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Abstract

Let T be a totally ordered set, PT the semigroup of partial transformations on T, and A(T) the
/-group of order-preserving permutations of T. We show that PT is a regular left /-semigroup. Let PT'
be the set of a € PT such that a is order-preserving and the domain of a is a final segment of T.
Then PT' is an /-semigroup, and we prove that it is the largest transitive /-subsemigroup of PT which
contains A(T). When T is Dedekind complete, we characterize the largest regular /-subsemigroup of
PT'. When A(T) is also o - 2 transitive we show that there can be no /-subsemigroup of PT' properly
containing A(T) which is either inverse or a union of groups.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 M 20, 06 F 05.

In semigroup theory, we shall follow the terminology and notation of Clifford

and Preston (1961). For a semigroup S, E(S) shall denote the set of idempotents

of S. And for a 6 S, we shall denote an arbitrary inverse of a by a' and the set

of all inverses of a by V(a).

For an arbitrary set T, the symmetric weakly inverse [symmetric inverse]

semigroup PT [IT] is defined to be the set of all partial [partial one-to-one]

transformations of T together with the empty transformation 0. For a G PT, we

shall denote the domain and range of a by A(a) and V(a) respectively. And we

shall denote the identity map on a subset X of T by \ x . The following useful

lemma is due to B. R. Srinivasan (1968).

LEMMA 1. PT is a regular semigroup and IT is the largest inverse subsemigroup of

PT whose idempotents are one-to-one. Moreover, for each a G PT,

(i) a e E(PT) if and only if V(a) C A(a) and a|V(a) = 1 V ( a ) ;

(ii) a' E V(a) if and only if V(a') C A(a), V(a) C A(a'), a'a|V(a) = 1 v ( a ) ) and
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396 C. C. Edwards and Marlow Anderson [2 ]

In the theory of lattice-ordered groups (henceforth /-groups) and partially
ordered algebraic systems we shall follow the terminology of Conrad (1970),
Bigard, Keimel and Wolfenstein (1977) and Fuchs (1966). We make explicit the
following definitions, not all of which are standard.

DEFINITIONS. Let S be a semigroup equipped with a partial order < and let a,
b, x denote arbitrary elements of S.

(1) S is a left po-semigroup if xa < xb whenever a < b.
(2) S is a left m-semigroup if it satisfies (1) and in addition (S, <) is a meet

semilattice with x(a /\b) = xa /\ xb.
(3) S is a left l-semigroup if it satisfies (2) and in addition (5, <) is a join

semilattice with x(a V b) = xa V xb.
Obvious modifications of the definitions above occur when 'left' is replaced by
'right'. If a semigroup satisfies both the left and the right property, the adjective
will be omitted.

Henceforth, T shall denote a set equipped with a total order < . Let A(T) be
the group of all order-preserving permutations of T. When a partial order < is
defined on A(T) by letting a < /? if and only if xa < x/8 for all x G T, A(T)
becomes an /-group. For terminology and results for this /-group, see Glass
(1976).

In order to investigate the lattice properties which PT inherits from T we make
the following analogous definition: for « , j8£ PT, a < P if and only if A(a) C
A(/J) and xa < x/1 for all x e A(a). The reader may verify that this makes PT a
lattice with the least upper bound and greatest lower bound for a, fi G PT as
follows. For all JC G A(a A P) = A(a) n A(/8),

x(a A P) = xa A x/3;

and for all x G A(a V P) = A(a) u

(xa xGA(a)
x(a\/p) = \xp x6A(j3)\A(«),

[xa\/xp x G A(a) n A(/8).

We then easily obtain the following:

THEOREM 2. PT is a regular left I-semigroup.

