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Background
Computational models offer promising potential for personalised
treatment of psychiatric diseases. For their clinical deployment,
fairness must be evaluated alongside accuracy. Fairness
requires predictive models to not unfairly disadvantage specific
demographic groups. Failure to assess model fairness prior to
use risks perpetuating healthcare inequalities. Despite its
importance, empirical investigation of fairness in predictive
models for psychiatry remains scarce.

Aims
To evaluate fairness in prediction models for development of
psychosis and functional outcome.

Method
Using data from the PRONIA study, we examined fairness in 13
published models for prediction of transition to psychosis (n =
11) and functional outcome (n = 2) in people at clinical high risk
for psychosis or with recent-onset depression. Using accuracy
equality, predictive parity, false-positive error rate balance and
false-negative error rate balance, we evaluated relevant fairness
aspects for the demographic attributes ‘gender’ and ‘educa-
tional attainment’ and compared them with the fairness of clin-
icians’ judgements.

Results
Our findings indicate systematic bias towards assigning less
favourable outcomes to individuals with lower educational
attainment in both predictionmodels and clinicians’ judgements,
resulting in higher false-positive rates in 7 of 11 models for
transition to psychosis. Interestingly, the bias patterns observed
in algorithmic predictions were not significantly more pro-
nounced than those in clinicians’ predictions.

Conclusions
Educational bias was present in algorithmic and clinicians’ pre-
dictions, assuming more favourable outcomes for individuals
with higher educational level (years of education). This biasmight
lead to increased stigma and psychosocial burden in patients
with lower educational attainment and suboptimal psychosis
prevention in those with higher educational attainment.
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Precision psychiatry seeks to provide the right treatment to the right
patient at the right time, using algorithms to predict disease trajec-
tory or treatment response. Although promising for improving
mental healthcare and intervention efficacy, reliance on predicted
outcomes over current presentations raises potential hazards. As
an example, justice is one of the four major principles of bioethics
(the other three being beneficence, non-maleficence and autonomy)
and it refers to a fair and equitable treatment of patients and distri-
bution of resources.1 Algorithmic fairness (also referred to as fair-
ness in this paper) is a principle linked to justice in bioethics and
it can be operationalised by a number of different metrics.2 A pre-
diction algorithm can be considered fair for a demographic attribute
if the predictions do not systematically disadvantage any subgroups
regarding the respective demographic attribute (including but not
limited to gender, education, age, race, ethnicity and socioeconomic
status). Evidence so far shows that biases in medical algorithms can
lead to underdiagnosis and disparate allocation of health resources
in different subpopulations.3,4 To prevent the emergence, perpetu-
ation or reinforcement of health disparities through the use of pre-
diction models, fairness considerations should be incorporated into
their development and implementation.

Furthermore, most medical decisions are made by clinicians
alone, who can also be subject to biases.5,6 When assessing fairness
of prediction models, measuring biases in clinicians’ judgements
can serve as an important benchmark against which model fairness

can be more pragmatically evaluated. For the ethical and fair imple-
mentation of precision psychiatry approaches, a comprehensive
understanding of clinical decision-making including all agents
involved in the process is crucial.

Psychosis risk states and prediction models

Psychotic disorders remain one of the most substantial contributors
to global burden of disease.7 Unfortunately, existing treatment
options do not sufficiently alleviate clinical symptoms once psych-
osis is fully developed.8 Thus, research efforts have focused on an
indicated preventive approach to identify and treat people at clinical
high risk (CHR) for psychosis and to avoid a deleterious disease
course.9,10 Robust evidence suggests that individuals at CHR have
a probability of approximately 25% of developing psychosis
within 2 to 3 years.10 Moreover, they often already suffer from or
develop psychiatric disorders other than psychosis,11 experience
cognitive impairment12 or retain CHR symptoms.11,13 Thus, indivi-
duals at CHR are a heterogeneous population regarding their
disease trajectory.14

