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A K3 Surface Associated With
Certain Integral Matrices
Having Integral Eigenvalues

Ronald van Luijk

Abstract. In this article we will show that there are infinitely many symmetric, integral 3× 3 matrices,

with zeros on the diagonal, whose eigenvalues are all integral. We will do this by proving that the

rational points on a certain non-Kummer, singular K3 surface are dense. We will also compute the

entire Néron–Severi group of this surface and find all low degree curves on it.

1 Introduction

In the problem section of Nieuw Archief voor Wiskunde [Be], F. Beukers posed the

question whether symmetric, integral 3× 3 matrices

(1) Ma,b,c =





0 a b

a 0 c

b c 0





exist with integral eigenvalues and satisfying q(a, b, c) 6= 0, where q(a, b, c) is the

polynomial q(a, b, c) = abc(a2 − b2)(b2 − c2)(c2 − a2). As it is easy to find such

matrices satisfying q(a, b, c) = 0, we will call those trivial. R. Vidunas and the author

of this article independently proved that the answer to this question is positive, see

[BLV]. There are in fact infinitely many nontrivial examples of such matrices. This

follows immediately from the fact that for every integer t , if we set

(2) a = −(4t − 7)(t + 2)(t2 − 6t + 4),

b = (5t − 6)(5t2 − 10t − 4),

c = (3t2 − 4t + 4)(t2 − 4t + 6),

x = 2(3t2 − 4t + 4)(4t − 7),

y = (t2 − 6t + 4)(5t2 − 10t − 4),

z = −(t + 2)(5t − 6)(t2 − 4t + 6),

then the matrix Ma,b,c has eigenvalues x, y, and z. This matrix is trivial if and only

if we have t ∈ {−2,−1, 0, 1, 2, 4, 10}. For t = 3 we get a = 125, b = 99, and
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c = 57 with eigenvalues 190, −55, and −135. By a computer search, we find that

this is the second smallest example when ordered by max(|a|, |b|, |c|). The smallest

has a = 26, b = 51, and c = 114. In this article we will show how to find such

parametrizations. We will see that there are infinitely many and that the one in (2)

has the lowest possible degree.

If the eigenvalues of the matrix Ma,b,c are denoted by x, y, and z, then its charac-

teristic polynomial can be factorized as

λ3 − (a2 + b2 + c2)λ− 2abc = (λ− x)(λ− y)(λ− z).

Comparing coefficients, we get three homogeneous equations in x, y, z, a, b, and c.

Hence, geometrically we are looking for rational points on the 2-dimensional com-

plete intersection X ⊂ P5
Q , given by

(3) x + y + z = 0, xy + yz + zx = −a2 − b2 − c2, xyz = 2abc.

The points on the curves on X defined by q(a, b, c) = 0 correspond to the trivial

matrices. Parametrizations as in (2) correspond to curves on X that are isomorphic

over Q to P1. We will see that X contains infinitely many of them, thereby proving

the main theorem of this paper, which states the following.

Theorem 1.1 The rational points on X are Zariski dense.

In the next section we will recall the definition and some properties of lattices and

elliptic surfaces in the sense of Shioda [Sh]. In Section 3 we will prove Theorem 1.1

using an elliptic fibration of a blow-up Y of X. We will see that Y is a so called elliptic

K3 surface. The interaction between the geometry and the arithmetic of K3 surfaces

is of much interest. F. Bogomolov and Y. Tschinkel have proved that on every elliptic

K3 surface Z over a number field K the rational points are potentially dense, i.e.,

there is a finite field extension L/K such that the L-points of Z are dense in Z, see

[BT, Thm. 1.1]. Key in their analysis of potential density of rational points is the so-

called Picard number of a surface, an important geometric invariant. F. Bogomolov

and Y. Tschinkel have shown that if the Picard number of a K3 surface is large enough,

then the rational points are potentially dense. On the other hand, it is not yet known

if there exist K3 surfaces with Picard number 1 on which the rational points are not

potentially dense.

After proving the main theorem, we will investigate more deeply the geometry of Y

and show in Section 4 that its Picard number equals 20, which is maximal among K3

surfaces in characteristic 0. It is a fact that a K3 surface with maximal Picard number

is either a Kummer surface or a double cover of a Kummer surface. These Kummer

surfaces are K3 surfaces with a special geometric structure, described in Section 5. As

a consequence, their arithmetic can be described more easily. It is therefore natural

to ask if Y is a Kummer surface, in which case Y would have had a richer structure

that we could have utilized. In Section 5 we will show that this is not the case.

In Section 6 we will describe more of the geometry of X by showing that X con-

tains exactly 63 curves of degree smaller than 4. All points on these curves corre-

spond to matrices that are either trivial or not defined over Q . As the degree of a
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parametrization as in (2) corresponds to the degree of the curve that it parametrizes,

this shows that the one in (2) has the lowest possible degree among parametrizations

of nontrivial matrices.

2 Lattices and Elliptic Surfaces

The definition of an elliptic surface and the results in this section can almost all be

found in [Sh]. For a more detailed summary of these results and constructions of

elliptic surfaces, see also [Lu, §3, 4]. Throughout this paper we will say that a variety

V over a field k is smooth if the map V → Spec k is smooth.

We will start with the definition of a lattice. Note that for any abelian groups A

and G, a symmetric bilinear map A × A → G is called nondegenerate if the induced

homomorphism A → Hom(A,G) is injective. Note that we do not require a lattice

to be definite, only nondegenerate.

Definition 2.1 A lattice is a free Z-module L of finite rank, endowed with a sym-

metric, bilinear, nondegenerate map 〈 · , · 〉 : L × L → Q , called the pairing of the

lattice. An integral lattice is a lattice whose pairing is Z-valued. A lattice L is called

even if 〈x, x〉 ∈ 2Z for every x ∈ L. A sublattice of L is a submodule L ′ of L, such

that the induced bilinear pairing on L ′ is nondegenerate. A sublattice L ′ of L is called

primitive if L/L ′ is torsion-free. The positive or negative definiteness or signature of a

lattice is defined to be that of the vector space LQ , together with the induced pairing.