When | r | > 2, PT fails to be a right po-semigroup, and hence is not an
/-semigroup. For if a, b G T with a < b, define a and P by A(a) = A(/?) = {a),
aa = b and aP = a. Then /3 < a, but 0 2 = P { a/? = 0.
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Now suppose that a < p where a, f! G PT. What conditions on y will imply
that ay < /?y? First, one needs that A(ay) C A(/fy). This can be achieved if A(y)
is a y?na/ segment, that is, if * G A(y) and .y > x, then .y G A(y). Secondly, in
order that xay < x/iy for all x G A(ay), one clearly needs that y be order-pre-
serving. Hence we are motivated to study the following subsets of PT:

PT' = (a G PT: a is order-preserving and A(a) is a final segment},

and

S(T) = {a & PT': A(a) = T).

THEOREM 3. PT' and S( T) are l-semigroups.

PROOF. Let a, ft G PT'. Clearly afi is order-preserving. To show that a/J G
PT', let x G A(a/?) and x < y. Since JC G A(a) and A(a) is a final segment,
y G A(a). So xa < ^a since a is order-preserving. But xa 6 i ( j8 ) and A(/8) is a
final segment. Hence ya G A(y3), and thus>> G A(a/J). Consequently P r ' is a left
po-subsemigroup of PT. Clearly, PT' is also a right po-semigroup, and thus a
po-semigroup. It is obvious that when X and Y are final segments of T, we have
either X C K or y C Ar. Using this fact, the remainder of the proof is standard.

That PT' is the /-subsemigroup of PT on which we should concentrate our
attentions is revealed by the following theorem. Recall that a set S of partial
transformations of a set T is transitive if for all s, t G T, there exists a G S with
JO = t. Obviously, PT' is transitive on T.

THEOREM 4. PT' is the largest transitive l-subsemigroup of PT which contains the
identity.

PROOF. Let S be a transitive /-subsemigroup of PT containing the identity. Let
y G S and suppose that x,y G A(y) with x <y. Choose j8 6 S with >>/? = x.
We may assume that fi < \T (replacing yS with [i /\\T if necessary). Then
>3y < lj-y = y, and hence xy = yfiy < ylTy = yy. So y is order-preserving. To
show that A(y) is a final segment, assume that a G A(y) and a < b. Choose
« £ S with aa = 6. We may assume that \T < o, and thus l r y < ay. Then
A(lry) C A(ay). Since a G A(lry), we must have b = aa G A(y). It now follows
that S C PT'.

Now, Holland's theorem (Holland (1963)) states that every /-group may be
/-embedded into A(T), for some totally ordered set T. Also, PT has played an
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important role in the representation theory of regular semigroups (see Munn
(1970), Edwards (1979), Nambooripad (1973), and Clifford (1975)). Since PT' is
the largest transitive /-subsemigroup of PT containing A(T), PT' could play an
important role in a representation theory for regular /-semigroups. There are
difficulties with this conjecture, however, as Theorems 10 and 12 of this paper
will reveal.

In fact, the /-semigroup PT' need not be regular; as an example, take
T = R = A(a), and a = arctangent. Consequently, we are naturally led to ask:
are there any regular /-subsemigroups of PT"l

Consider first the special case IT C PT, where IT' = PT' n IT- If a G IT> then
A(a ~') = V(a), and so a regular (and hence inverse) subsemigroup of / / must
have the added property that the range of each element is also a final segment.
However, these considerations lead to the following results, stated without
proof:

PROPOSITION 5. If C = {a G PT'\ V(a) is a final segment), then C is an
m-semigroup but not an l-semigroup. Moreover, if S is an I-subsemigroup of C
containing the one-to-one idempotents in C, then S is a band.

However, we are able to identify the largest regular /-subsemigroup of PT'
when T is Dedekind complete (see Theorem 7). When T is not Dedekind
complete, many more elements of PT' fail to have inverses. For example, let
T = Q and define y by xy = x when x <ir and xy = x + 1 when x > ir. Then
y has no inverse in PQ'. However, any extension y of y in PR' does admit a
unique inverse in PR' .