A multitude of models for prediction of psychosis in CHR
populations have been developed in recent years.15 Moreover,
recent studies have explored the potential of machine learning to
predict further important clinical end-points for people on the
psychosis spectrum, such as the development of poor psychosocial
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functioning.16,17 To use such models in clinical practice, it is of
utmost importance to ensure both high robustness and generalis-
ability – a prerequisite that has only recently started to be
addressed.18,19 An equally important prerequisite for the deploy-
ment of prediction algorithms in clinical settings is their compliance
with ethical principles. Although previous work has focused on the
use of algorithms in clinical practice on a theoretical level, addres-
sing issues such as trust,20 privacy,21 transparency21,22 and fair-
ness,23 the field so far lacks empirical investigations into the
ethics of prediction algorithms.

In this study, we made a detailed investigation of published algo-
rithms which were generated to predict clinical outcomes related to
psychosis in individuals at CHR for psychosis or with recent-onset
depression – of which 11 were developed to predict transition to
psychosis and two to predict psychosocial outcome. The predictions
of these algorithms were investigated with respect to multiple fairness
criteria and compared with predictions of clinicians.

Method

We evaluated the fairness of psychosis prediction models published
in peer-reviewed journals on data from the PRONIA cohort
(https://cordis.europa.eu/project/id/602152). PRONIA (Prognostic
Tools for Early Psychosis Management) is an EU-funded, naturalis-
tic, multisite study conducted in research sites across Europe and
Australia. Over 1700 participants (patients at CHR for psychosis,
with recent-onset psychosis or with recent-onset depression and
healthy controls) underwent a comprehensive clinical assessment,
neuropsychological testing, provided blood markers and underwent
a multimodal neuroimaging protocol. All participants were fol-
lowed-up for 18 months to assess multiple outcome parameters.
Further demographic and clinical characteristics of the sample
have been previously published.17,24 Written informed consent
was obtained from all participants. The study was registered with
the German Clinical Trials Register (DRKS00005042) and approved
by the local research ethics committees in each location.

We investigated algorithms for the prediction of two clinically
highly relevant outcomes: transition to psychosis and development
of poor psychosocial functioning. In a first step, previously pub-
lished clinical prediction models for the transition to psychosis
were tested in the PRONIA data-set as an independent test
sample and predictions were evaluated with respect to fairness cri-
teria explained below. In this analysis, we focused on a subset of six
predictive models with an area under the curve (AUC) of 65% or
higher based on a previous analysis18 and also included a model
that was validated independently.19,25 In addition, we investigated
fairness in prediction models for transition to psychosis based on
further data modalities (clinical/neurocognitive, neuroimaging
and genetic data as well as their combination) developed in the
PRONIA study using data relating to CHR for psychosis and
recent-onset depression.24 In a second step, we analysed predictive
models of social and role functioning outcomes in individuals at
CHR for psychosis or with recent-onset depression, as published
by Koutsouleris et al.17 Social and role functioning were measured
using the Global Functioning: Social Scale and the Global
Functioning: Role Scale;26 for the analyses in our study, scores >7
points were taken as indicators of good functioning, whereas ≤7
points indicated poor functioning (7 points indicating mild impair-
ment in social or role functioning, 8 points indicating good social or
role functioning: for further details see the Supplementary material,
available online at https://dx.doi.org/10.1192/bjp.2023.141).26,27 In
all analyses, we used the performance of clinical raters as a prag-
matic benchmark against which the relative benefits and hazards
of model bias can be assessed.

Fairness was investigated with respect to two relevant sensitive
attributes: gender and educational attainment. Education was
binarised to higher and lower educational level using the median
of years of education in the sample as a cut-off. For each prediction
model, we calculated the accuracy, balanced accuracy, true positive
rate, true negative rate, positive predictive value and negative pre-
dictive value for all sensitive attributes. Owing to the small
number of participants of non-European ethnicity in the PRONIA
sample, analysing fairness for the sensitive attributes of race and
ethnicity was not possible.