Definition 2.2 For a lattice L with pairing 〈 · , · 〉 we denote by L(n) the lattice with

the same underlying module as L and the pairing n · 〈 · , · 〉.

Definition 2.3 The Gram matrix of a lattice L with respect to a given basis x =

(x1, . . . , xn) is Ix =
(

〈xi, x j〉
)

i, j
. The discriminant of L is defined by disc L = det Ix

for any basis x of L. A lattice L is called unimodular if it is integral and disc L = ±1.

Lemma 2.4 Let L ′ be a sublattice of finite index in a lattice L. Then we have disc L ′
=

[L : L ′]2 disc L.

Proof This is a well-known fact, see also [Sh, §6].

Definition 2.5 Let C be a smooth, irreducible, projective curve over an algebrai-

cally closed field k. An elliptic surface over C is a smooth, irreducible, projective

surface S, together with a non-smooth, relatively minimal, surjective morphism

f : S→ C , of which almost all fibers are nonsingular curves of genus 1, and a sec-

tion O of f .

Remark 2.6 By Castelnuovo’s criterion (see [Ch, Thm. 3.1]), the morphism f is

relatively minimal if and only if no fiber contains an exceptional divisor, i.e., a prime

divisor E with E2
= −1 and H1(E,OE) = 0. By [Ha, Prop. III.9.7], any dominating

morphism from an integral variety to a regular curve is flat. Therefore, so is f in the

definition above. Also, f is locally of finite presentation. Hence, by [Gr1, Déf. 6.8.1],
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the requirement in the definition above of f not being smooth is equivalent to the

requirement that f have a singular fiber.

For the rest of this section, let S be an elliptic surface over a smooth, irreducible,

projective curve C over an algebraically closed field k, fibered by f : S → C with a

section O. Let K = k(C) denote the function field of C and let η : Spec K → C

be its generic point. Then the generic fiber E = S ×C Spec K of f is a smooth,

projective, geometrically integral curve over K with genus 1. Let ξ denote the natural

map E→ S.

E
ξ

//

��

S

f

��

Spec K
η

// C

Lemma 2.7 Both maps ξ∗ and η∗ in

E(K) = HomK (Spec K, E)
ξ∗−→ HomC (Spec K, S)

η∗←− HomC (C, S) = S(C)

are bijective.

Proof By the universal property of fibered products, we find that every morphism

σ : Spec K → S with f ◦ σ = η comes from a unique section of the morphism E →
Spec K. Hence, the map ξ∗ is bijective. As C is a smooth curve and S is projective,

any morphism from a dense open subset of C to S extends uniquely to a morphism

from C , see [Ha, Prop. I.6.8]. As Spec K is dense in C , the map η∗ is bijective as well.

Whenever we implicitly identify the two sets E(K) and S(C), it will be done using

the bijection ξ−1
∗ ◦ η∗ of Lemma 2.7. The section O of f corresponds to a point on E,

giving E the structure of an elliptic curve. This endows E(K) with a group structure,

which carries over to S(C), see [Si1, Prop. III.3.4].

Recall that for any proper scheme Y over an algebraically closed field, the Néron–

Severi group NS(Y ) of Y is the quotient of PicY by the group Pic0 Y consisting of all

divisor classes algebraically equivalent to 0, see [Ha, Exer. V.1.7], and [Gr2, Exp. XIII,

p. 644, 4.4]. If Y is proper, then NS(Y ) is a finitely generated, abelian group, (see

[Ha, Exer. V.1.7-8], for surfaces, or [Gr2, Exp. XIII, Thm. 5.1], in general.) Its rank

ρ = dim NS(Y ) ⊗ Q is called the Picard number of Y . Note that for the rest of this

section S is still an elliptic surface.

Proposition 2.8 On S algebraic equivalence coincides with numerical equivalence.

The group NS(S) is free. The intersection pairing induces a symmetric nondegenerate

bilinear pairing on NS(S), making it into a lattice of signature (1, ρ − 1). If S is a K3

surface, then NS(S) is an even lattice.
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Proof The first statement is proved by Shioda [Sh, Thm. 3.1]. It follows imme-

diately that the bilinear intersection pairing is nondegenerate on NS(S), see [Sh,

Thm. 2.1] or [Ha, example V.1.9.1]. The signature is given by the Hodge Index The-

orem [Ha, Thm. V.1.9]. If S is a K3 surface, then its canonical sheaf is trivial and the

adjunction formula [Ha, Prop. V.1.5] reduces to D2
= 2g(D)− 2 for any irreducible

curve D on S with genus g(D). As the irreducible divisors generate NS(S), the lattice

NS(S) is even.

Lemma 2.9 The induced map f ∗ : Pic0 C → Pic0 S is an isomorphism.

Proof See [Sh, Thm. 4.1].

For every point P ∈ E(K), let (P) denote the prime divisor on S that is the image

of the section C → S corresponding to P by Lemma 2.7. Let T ⊂ NS(S) be generated

by the classes of the divisor (O) and the irreducible components of the singular fibers

of f . For every v ∈ C , let mv denote the number of irreducible components of the

fiber of f at v. Finally, let r denote the rank of the Mordell–Weil group E(K).

Lemma 2.10 The module T is a sublattice of NS(S) of rank rk T = 2 +
∑

v(mv − 1)

and signature (1, rk T − 1).

Proof See [Sh, Prop. 2.3].

Proposition 2.11 There is a natural homomorphism ϕ : NS(S)→ E(K) with kernel

T. It is surjective and maps (P) to P. We have ρ = rk NS(S) = r + 2 +
∑

v(mv − 1).