Now, if T is totally ordered and T is its Dedekind completion, then A{T)
may be /-embeded into A(T) by a map " so that for all a G A(T), a\ T = a (see
Glass (1976), p. 32). And certainly for each a G PT' there exist (perhaps many)
a G P-p such that a\ T = a. However, it is impossible in general to define such a
function so that it is a semigroup homomorphism, as the following theorem
shows.

THEOREM 6. There exists no semigroup homomorphism ' embedding PQ into PR'
such that a\Q = a for all a G PQ. In particular, S(Q) cannot be embedded into
S(R).

PROOF. Assume to the contrary that such a semigroup homomorphism " exists.
There exists an order isomorphism T from Q n (-oo, ir) onto Q n (-oo, 0), since
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they both are countable dense totally ordered sets. Define elements a, /}, and y
of PQ' as follows:

fxT ifx<77, (
\x ifx>7r; \

x if x < 0,
x + 1 if x > 0;

( X if X < 77,

X + 1 if X > 77.

Then a/? = ya = ay, and so aft = ya = ay. Thus,

77a + 1 = 77a/? — mya G V(a).
This means that ma + 1 > 77. But 77a + 1 e V(y), which means that 77a + 1 =
777 or 77a + 1 > 77 + 1. But 77a + 1 > 77 + 1 is impossible since 0 < 77a < 77.
Consequently, way = 77a + 1 = Try. Since y is one-to-one, 77a = 77, and thus
Try = 77 + 1.

Now choose an order isomorphism a from Q n (77, 00) onto Q n (6, 00), and
consider elements £, 0, and ij of PQ' defined as follows:

x - 1 if x < 6,
xa if x > 77; \ x if x > 6;
x - 1 if x < 77,
x if x > 77.

An argument similar to the one above results in TTTJ = 77 - 1. Let v G A(Q) be
defined by xv = x + 1. Then i)v = y. And thus,

77 = (77 — 1) + 1 = mjv = 77y = 77 + 1,

which is a contradiction. So PQ' cannot be embedded into PR'. Since all
elements in this proof have Q for their domain, we have also shown that S(Q)
cannot be embedded into S(R).

In light of the above remarks, we shall henceforth assume that T is Dedekind
complete. And we shall henceforth denote PT' simply by P.

As a starting point for examining the existence of inverses of elements in P,
we shall make a few remarks concerning E(P). As before, if £ G E(P), then
V(£) C A(£) and £ is the identity map on V(£) (see Lemma 1). But £ is also
order-preserving. Thus if x£ ^ x, then there exists an interval of T containing x
and x£ on which £ is constant. Also, when | T\ > 2, it is not difficult to show that
the idempotents of P (and of S(T)) do not form a band.

We now determine those elements of P which possess inverses. For a G P and
x £ V(a), let Ix be the maximum convex subset of T for which Ix C T\ V(a)
and x G Ix. Since Ix is an interval of some configuration, we need to establish
some notational conventions for interval notation. First of all, (-00, a) and
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(a, oo) shall denote the maximum initial and final intervals excluding a. Sec-
ondly, we shall restrict the use of square brackets, so that [a, b), for example,
shall mean not only {x: a < x < b), but also that

a = V {x G T: x < a).

The analogous restriction applies to upper endpoints. With these conventions in
force, we now observe that Ix = [a, b] (with a and b possibly equal) is impossi-
ble. For suppose the contrary. Let £ denote the smallest initial segment
containing (-00, a)a~l and let % = (a, oo)a~'. Since % is a final segment,
£ u % = T and £ < %. Since T is Dedekind complete we have \/t = A <&
= t G T. But by definition of Ix, we have that a = V {xa: xa < 0} and
b = /\ {xa: xa > b). Now ta = (\/t)a > xa, for all xa < a, and so ta > a.
Similarly ta < b. Thus, ta = a = b e V(a), a contradiction.

We are now able to distinguish those elements of P (and of S(T)) which have
inverses. Let

R = {a e P: VV(a). if it exists, is in V(a)}

and
R(T) = {a e S(T) n R: A v ( « ) . i f it exists, is in V(a)}.