We chose four fairness metrics that are relevant in the context of
outcome prediction in people at CHR for psychosis. For each sensi-
tive attribute, we tested whether all subgroups exhibit: (a) equal
balanced accuracy (accuracy equality), (b) equal positive predictive
value (predictive parity), (c) equal false-positive rate (false-positive
error rate (FPER) balance) and (d) equal false-negative rate (false-
negative error rate (FNER) balance).2 Owing to class imbalance in
outcome variables (transition to psychosis, poor functional
outcome), we used balanced accuracy as a measure of accuracy
equality. The performance measures (accuracy, true-positive rate
(TPR), false-positive rate (FPR), false-negative rate (FNR), positive
predictive value (PPV)) of one group were taken as the reference
values of the respective demographic attributes. The fairness
metrics were calculated as the ratio of each attribute’s group
metric to the reference group metric. Therefore, a value of 1 indi-
cates absolute fairness, and the more a value deviates from 1, the
more pronounced the disparities. Values between 0.8 and 1.25, indi-
cating that a subgroup’s metric values were at least 80% of the sub-
group with the highest metric values, were considered as fulfilling
the fairness criteria according to the so-called four-fifths rule.28

We used permutation testing to assess whether prediction
models showed statistically significant deviations from fair predic-
tions.29 Fairness metrics were computed in 10 000 samples with ran-
domly permuted sensitive attributes to create a null distribution.
Separate permutation tests were performed for each fairness criter-
ion. Throughout the study, a Bonferroni-corrected threshold of α <
0.05 was considered significant.

All statistical analyses were performed in R (R-Studio Version
1.3.1093, R Version 4.0.4, for Windows).

Results

Table 1 summarises key characteristics of the PRONIA sample used
for the analyses. Table 2 lists all performance and fairness metrics
for all models and sensitive attributes. There were no significant dif-
ferences in psychosocial outcome or rates of transition to psychosis
between male and female participants. Transition rates in partici-
pants with higher and lower educational level at baseline did not sig-
nificantly differ either. However, participants with lower educational
level showed a significantly higher rate of poor outcome in psycho-
social functioning (CHR sample: poor role functioning in 54% of par-
ticipants with higher educational level versus 75% in those with lower
educational level (χ2 = 7.737, P = 0.003); poor social functioning in
45% of participants with higher educational level versus 69% in
those with lower educational level (χ2 = 10.316, P < 0.001)).

The investigated algorithms were often not within the prede-
fined permissible fairness range for the sensitive attributes of
gender (27 out of 64 criteria) and education (34 out of 64 criteria).
For the four fairness criteria that were analysed according to the two
sensitive attributes on 13 algorithms and clinicians’ predictions,
statistically significant fairness violations emerged for FPER in
only three models and FNER in only one model. These significant
deviations all emerged for the sensitive attribute education and
coherently consisted in assigning more favourable outcomes to
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Table 1 Key characteristics of the study sample

Sensitive attribute

Gender Education

n Overall Female Male t or χ2 p n Higher Lower t/χ2 p

CHR only sample
Participants, n 224 119 105 70 150
Age, years: mean (s.d.) 224 23.73 (5.31) 23.21 (5.37) 24.31 (5.20) −1.555a 0.121a 220 26.55 (5.11) 22.35 (4.72) 5.816a <0.001a*
Education years, mean (s.d.) 220 13.60 (2.74) 13.68 (2.74) 13.50 (2.75) 0.470a 0.639a 220 16.69 (1.81) 12.16 (1.72) 17.580a <0.001a*
Transition to psychosis, n (%) 198 24 (12%) 9 (9%) 15 (16%) 1.692b 0.129b 194 7 (11%) 17 (13%) 0.037b 0.670b