Proof The map ϕ is defined in [Sh, §5]. For surjectivity, see [Sh, Lemmas 5.1 and

5.2]. The fact that T is the kernel is [Sh, Thm. 1.3]. The last equality follows from

Lemma 2.10 and the fact that the alternating sum of the ranks of finitely generated,

abelian groups in an exact sequence equals 0.

Corollary 2.12 There is a unique section ψ of the homomorphism NS(S) ⊗ Q →
E(K) ⊗ Q induced by ϕ that maps E(K) ⊗ Q onto the orthogonal complement of

T ⊗ Q in NS(S) ⊗ Q . The homomorphism ψ induces a symmetric bilinear pairing

on E(K). The opposite of this pairing induces the structure of a positive definite lattice

on E(K)/E(K)tors.

Proof See [Sh, Thm. 8.4].

Remark 2.13 Shioda gives an explicit formula for the pairing on E(K), based on

how the sections intersect the singular fibers and each other, see [Sh, Thm. 8.6].
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3 Proof of the Main Theorem

Let G ⊂ Aut X be the group of automorphisms of X generated by permutations

of x, y and z, by permutations of a, b, and c, and by switching the sign of two of

the coordinates a, b, and c. Then G is isomorphic to (V4 ⋊ S3) × S3 and has order

144. The surface X has 12 singular points, on which G acts transitively. They are all

ordinary double points and their orbit under G is represented by [x : y : z :a : b : c] =

[2 : − 1 : − 1 :1 : 1 :1]. Let π : Y → X be the blow-up of X in these 12 points. Since X

is defined over Q , so is Y .

Note that a K3 surface is a smooth, projective, geometrically irreducible surface S,

of which the canonical sheaf is trivial and the irregularity q = q(S) = dim H1(S,OS)

equals 0.

Proposition 3.1 The surface Y is a smooth K3 surface. The exceptional curves above

the 12 singular points of X are all isomorphic to P1 and have self-intersection number

−2.

Proof Ordinary double points are resolved after one blow-up, so Y is smooth. The

exceptional curves Ei are isomorphic to P1, see [Ha, Exer. I.5.7]. Their self-intersec-

tion number follows from [Ha, example V.2.11.4]. Since X is a complete intersection,

it is geometrically connected and H1(X,OX) = 0, so q(X) = 0, see [Ha, Exer. II.5.5].

From its connectedness it follows that Y is geometrically connected as well. As Y is

also smooth, it follows that Y is geometrically irreducible.

To compute the canonical sheaf on Y , note that on the nonsingular part U = Xreg

of X the canonical sheaf is given by OX(−5 − 1 + 3 + 2 + 1)|U = OU , see [Ha, Prop.

II.8.20; Exer. II.8.4]. Note that [Ha, Exer. II.8.4] applies to nonsingular complete

intersections in Pn. However, since the canonical sheaf is determined locally, the

proof of this exercise shows that outside the singular locus of a complete intersection

in Pn the same formula holds for the canonical sheaf. Hence, the canonical sheaf

on Y restricts to the structure sheaf outside the exceptional curves. That implies that

there are integers ai such that K =
∑

i aiEi is a canonical divisor. Recall that E2
i = −2

and Ei · E j = 0 for i 6= j. Applying the adjunction formula 2gC − 2 = C · (C + K)

(see [Ha, Prop. V.1.5]) to C = Ei , we find that ai = 0 for all i, whence K = 0.

It remains to show that q(Y ) = q(X). It follows immediately from [Ar, Prop. 1]

that ordinary double points are rational singularities, i.e., we have R1π∗OY = 0. Also,

as X is integral, the sheaf π∗OY is a sub-OX-algebra of the constant OX-algebra K(X),

where K(X) = K(Y ) is the function field of both X and Y . Since π is proper, π∗OY

is finitely generated as OX-module. As X is normal, i.e., OX is integrally closed, we

get π∗OY
∼= OX . Hence, the desired equality q(Y ) = q(X) follows from the following

lemma, applied to f = π and F = OY .

Lemma 3.2 Let f : W → Z be a continuous map of topological spaces. Let F be a

sheaf of groups on W and assume that Ri f∗(F) = 0 for all i = 1, . . . , t. Then for all

i = 0, 1, . . . , t, there are isomorphisms

Hi(W,F) ∼= Hi(Z, f∗F).
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Proof This follows from the Leray spectral sequence.

We will now give Y the structure of an elliptic surface over P1. Let f : Y → P1 be

the composition of π with the morphism f ′ : X → P1, [x : y : z :a : b : c] 7→ [x : a] =

[2bc : yz]. It is easily checked that if [x : a] or [2bc : yz] is not defined, then the other

is. This shows that f ′, and hence f , is well defined everywhere.

If a = 0, then clearly Ma,b,c in (1) has eigenvalue 0. Geometrically, this reflects

the fact that the hyperplane a = 0 intersects X in three conics, one in each of the

hyperplanes given by xyz = 0. Hence, each of the hyperplanes Ht given by x = ta in

the family of hyperplanes through the space x = a = 0 contains the conic given by

a = x = 0 on X. The fibers of f consist of the inverse image under π of the other

components in the intersection of X with the family of hyperplanes Ht . The fiber

above [t : 1] is therefore given by the intersection of the two quadrics

(4) xy + yz + zx = −a2 − b2 − c2 and t yz = 2bc

within the intersection of two hyperplanes

(5) x + y + z = x − ta = 0,

which is isomorphic to P3. The conic C given by a + b = c− y = 0 on X maps under

f ′ isomorphically to P1. The strict transform of C on Y gives a section of f that we

will denote by O.

Proposition 3.3 The morphism f and its section O give YC the structure of an elliptic

surface over P1
C.