THEOREM 7. R is the maximum regular subsemigroup of P; in fact it is an
l-subsemigroup of P.

PROOF. We first show that any element a G P \ R possesses no inverse in P.
That a £ R means that some Ix is of the form [a, 00). Suppose a' is an inverse
of a in P. Now because A(a') D V(a) and A(a') is a final segment, a G A(a').
And since a > V(a) and a'a is the identity map on V(a) (see Lemma 1),
aa'a > V(a). But because aa'a G V(a), this means that V(a) has a greatest
element, which is a contradiction.

We will now show that each element of R possesses an inverse. Let a G R. To
define an inverse a', we first specify that A(a') shall be the smallest final segment
of T which contains V(a). For each preimage set xa ~ \ choose a fixed yx G
xa~l. For x G A(a'), define xa' as follows:

ifjceV(a),

xa' = \ya if Ix = (a, *), (a, *] or (a, 00),

[ iflx=[a,b).
Note that a' is defined for all x G A(a'), because /x = [a, b] or [a, 00) is
impossible, and Ix = (-00, b] or (-00, fe) makes x not an element of A(a'). It is
obvious that aa'a = a, and easily verified that a' G P. So a'aa' G K(a) n P,
and thus also in R. Finally, a little calculation is sufficient to show that R is an
/-subsemigroup of P.
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Putting together Theorems 5 and 7 yields:

COROLLARY 8. R is the maximum transitive regular l-subsemigroup of PT which
contains A(T).

A minor modification of the proof above (just let xa' = ba' if Ix — (-oo, b))
yields:

COROLLARY 9. R(T) is the maximum regular subsemigroup ofS(T); it is in fact
an l-subsemigroup of S(T).

We shall now turn to the question of inverse /-subsemigroups of P which
contain A(T). If A(T) is o — 2 transitive (that is, if whenever s, t, u, v G T with
s < t and u < v, then there exists a G A{T) with set = u and ta = v), we shall
prove that no such semigroups other than A(T) exist. We need the following
lemma.

LEMMA. Let S be a subsemigroup of P which contains an o — 2 transitive subset
of A(T) and an idempotent £ whose range is not convex. Then S contains an
idempotent t\ which does not commute with | . {Hence S is not inverse.)

PROOF. Suppose £ is an idempotent of S whose range is not convex; then there
exists a point d G A(£) where {t G A(£): / < d) and {/ G A(£): t > d) are
nonempty, and £ is not continuous at d. The following cases cover all possibili-
ties (although they are not disjoint from one another):

Case (i): d£= d and x£ = r > d for all d < x < r.
Choose k G T with d <k < r (because A(T) is o - 2 transitive, T is dense in

itself (Glass (1976))). Let T 6 S n >4(7) be such that dr = k and kr = r. Then
ij = T£T ~' G S and it is idempotent. But

x = k£r~l = rr"1 = k <r

Case (ii): d£ = d and x£ = s < d for all s < x <d.
This is entirely similar to Case (i).
Case (iii): d£ > d.
Choose k G A(£) with k < d. Then k£ < d. Pick T G S n A(T) such that

= d and dr = k. Then 17 = T£T~ ' is idempotent and
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Case (iv): di < d.
This is similar to Case (iii).

Let

a e R: V(a) is convex, and every maximal interval ]
on which a is constant is final and/or initial in A(a)j

Also, let N(T) = R(T) n N.

THEOREM 10. Suppose that A(T) is o — 2 transitive. Then N is the maximum
inverse subsemigroup of P which contains A(T). There exist no inverse l-subsemi-
groups of P which properly contain A(T). <

PROOF. It is easily verified that N is an inverse subsemigroup of P. If
a e R \ N and a' is any inverse of a, we shall show that either act' or a'a is an
idempotent whose range is not convex. It will then follow from the lemma that
there can exist no inverse subsemigroup of P which contains a and A(T).