High role function, n (%)c 202 65 (32%) 38 (36%) 27 (28%) 0.858b 0.281b 199 30 (46%) 34 (25%) 7.737b 0.003b*
High social function, n (%)c 202 77 (38%) 43 (40%) 34 (36%) 0.247b 0.521b 199 36 (55%) 41 (31%) 10.316b <0.001b*
SIPS Positive Symptoms, mean (s.d.) 223 1.65 (0.90) 1.67 (0.87) 1.62 (0.94) 0.427a 0.670a 220 1.43 (0.89) 1.76 (0.90) −2.497a 0.014a*
SIPS Negative Symptoms, mean (s.d.) 221 1.73 (1.14) 1.64 (1.09) 1.83 (1.19) −1.250a 0.213a 220 1.50 (1.11) 1.84 (1.14) −2.071a 0.040a

SIPS Disorganised Symptoms, mean (s.d.) 221 0.85 (0.73) 0.81 (0.57) 0.90 (0.87) −0.941a 0.348a 220 0.75 (0.67) 0.90 (0.76) −1.529a 0.128a

SIPS General Psychopathology, mean (s.d.) 221 1.98 (0.96) 2.03 (0.88) 1.92 (1.06) 0.827a 0.409a 220 1.86 (0.99) 2.03 (0.95) −1.245a 0.215a

Gender 224 220 0.100b 0.752b

Female, n (%) 119 38 (54%) 78 (52%)
Male, n (%) 105 32 (46%) 72 (48%)

CHR and recent-onset depression
combined sample

Participants, n 393 206 187 154 234
Age, years: mean (s.d.) 393 24.53 (5.75) 24.33 (5.89) 24.75 (5.58) −0.724a 0.470a 388 27.14 (5.25) 22.81 (5.34) 7.911a <0.001a*
Education years, mean (s.d.) 388 14.12 (2.89) 14.15 (2.82) 14.08 (2.96) 0.222a 0.824a 388 16.94 (1.99) 12.26 (1.58) 24.540a <0.001a*
Transition to psychosis, n (%) 366 27 (7%) 10 (5%) 17 (10%) 1.981a 0.108b 361 8 (5.4%) 19 (8.9%) 1.092b 0.212b

High role function, n (%)c 205 65 (32%) 38 (35%) 27 (28%) 0.958b 0.259b 202 30 (46%) 34 (25%) 8.312b 0.002b*
High social function, n (%)c 205 77 (38%) 43 (40%) 34 (35%) 0.312b 0.482b 202 36 (55%) 41 (30%) 11.057b <0.001b*
SIPS Positive Symptoms, mean (s.d.) 390 1.13 (0.95) 1.14 (0.95) 1.12 (0.96) 0.228a 0.820a 386 0.86 (0.84) 1.31 (0.99) −4.726a <0.001a*
SIPS Negative Symptoms, mean (s.d.) 387 1.65 (1.07) 1.50 (1.01) 1.81 (1.12) −2.810a 0.005a* 386 1.45 (1.00) 1.78 (1.11) −2.959a 0.003a*
SIPS General Psychopathology, mean (s.d.) 387 0.73 (0.69) 0.67 (0.53) 0.79 (0.82) 0.480a 0.080a 386 0.59 (0.56) 0.83 (0.75) −3.607a <0.001a*
SIPS Disorganised Symptoms, mean (s.d.) 387 1.94 (0.96) 1.97 (0.89) 1.92 (1.03) −1.757a 0.632a 386 1.87 (0.95) 1.99 (0.97) −1.257a 0.210a

Gender 393 388 0.001b 0.971b

Female, n (%) 206 80 (52) 122 (52)
Male, n (%) 187 74 (48) 112 (48)

CHR, clinical high risk for psychosis; SIPS, Structured Interview for Psychosis-Risk Syndromes.
a. Welch two-sample t-test.
b. Pearson’s χ2-test.
c. Global Functioning: Social Scale and Global Functioning: Role Scale; cut-off: 7.
* Significance level p < 0.05.
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Table 2 Performance matrices and fairness indices of psychosis transition and functional outcome prediction algorithms

Model TP TN FP FN ACC BAC TPR TNR PPV NPV Attribute Accuracy equality Predictive parity FPER balance FNER balance

Transition to psychosis
Clinicians’ ratings (n = 334) (CHR & recent-onset depression) 16 261 49 8 82.5% 75.4% 66.7% 84.2% 24.6% 97.0%