Proof Since Y is a K3 surface, it is minimal. Indeed, by the adjunction formula any

smooth curve C of genus 0 on Y would have self-intersection C2
= −2, while an

exceptional curve that can be blown down has self-intersection −1, see [Ha, Prop.

V.3.]. Hence, f is a relatively minimal fibration by Remark 2.6. The 12 exceptional

curves give extra components in the fibers above t = ±1,±2, so f is not smooth.

From the description (4) above, an easy computation shows that the fibers above

t 6= 0,±1,±2,∞ are nonsingular. They are isomorphic to the complete intersection

of two quadrics in P3, so by [Ha, Exer. II.8.4g], almost all fibers have genus 1.

Let K ∼= Q(t) denote the function field of P1
Q and let E/K be the generic fiber of f .

It can be given by the same equations (4) and (5). To put E in Weierstrass form, set

λ = (t2−4)ν+3t and µ = t(t2−4)(z− y)(tν2−2ν+t)/x, where ν = (x−c)/(a+b).

Then the change of variables

u =
(

µ + (λ2 + t(t2 − 1)(t + 8))
)

/2,

v =
(

µλ + λ3 + (t2 − 1)(t2 − 8)λ− 8t(t2 − 1)2
)

/2
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shows that E/K is isomorphic to the elliptic curve over K given by

v2
= u

(

u− 8t(t2 − 1)
)(

u− (t2 − 1)(t + 2)2
)

.

It has discriminant ∆ = 210t2(t2 − 1)6(t2 − 4)4 and j-invariant

j =
4(t4 + 56t2 + 16)3

t2(t2 − 4)4
.

Lemma 3.4 The singular fibers of f are at t = 0,±1,±2 and at t = ∞. They

are described in the following table, where mt (resp., m(1)
t ) is the number of irreducible

components (resp., irreducible components of multiplicity 1).

t type mt m(1)
t

0,∞ I2 2 2

±1 I∗0 5 4

±2 I4 4 4

Proof This is a straightforward computation. Since we have a Weierstrass form, it

also follows easily from Tate’s algorithm, see [Ta] and [Si2, IV.9].

Applying the automorphisms (b, c) 7→ (−c,−b) and (b, c) 7→ (−b,−c) and

(b, c, y, z) 7→ (c, b, z, y) to the curve O, we get three more sections, which we will

denote by P, T1 and T2, respectively. By Lemma 2.7, these sections correspond with

points on the generic fiber E/K. The Weierstrass coordinates (u, v) of these points

are given by

(6)
T1 =

(

(t2 − 1)(t + 2)2, 0
)

, T2 = (0, 0),

P =
(

2t3(t + 1), 2t2(t + 1)2(t − 2)2
)

,

We immediately notice that the Ti are 2-torsion points.

Proposition 3.5 The section P has infinite order in the group S(C) ∼= E(K).

Proof Note that S(C) and E(K) are isomorphic by the identification of Lemma 2.7.

By Corollary 2.12 there is a bilinear pairing on E(K) that induces a nondegenerate

pairing on E(K)/E(K)tors. As mentioned in Remark 2.13, Shioda gives an explicit

formula for this pairing, see [Sh, Thm. 8.6]. We find that 〈P, P〉 =
3
2
6= 0, so P is not

torsion.

The main theorem now follows immediately.
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Proof of Theorem 1.1 By Proposition 3.5 the multiples of P give infinitely many

rational curves on Y , so the rational points on Y are dense. As π is dominant, the

rational points on X are dense as well.

The multiples of P yield infinitely many parametrizations of integral, symmetric

3 × 3 matrices with zeros on the diagonal and integral eigenvalues. The section 2P,

for example, is a curve of degree 8 on X which can be parametrized by

a = t(t6 − 8t4 + 20t2 − 12),

b = −t(t6 − 4t4 + 4),

c = (t2 − 2)(t6 − 6t4 + 8t2 − 4),

and suitable polynomials for x, y, and z. The parametrization (2) does not come

from a section of f . We will see in Section 6 where it does come from.

4 The Mordell–Weil Group and the Néron–Severi Group

As mentioned in the introduction, the geometry and the arithmetic of K3 surfaces are

closely related. In the following sections we will further analyze the geometry of Y .

Set L = C(t) ⊃ Q(t) = K. In this section we will find explicit generators for the

Mordell–Weil group E(L) and for the Néron–Severi group of Y = YC. This will be

used in Sections 5 and 6.

For any complex surface Z, the Néron-Severi group of Z can be embedded in

H1,1(Z) = H1(Z,Ω1
Z), see [BPV, p. 120]. If Z is a complex K3 surface, we have

dim H1,1(Z) = 20, see [BPV, Prop. VIII.3.3]. Hence we find that the Picard number

ρ(Z) = rk NS(Z) is at most 20. If ρ(Z) is equal to 20 we say that Z is a singular K3

surface.

Proposition 4.1 The Picard group Pic Y is isomorphic to NS(Y ) and it is a finitely

generated, free abelian group.

Proof This is true for K3 surfaces in general, but also follows from the theory of

elliptic surfaces described in Section 2, see [Sh]. As Y has the structure of an elliptic

surface over P1 and Pic0
P1

= 0, the isomorphism follows from Lemma 2.9. The last

statement follows from Proposition 2.8.

Two of the irreducible components of the singular fibers of f : Y → P1 above

t = ±2 are defined over Q(
√

3). They are all in the same orbit under G. In that same

orbit we also find a section, given by z = 2b and 2(c − a) =
√

3(y − x). We will

denote it by Q. Its Weierstrass coordinates are given by

Q =
(

2t(t + 1)(t + 2), 2
√

3t(t2 − 4)(t + 1)2
)

.

