/2]}∞
j=−∞

∥∥∥∥∥1/r

Lp/r
w (`2/r)

≤ C
∥∥∥∥∥{(∫ 2

1
|Φ(2− jt

√
L) f (·)|2

dt
t

)r/2}∞
j=−∞

∥∥∥∥∥1/r

Lp/r
w (`2/r)

= C‖GL( f )‖Lp
w(X),

where we used the fact that p/r > qw and 2/r > 1. �

Lemma 3.6. Assume that L satisfies (H1)–(H2). Let w ∈ A∞, 0 < p < ∞ and α > 0.
Then there exists a constant C > 0 such that for all f ∈ L2(X) and t ∈ [1, 2],∥∥∥∥∥(∫ ∞

0
[M∗α+D/2,L( f )(·, t)]2 dt

t

)1/2∥∥∥∥∥
Lp

w(X)
≤ C‖G∗(2/n)α,L( f )‖Lp

w(X).
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Proof. Let Φ(λ) := λ2e−λ
2
, λ ∈ R. Let µ > α + D/2. By Lemma 3.4 with r = 2, we see

that there exists a constant C > 0 such that for all f ∈ L2(X), ` ∈ Z and t ∈ [1, 2],
[M∗α+D/2,L( f )(x, 2−`t)]2

≤ C
∞∑
j=`

2−2( j−`)µ
∫

X

|Φ(2− jt
√

L) f (z)|2

V(z, 2− jt)(1 + 2`t−1 d(x, z))2α+D dµ(z)

≤ C
∞∑

j=−∞

2−| j−`|(2µ−2α−D)
∫

X

|Φ
(
2− jt
√

L
)
f (z)|2

(1 + 2 jt−1 d(x, z))2α

dµ(z)
V(x, 2− jt)

, (3.20)

where for the last line we used (2.2) and
1 + 2`t−1d(x, z) ≥ 2−( j−`)(1 + 2 jt−1d(x, z)), ∀ j ≥ `.

Taking the norm
∫ 2

1 | · |(dt/t) on both sides of (3.20) gives∫ 2

1
[M∗α+D/2,L( f )(x, 2−`t)]2 dt

t

≤ C
∞∑

j=−∞

2−| j−`|(2µ−2α−D)
∫ 2

1

∫
X

|Φ(2− jt
√

L) f (z)|2

(1 + 2 jt−1 d(x, z))2α

dµ(z)
V(x, 2− jt)

dt
t
.

Since 2µ − 2α − D > 0, applying Lemma 2.5 in Lp/2
w (`1),∥∥∥∥∥(∫ ∞

0
[M∗α+D/2,L( f )(·, t)]2 dt

t

)1/2∥∥∥∥∥
Lp

w(X)

=

∥∥∥∥∥{∫ 2

1
[M∗α+D/2,L( f )(·, 2−`t)]2 dt

t

}∞
`=−∞

∥∥∥∥∥1/2

Lp/2
w (`1)

≤ C
∥∥∥∥∥{∫ 2

1

∫
X

|Φ(2− jt
√

L) f (z)|2

(1 + 2 jt−1 d(·, z))2α

dµ(z)
V(x, 2− jt)

dt
t

}∞
j=−∞

∥∥∥∥∥1/2

Lp/2
w (`1)

= C‖G∗(2/n)α,L( f )‖Lp
w(X).

This completes the proof. �

Proof of Theorem 1.2. From the definition of GL( f ) and M∗α,L( f )(x, t), we see that for
any α > 0 and f ∈ L2(X),

GL( f )(x) ≤
(∫ ∞

0
[M∗α,L( f )(x, t)]2 dt

t

)1/2
, a.e. x ∈ X. (3.21)

Fix two numbers α, α′ such that α > nqw/min{p, 2} and α′ > (n + D)qw/min{p, 2}.
Then, for all f ∈ L2(X), by (3.21) and Lemmas 3.6, 2.3, 3.3 and 3.5,

‖GL( f )‖Lp
w(X) ≤ C

∥∥∥∥∥(∫ ∞

0
[M∗α+D/2,L( f )(·, t)]2 dt

t

)1/2∥∥∥∥∥
Lp

w(X)

≤ C‖G∗(2/n)α,L( f )‖Lp
w(X) ≤ C‖S L( f )‖Lp

w(X)

≤ C
∥∥∥∥∥(∫ ∞

0
[M∗α′,L( f )(·, t)]2 dt

t

)1/2∥∥∥∥∥
Lp

w(X)
≤ C‖GL( f )‖Lp

w(X).

Hence, ‖S L( f )‖Lp
w(X) ≈ ‖GL( f )‖Lp

w(X). The proof of Theorem 1.2 is complete. �
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