Suppose a £ N. If V(a) is not convex, then V(a'a) = V(a) is not convex. If a
is constant on the maximal interval [a, b] which is neither initial nor final, then
for each inverse a' of a there exists k G [a, b] such that k $ V(a'). But then
V(aa') = V(a') is not convex.

Now suppose that S is an inverse /-semigroup properly containing .4(r); then
S contains an idempotent £, not equal to the identity 1T. Because S C N, £ is of
the following form:

(a, x < a,
x£ = i x, a < x < b,

[b, b<x,
(where a = -oo, b = oo, a = b are all possible). By taking | V lr o r £ A lr' w e

may assume that £ is of one of these two forms:

x> x < a>
a, x>a,

where there exists b < a with b G. A(|); or

fa, x<a,
** \ x, x>a,

where there exists b < a with b e A(£).
We shall henceforth assume £ is of the first form, since a straightforward

modification of the proof below will handle the second case. So, choose
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b,cG A(£) with c < b < a. Also pick a, T > \T in A(T) with CT = a and
ca = b. Then

,. _, [ xa, x < c with XT S A(£),
XT£T 'a = {

[b, x > c.

Consequently,

xa, x < c with XT e A(£),
b, c <x <b,
x, b < x < a,
a, a < x.

But T£T ~ 'a V £ is then not an element of N, which is a contradiction.

COROLLARY 11. Suppose that A(T) is o - i transitive. Then N(T) is the
maximum inverse subsemigroup of S(T) which contains A(T). There exist no
inverse l-subsemigroups of S(T) which properly contain A(T).

In a similar fashion, we show that /-subsemigroups properly containing A(T)
which are unions of groups do not exist (for a discussion of /-semigroups which
are unions of groups, see Anderson and Edwards (1980)).

THEOREM 12. Suppose that A{T) is o — 2 transitive. Then there exist no
l-subsemigroups of P properly containing A(T) which are unions of groups.

PROOF. Let S be an /-subsemigroup of P which properly contains A{T), and
suppose S is a union of groups. Let £ be a non-identity idempotent of S. Then
there exists an interval [a, b] with a < b on which £ is constant, and with
a < a£ < b. Suppose that o£ < b. Then choose c,, c2, c3 and c4 with a£ < c, < c2

< c3 < c4 < b. Since A(T) is o — 2 transitive, it is o — 3 transitive (see Glass
(1976), p. 39) and so there exists T G A(T) with c3r = a£, C4T = cu br = c2. And
since S is a union of groups, £ V T is contained in some OC-class / / which is a
maximal group (see Clifford and Preston (1961), pp. 48, 61). Let fi be the inverse
of £ V T in H. Now £ V T is constant on [a£, c3] and so V(/J) n (6£, c3) contains
at most one point. But because fi and £ V " are 3C-related, we have that
V ( / 8 ) = V ( | V T ) (Clifford and Preston (1961), Lemma 2.5) and ct,c2G
^(£ V T) n (6£, c3), which is a contradiction. If a < a£, a similar argument
involving the infimum of £ with an element of A{T) leads to the same contradic-
tion. Thus, no /-subsemigroup of P properly containing A(T) is a union of
groups.
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There are many avenues of further research suggested by the results of this
paper. We shall conclude by mentioning a few of them. The general question
remains: does there exist an analogue to Holland's theorem for /-semigroups
making use of PT"\ More concretely, we can ask this: what /-semigroups are
representable as /-subsemigroups of PT', for some totally ordered set T1 A
question perhaps related to this is the following: give an abstract characteriza-
tion of semigroups of the form PT'. Finally, the proof of Holland's theorem
suggests another line of inquiry. What is the structure of the lattice of /-con-
gruences and the lattice of left /-congruences on PT', and on an arbitrary
/-semigroup? Much of the structure of /-groups is describable in terms of these
lattices (see Conrad (1970)) and so as much should be expected for /-semigroups.
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