It follows immediately that the Galois conjugate of Q under the automorphism that

sends
√

3 to −
√

3 is equal to −Q.
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Proposition 4.2 The surface Y is a singular K3 surface. The Mordell–Weil group E(L)

is isomorphic to Z2 × (Z/2Z)2 and generated by P, Q, T1 and T2. The Mordell–Weil

group E(K) is isomorphic to Z× (Z/2Z)2 and generated by P, T1 and T2.

Proof From Shioda’s explicit formula for the pairing on E(K) (see Remark 2.13),

we find that 〈P, P〉 =
3
2

and 〈Q,Q〉 =
1
2

and 〈P,Q〉 = 0. Hence, P and Q are linearly

independent and the Mordell–Weil rank r = rk E(L) is at least 2.

By Lemmas 3.4 and 2.10, the lattice generated by the vertical fibers and O has

rank 18. From Proposition 2.11 it follows that the rank ρ of NS(Y ) = Pic(Y ) is at

least 18 + 2 = 20. As Y is a K3 surface (see Proposition 3.1) and 20 is the maximal

Picard number for K3 surfaces in characteristic 0, we conclude that Y is a singular

K3 surface. Using Proposition 2.11 again, we find that the Mordell–Weil rank of E(L)

equals 2. Since E has additive reduction at t = ±1, the order of the torsion group

E(L)tors is at most 4, see [Si2, Remark IV.9.2.2]. Hence we have E(L)tors = 〈T1,T2〉.
From Shioda’s explicit formula for the height pairing it follows that with singular

fibers only of type I2, I4 and I∗0 , the pairing takes values in 1
4

Z. Hence, the lattice

Λ = (E(L)/E(L)tors)(4) is integral, see Definition 2.2. In Λ we have 〈P, P〉 = 6 and

〈Q,Q〉 = 2 and 〈P,Q〉 = 0. Hence, by Lemma 2.4 the sublattice Λ
′ of Λ generated

by P and Q has discriminant disc Λ
′
= 12 = n2 disc Λ, with n = [Λ :Λ ′]. Therefore,

n divides 2. Suppose n = 2. Then there is an R ∈ Λ \ Λ
′ with 2R = aP + bQ.

By adding multiples of P and Q to R, we may assume a, b ∈ {0, 1}. In Λ we get

4 | 〈2R, 2R〉 = 6a2 + 2b2. Hence, we find a = b = 1, so 2R = P + Q + T for

some torsion element T ∈ E(L)[2]. Since all the 2-torsion of E(L) is rational over

L, it is easy to check whether an element of E(L) is in 2E(L). If e is the Weierstrass

u-coordinate of one of the 2-torsion points, then there is a homomorphism

E(L)/2E(L)→ L∗/L∗2,

given by S 7→ u(S)− e, where u(S) denotes the Weierstrass u-coordinate of the point

S, see [Si1, §X.1]. We can use e = 0 and find that for none of the four torsion points

T ∈ E(L)[2] the value u(P + Q + T) is a square in L. Hence, we get n = 1 and E(L) is

generated by P,Q,T1, and T2.

Suppose aP + bQ + ε1T1 + ε2T2 is contained in E(Q(t)) for some integers a, b, εi .

Then also bQ ∈ E(Q(t)). As the Galois automorphism
√

3 7→ −
√

3 sends Q to

−Q, we find that bQ = −bQ. But Q has infinite order, so b = 0. Thus, we have

E(Q(t)) = 〈P,T1,T2〉.

To work with explicit generators of the Néron–Severi group of Y , in the table

below we will name some of the irreducible divisors that we encountered so far. The

exceptional curves are given by the point on X = XC above which they lie. Other

components of singular fibers are given by their equations on X. Sections are given

by their equations and the names they already have.
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D1 x = −2a, b + c =

√
3

2
(y − z) D11 [−1 : − 1 : 2 : − 1 : − 1 :1]

D2 [2 : − 1 : − 1 : − 1 : 1 : − 1] D12 (T1) : a− b = c + y = 0

D3 (O) : a + b = c − y = 0 D13 [2 : − 1 : − 1 :1 :1 : 1]

D4 [−1 : − 1 : 2 :1 : − 1 : − 1] D14 x = 2a, 2(b− c) =
√

3(y − z)

D5 a = −x, b = c D15 (Q) : z = 2b, c − a =

√
3

2
(y − x)

D6 [−1 : 2 : − 1 :1 : − 1 : − 1] D16 x = 2a, 2(b− c) =
√

3(z − y)

D7 (T2) : a + c = b− z = 0 D17 x = b = 0

D8 [−1 : 2 : − 1 :1 : 1 :1] D18 a = y = 0

D9 [−1 : 2 : − 1 : − 1 : 1 : − 1] D19 (P) : a− c = b + y = 0

D10 a = x, b = −c D20 F (whole fiber)

Proposition 4.3 The sequence {D1,D2, . . . ,D20} forms an ordered basis for the
Néron–Severi lattice NS(Y ). With respect to this basis the Gram matrix of inner products
is given by









































































−2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1−2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 1−2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

0 0 1−2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1−2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1−2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1−2 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 1 0 0−2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0−2 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1−2 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1−2 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1−2 1 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1−2 1 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1−2 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1−2 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0−2 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0−2 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0−2 0 0

0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0−2 1

0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0









































































.