Female (n = 175) 6 145 21 3 86.0% 77.0% 66.7% 87.3% 22.2% 98.0% Gender 1.030 (0.876) 0.844 (0.736) 0.651 (0.197) 1.000 (0.970)
Male (n = 159) 10 116 28 5 78.6% 73.6% 66.7% 80.6% 26.3% 95.9%
High education (n = 129) 5 108 14 2 87.1% 80.0% 71.4% 88.5% 26.3% 98.2% Education 0.911 (0.645) 0.909 (0.822) 1.630 (0.038) 1.240 (0.704)
Low education (n = 204) 11 152 35 6 79.7% 73.0% 64.7% 81.3% 23.9% 96.2%

Clinicians’ ratings (n = 198) (CHR only) 16 126 42 6 74.4% 73.9% 72.7% 75.0% 27.6% 95.5%
Female (n = 175) 6 71 17 2 79.8% 77.8% 75.0% 80.7% 26.1% 97.3% Gender 1.090 (0.638) 0.913 (0.842) 0.618 (0.897) 0.875 (0.148)
Male (n = 159) 10 55 25 4 69.0% 70.1% 71.4% 68.8% 28.6% 93.2%
High education (n = 129) 5 46 11 2 79.7% 76.1% 71.4% 80.7% 31.2% 95.8% Education 0.977 (0.905) 0.838 (0.718) 1.460 (0.108) 0.933 (0.959)
Low education (n = 204) 11 79 31 4 71.7% 72.6% 73.3% 71.8% 26.2% 95.2%

Model based on clinical data (n = 331) 21 200 105 5 66.6% 73.2% 80.8% 65.6% 15.3% 97.8%
Female (n = 171) 9 110 51 1 69.4% 79.1% 90.0% 68.3% 13.8% 99.2% Gender 1.170 (0.247) 0.809 (0.655) 0.846 (0.350) 0.400 (0.426)
Male (n = 163) 12 92 55 4 63.7% 68.8% 75.0% 62.6% 17.2% 96.0%
High education (n = 139) 7 94 37 1 72.6% 79.6% 87.5% 71.8% 15.1% 99.0% Education 0.877 (0.399) 1.050 (0.907) 1.390 (0.023) 1.780 (0.341)
Low education (n = 189) 14 104 67 4 62.2% 69.3% 77.8% 60.8% 15.8% 96.7%

Model based on MRI (n = 326) 21 183 118 4 62.3% 72.4% 84.0% 60.8% 13.7% 98.1%
Female (n = 169) 9 93 66 1 60.1% 74.2% 90.0% 58.5% 10.9% 99.0% Gender 1.070 (0.616) 0.628 (0.342) 1.120 (0.388) 0.500 (0.630)
Male (n = 157) 12 90 52 3 64.7% 71.7% 80.0% 63.4% 17.7% 97.0%
High education (n = 138) 7 80 50 1 62.9% 74.5% 87.5% 61.5% 11.5% 98.8% Education 0.955 (0.770) 1.390 (0.357) 1.010 (0.945) 1.410 (0.713)

Low education (n = 182) 14 101 64 3 62.8% 71.8% 82.4% 61.2% 16.0% 97.5%
Model based on PRS (n = 298) 23 152 121 2 58.1% 73.8% 92.0% 55.7% 13.4% 98.9%

Female (n = 150) 10 69 71 0 51.9% 74.6% 100.0% 49.3% 10.1% 100.0% Gender 1.060 (0.572) 0.544 (0.234) 1.360 (0.016) NA (0.515)
Male (n = 148) 13 83 50 2 64.4% 74.5% 86.7% 62.4% 18.6% 97.9%
High education (n = 129) 7 62 58 1 53.6% 69.6% 87.5% 51.7% 9.5% 98.6% Education 1.090 (0.437) 1.810 (0.076) 0.859 (0.319) 0.471 (0.599)
Low education (n = 164) 16 86 61 1 61.2% 76.3% 94.1% 58.5% 17.1% 99.1%