Proof By Proposition 2.11 the Néron–Severi group NS(Y ) is generated by (O),

all irreducible components of the singular fibers, and any set of generators of the

Mordell–Weil group E(L). Thus, from Lemma 3.4 and Proposition 4.2 we can find

a set of generators for NS(Y ). Using a computer algebra package or even by hand,

one checks that {D1, . . . ,D20} generates the same lattice. A big part of the Gram ma-

trix is easy to compute, as we know how all fibral divisors intersect each other. Also,

every section intersects each fiber in exactly one irreducible component, with mul-

tiplicity 1. The sections are rational curves, so by the adjunction formula they have

self-intersection −2. That leaves
(

5
2

)

more unknown intersection numbers among

the sections. By applying appropriate automorphisms from G ⊂ Aut X, we find that

they are equal to intersection numbers that are already known by the above.
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Remark 4.4 By Proposition 4.3 the hyperplane section H is numerically equivalent

to a linear combination of the Di . This linear combination is uniquely determined by

the intersection numbers H · Di for i = 1, . . . , 20 and turns out to be some uninfor-

mative linear combination with many nonzero coefficients. The reason for choosing

the Di and their order in this manner is that D1, . . . ,D8 and D9, . . . ,D16 generate

two orthogonal sublattices, both isomorphic to E8(−1). In fact, we have the follow-

ing proposition, which will be used in Section 5.

Proposition 4.5 The Néron–Severi lattice NS(Y ) has discriminant−48. It is isomor-

phic to the orthogonal direct sum

E8(−1)⊕ E8(−1)⊕ Z(−2)⊕ Z(−24)⊕U ,

where U is the unimodular lattice with Gram matrix

(

0 1

1 0

)

.

Proof The discriminant of NS(Y ) is the determinant of the Gram matrix, which

equals −48. With respect to the basis D1, . . . ,D20, let C1, . . . ,C4 be defined by

C1 = (0, 0, 0,−1,−2,−2,−2,−1, 1, 2, 3, 4, 4, 2, 0, 2, 1,−2, 0, 0),

C2 = (6, 12, 26, 29, 32, 19, 6, 16, 9, 18, 27, 36, 34, 23, 12, 17, 7,−3,−8, 4),

C3 = (1, 2, 4, 4, 4, 2, 0, 2, 2, 4, 6, 8, 8, 5, 2, 4, 2,−1,−1, 0),

C4 = (1, 2, 4, 5, 6, 4, 2, 3, 1, 2, 3, 4, 4, 3, 2, 2, 0, 0,−1, 1),

and let L1, . . . , L5 be the lattices generated by (D1, . . . ,D8), (D9, . . . ,D16), (C1), (C2),

and (C3,C4), respectively. Then one easily checks that L1, . . . , L5 are isomorphic to

E8(−1), E8(−1), Z(−2), Z(−24), and U respectively. They are orthogonal to each

other, and the orthogonal direct sum L = L1 ⊕ · · · ⊕ L5 has discriminant −48 and

rank 20. By Lemma 2.4 we find that the index [NS(Y ) : L] equals 1, so NS(Y ) = L.

5 The Surface Y Is Not Kummer

If A is an abelian surface, then the involution ι = [−1] has 16 fixed points. The

quotient A/〈ι〉 therefore has 16 ordinary double points. A minimal resolution of such

a quotient is called a Kummer surface. All Kummer surfaces are K3 surfaces. Because

of their rich geometric structure, their arithmetic can be analyzed and described more

easily. Every complex singular K3 surface is either a Kummer surface or a double

cover of a Kummer surface, see [SI, Thm. 4 and its proof]. It is therefore natural to

ask whether our complex singular K3 surface Y has the rich structure of a Kummer

surface. In Corollary 5.8 we will see that this is not the case.

Shioda and Inose have classified complex singular K3 surfaces by showing that the

set of their isomorphism classes is in bijection with the set of equivalence classes of
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positive definite even integral binary quadratic forms modulo the action of SL2(Z),

see [SI]. A singular K3 surface S corresponds with the binary quadratic form given by

the intersection product on the oriented lattice TS = NS(S)⊥ of transcendental cycles

on S. Here the orthogonal complement is taken in the unimodular lattice H2(S,Z) of

signature (3, 19) (see [BPV, Prop. VIII.3.2]). To find out which quadratic form the

surface Y corresponds to, we will use discriminant forms as defined by Nikulin [Ni,

§1.3].

Definition 5.1 Let A be a finite abelian group. A finite symmetric bilinear form on A

is a symmetric bilinear map b : A× A→ Q/Z.

A finite quadratic form on A is a map q : A → Q/2Z, such that for all n ∈ Z and

a ∈ A we have q(na) = n2q(a) and such that the unique map b : A × A → Q/Z

determined by q(a + a ′)−q(a)−q(a ′) ≡ 2b(a, a ′) mod 2Z for all a, a ′ ∈ A is a finite

symmetric bilinear form on A. The form b is called the bilinear form of q.

Definition 5.2 Let L be an integral lattice. We define the dual lattice L∗ by

{x ∈ LQ | 〈x, y〉 ∈ Z for all y ∈ L}.

Lemma 5.3 Let L be an even lattice and set AL = L∗/L. Then we have #AL = | disc L|
and the map

qL : AL → Q/2Z : x 7→ 〈x, x〉 + 2Z

is a finite quadratic form on AL.

Proof The first statement follows from the well-known fact | disc L| = [L∗ :L]. The

map qL is well defined, as for x ∈ L∗ and λ ∈ L, we have 〈x + λ, x + λ〉 − 〈x, x〉 =

2〈x, λ〉 + 〈λ, λ〉 ∈ 2Z. The unique map b : AL × AL → Q/Z as in Definition 5.2 is

given by (a, a ′) 7→ 〈a, a ′〉+ Z, which is clearly a finite symmetric bilinear form. Thus,

qL is a finite quadratic form.

Definition 5.4 If L is an even lattice, then the map qL as in Lemma 5.3 is called the

discriminant-quadratic form associated to L.

Lemma 5.5 Let L be a primitive sublattice of an even unimodular lattice Λ. Let L⊥

denote the orthogonal complement of L in Λ. Then qL
∼= −qL⊥ , i.e., there is an isomor-

phism AL → AL⊥ making the following diagram commutative.

AL

∼=
//

qL

��

AL⊥

q
L⊥

��

Q/2Z
[−1]

// Q/2Z

Proof See [Ni, Prop. 1.6.1].
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Lemma 5.6 The embedding NS(Y ) → H2(Y ,Z) makes NS(Y ) into a primitive sub-

lattice of the even unimodular lattice H2(Y ,Z). We have disc TY = 48.

Proof For the fact that H2(Y ,Z) is even and unimodular, see [BPV, Prop. VIII.3.2].

The image of the Néron–Severi group in H2(Y ,Z) is equal to H1,1(Y ) ∩ H2(Y ,Z),

where the intersection is taken in H2(Y ,C), see [BPV, p. 120]. Hence, NS(Y ) is a

primitive sublattice. From Lemmas 5.3 and 5.5 we find

| disc TY | = |AT
Y
| = |ANS(Y )| = | disc NS(Y )| = 48.

As TY is positive definite, we get disc TY = 48.

Up to the action of SL2(Z), there are only four 2-dimensional positive definite

even lattices with discriminant 48. The transcendental lattice TY is equivalent to one

of them. They are given by the Gram matrices

(7)

(

2 0

0 24

)

,

(

4 0

0 12

)

,

(

8 4

4 8

)

,

(

6 0

0 8

)

.

Proposition 5.7 Under the correspondence of Shioda and Inose, the singular K3 sur-

face Y corresponds to the matrix
(

2 0

0 24

)

.

Proof As E8(−1) and U as in Proposition 4.5 are unimodular, it follows from

Proposition 4.5 and Lemma 5.3 that the discriminant-quadratic form of NS(Y ) is

isomorphic to that of Z(−2) ⊕ Z(−24). By Lemmas 5.5 and 5.6 we find that the

discriminant-quadratic form associated to TY is isomorphic to that of Z(2)⊕ Z(24),

whence it takes on the value 1
24

+ 2Z. Of the four lattices described in (7), the lattice

Z(2)⊕ Z(24) is the only one for which that is true.

Corollary 5.8 The surface Y is not a Kummer surface.

Proof By [In, Thm. 0], a singular K3 surface S is a Kummer surface if and only if its

corresponding positive definite even integral binary quadratic form is twice another

such form, i.e., if x2 ≡ 0 mod 4 for all x ∈ TS. This is not true in our case.

6 All Curves on X of Low Degree

Note that so far we have seen 63 rational curves of degree 2 on X, namely those in the

orbits under G of

(8) D10 : x = a, b = −c,

D16 : x = 2a, 2(b− c) =
√

3(z − y),

D17 : x = 0, b = 0.
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These orbits have sizes 18, 36, and 9, respectively. All of these curves correspond to

infinitely many matrices that are either trivial or not defined over Q . To find more

rational curves of low degree, we look at fibrations of Y other than f . The conic (O)

given by a + b = c − y = 0 on X determines a plane in the four-space in P5 given

by x + y + z = 0. The family of hyperplanes in this four-space containing that plane,

cuts out another family of elliptic curves on Y . One singular fiber in this family is

contained in the hyperplane section a + b = 2(c − y) on X. It is the degree 4 curve

corresponding to the parametrization in (2). We will now see that this is the lowest

degree of a parametrization of nontrivial matrices defined over Q .

Recall that G ⊂ Aut X is the group of automorphisms of X generated by permu-

tations of x, y and z, by permutations of a, b, and c, and by switching the sign of two

of the coordinates a, b, and c.

Proposition 6.1 The union of the three orbits under the action of G of the curves

described in (8) consists of all 63 curves on X of degree smaller than 4.

Arguments similar to the ones used to prove Proposition 6.1 can be found in [Br,

p. 302]. To prove this final Proposition 6.1 we will use the following lemma.

Lemma 6.2 Let S be a minimal, nonsingular, algebraic K3 surface over C. Suppose D

is a divisor on S with D2
= −2.

(i) If D · H is positive for some ample divisor H on S, then D is linearly equivalent

with an effective divisor.

(ii) If D is effective and its corresponding closed subscheme is reduced and simply con-

nected, then the complete linear system |D| has dimension 0.

Proof Since the canonical sheaf on S is trivial and the Euler characteristic χ of OS

equals 2, the Riemann–Roch theorem for surfaces (see [Ha, Thm V.1.6]) tells us

l(D)− s(D) + l(−D) =
1

2
D2 + χ = 1,

where l(D) = dim H0(S,L(D)) = dim |D| + 1 and s(D) = dim H1(S,L(D)) is the

superabundance. Hence we have l(D) + l(−D) ≥ 1, so D or −D is effective, see also

[PS, Lemma 2]. As we have (−D) ·H < 0, part (i) follows from the fact that effective

divisors have nonnegative intersection with ample divisors.

For (ii), D is effective, so we also find l(−D) = 0. As the closed subscheme Z

associated to D is reduced and connected, we have dim H0(Z,OZ) = 1. From the

exact cohomology sequence associated to 0 → OS(−Z) → OS → OZ → 0 we find

s(−D) = 0, see [SD, Lemma 2.2]. By symmetry of Riemann–Roch we get s(D) = 0

and thus l(D) = 1, which proves (ii).

Proof of Proposition 6.1 Let C be a curve on X of degree d and arithmetic genus ga

and let C also denote its strict transform on Y . Let its coordinates with respect to the

basis {D1, . . . ,D20} of NS(Y ) be given by m1, . . . ,m20. Let H denote a hyperplane

section of X that does not contain any singular points of X. By abuse of notation,
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let H also denote the strict transform of H on Y and its class in NS(Y ). If E is any of

the 12 exceptional curves on Y , then we have H · E = 0. For any curve D on X we

also write D for the strict transform of D on Y . We have H · D = deg D, where the

intersection number H ·D is taken on Y . This determines H ·Di for all i = 1, . . . , 20

(see Remark 4.4), and we find

(9) d = C ·H = 2
(

m1 + m3 + m5 + m7 + m10 + m12 + m14+

+ m15 + m16 + m17 + m18 + m19 + 2m20

)

.

This implies that d is even, say d = 2k. Since we have H2
= 6, we can write the divisor

class [C] ∈ NS(Y ) as [C] =
d
6

H + D =
k
3
H + D for some element D ∈ 1

6
〈H〉⊥, where

the orthogonal complement is taken inside NS(Y ). From the adjunction formula

(see [Ha, Prop. V.1.5]) we find C2
= 2ga − 2, so from C2

= D2 + ( kH
3

)2 we get

D2
= 2ga − 2 − 2k2

3
. By the Hodge Index Theorem [Ha, Thm. V.1.9] the lattice

1
e
〈H〉⊥ is negative definite for any e > 0, so for fixed k and ga there are only finitely

many elements D ∈ 1
6
〈H〉⊥ with D2

= 2ga − 2 − 2k2

3
. We will now make this more

concrete. Set

v1 = 2m2 + m5 + m7 + m10 + m12 + m14 + m15 + m16 + m17 + m18 + 2m20 − k,

v2 = 4m3 − m4 + 2m5 + 2m7 + 2m10 + 2m12 + 2m14 + 2m15 + 2m16 + m17+

+ 2m18 + 2m19 + 3m20 − 2k,

v3 = 7m4 − 2m5 + 2m7 + 2m10 + 2m12 + 2m14 + 2m15 + 2m16 + m17 + 2m18+

+ 2m19 + 3m20 − 2k,

v4 = 33m5 − 14m6 + 9m7 − 14m8 + 9m10 + 9m12 + 9m14 + 9m15 + 9m16 + 15m17+

+ 9m18 + 16m19 + 24m20 − 9k,

v5 = 52m6 − 24m7 − 14m8 + 9m10 + 9m12 + 9m14 + 9m15 + 9m16 + 15m17 + 9m18+

+ 16m19 + 24m20 − 9k,

v6 = 24m7 + m8 + 4m10 + 4m12 + 4m14 + 4m15 + 4m16 + 11m17 − 9m18 − 3m19+

+ 2m20 − 4k,

v7 = 35m8 + 8m10 + 8m12 + 8m14 + 8m15 + 8m16 + 13m17 + 9m18 + 15m19+

+ 22m20 − 8k,

v8 = 2m9 − m10,

v9 = 211m10 − 140m11 + m12 + m14 + m15 + m16 + 41m17 + 23m18 + 50m19+

+ 64m20 − k,

v10 = 282m11 − 210m12 + m14 + m15 + m16 + 41m17 + 23m18 + 50m19 + 64m20 − k,

v11 = 119m12 − 94m13 + m14 + m15 + m16 − 53m17 + 23m18 + 50m19 − 30m20 − k,

v12 = 144m13 − 118m14 + m15 − 118m16 − 53m17 + 23m18 − 69m19 − 30m20 − k,
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v13 = 86m14 − 71m15 − 58m16 − 5m17 + 23m18 − 9m19 + 18m20 − k,

v14 = 1231m15 − 672m16 + 249m17 − 595m18 + 259m19 − 346m20 − 19k,

v15 = 364m16 + 19m17 + 271m18 − 89m19 + 290m20 − 41k,

v16 = 529m17 + 361m18 + 185m19 + 162m20 − 107k,

v17 = 62m18 + m19 − 22m20 + 8k,

v18 = 30m19 − 9m20 − 8k,

v19 = 3m20 − 4k.

After using (9) to express m1 in terms of m2, . . . ,m20, and k, we can rewrite the

equation C2
= 2ga − 2 as

(10) 112(3− 3ga + k2) = 84v2
1 + 42v2

2 + 6v2
3 +

4v2
4

11
+

14v2
5

143
+

7v2
6

13
+

+
v2

7

5
+ 84v2

8 +
6v2

9

1055
+

28v2
10

9917
+

12v2
11

799
+

v2
12

102
+

7v2
13

258
+

+
7v2

14

52933
+

6v2
15

16003
+

6v2
16

6877
+

336v2
17

16399
+

28v2
18

155
+

28v2
19

5
.

Suppose k and ga are fixed. Since the mi are all integral, so are the v j . As the right-

hand side of (10) is a positive definite quadratic form in the v j , we find that there

are only finitely many integral solutions (v1, . . . , v19) of (10). The mi being linear

combinations of the v j , there are also only finitely many integral solutions in terms

of the mi . In our case, the even degree d is smaller than 4, so d = 2 and k = 1.

As all curves have even degree, the conic C is irreducible and hence smooth, as all

irreducible conics are. Therefore we have ga = 0. A computer search shows that for

k = 1 and ga = 0 there are exactly 441 solutions of (10) corresponding to integral

mi .

By Lemma 6.2(i) these correspond to 441 effective divisor classes [D] on Y with

D2
= −2 and H ·D = 2. We will exhibit 441 of such divisors satisfying the hypotheses

of Lemma 6.2(ii). That lemma then implies that each is the only effective divisor in

its equivalence class and we conclude that they are the only 441 effective divisors D

on Y satisfying D2
= −2 and D ·H = 2.

The first 9 of these 441 divisors correspond to the curves in the orbit of D17. An-

other 16 correspond to D10 + ε1E1 + ε2E2 + ε3E3 + ε4E4 where εi ∈ {0, 1} and the Ei

are the four exceptional curves of π that meet D10. Each of these 16 divisors generates

an orbit under G of size 18, giving 288 divisors on Y altogether. The last 144 divisors

correspond to the divisors in the size 36 orbits of D16 +δ1M1 +δ2M2, with δi ∈ {0, 1}
and where M1 and M2 are the exceptional curves of π in the fiber above t = 2. Of

these 441 effective divisors, only 63 are the strict transform of a curve on X, all in an

orbit of one of the curves described in (8).
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