Stacked model based on clinical, MRI and PRS data (n = 334) 19 270 38 7 86.6% 80.4% 73.1% 87.7% 31.3% 97.7%
Female (n = 171) 8 141 20 2 87.1% 83.8% 80.0% 87.6% 26.6% 98.7% Gender 1.100 (0.550) 0.717 (0.463) 1.030 (0.901) 0.640 (0.561)
Male (n = 163) 11 129 18 5 85.9% 78.2% 68.7% 87.7% 36.8% 96.4%
High education (n = 139) 7 121 10 1 92.1% 89.9% 87.5% 92.4% 39.7% 99.2% Education 0.811 (0.265) 0.700 (0.458) 2.150 (0.013) 2.670 (0.117)
Low education (n = 189) 12 143 28 6 82.1% 75.1% 66.7% 83.6% 27.8% 96.4%

NAPLS (n = 165) 18 71 74 2 53.7% 69.5% 90.0% 49.0% 19.4% 97.3%
Female (n = 83) 5 37 39 2 50.5% 60.1% 71.4% 48.7% 11.0% 95.0% Gender 0.768 (0.064) 0.403 (0.177) 1.010 (0.973) NA (0.254)
Male (n = 82) 13 34 35 0 57.0% 74.6% 100.0% 49.3% 27.3% 100.0%
High education (n = 56) 3 35 17 1 67.8% 71.2% 75.0% 67.3% 15.2% 97.2% Education 1.040 (0.749) 1.400 (0.364) 1.850* (<0.001) 0.250 (0.533)
Low education (n = 107) 15 36 55 1 47.3% 66.7% 93.8% 39.6% 21.3% 97.3%

Hengartner (n = 167) 20 65 81 1 50.7% 69.9% 95.2% 44.5% 19.6% 98.5%
Female (n = 85) 7 32 45 1 45.7% 64.5% 87.5% 41.6% 13.1% 97.1% Gender 0.874 (0.129) 0.488 (0.205) 1.120 (0.452) NA (Inf) (0.520)
Male (n = 82) 13 33 36 0 55.8% 73.9% 100.0% 47.8% 26.8% 100.0%
High education (n = 57) 4 27 25 1 54.4% 66.0% 80.0% 51.9% 13.8% 96.4% Education 1.140 (0.131) 1.650 (0.148) 1.230 (0.124) NA (Inf) (0.982)
Low education (n = 107) 16 37 54 0 49.2% 70.3% 100.0% 40.7% 22.7% 100.0%

Lencz (n = 149) 12 103 29 5 76.9% 74.3% 70.6% 78.0% 27.5% 95.7%
Female (n = 76) 4 57 13 2 80.2% 74.0% 66.7% 81.4% 21.4% 97.0% Gender 0.977 (0.909) 0.670 (0.531) 0.730 (0.410) 1.220 (0.797)
Male (n = 73) 8 46 16 3 73.4% 73.5% 72.7% 74.2% 32.2% 94.2%
High education (n = 50) 2 40 6 2 84.1% 68.5% 50.0% 87.0% 23.3% 95.6% Education 1.210 (0.346) 1.250 (0.647) 2.120 (0.034) 0.462 (0.478)
Low education (n = 96) 10 60 23 3 72.3% 74.6% 76.9% 72.3% 29.1% 95.5%
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Table 2 (Continued )

Model TP TN FP FN ACC BAC TPR TNR PPV NPV Attribute Accuracy equality Predictive parity FPER balance FNER balance

Malda (n = 172) 13 108 41 10 70.4% 64.5% 56.5% 72.5% 24.0% 91.6%
Female (n = 87) 6 58 21 2 73.6% 74.2% 75.0% 73.4% 22.0% 96.7% Gender 1.360 (0.148) 0.850 (0.768) 0.930 (0.805) 0.469 (0.318)
Male (n = 85) 7 50 20 8 67.1% 59.0% 46.7% 71.4% 25.9% 86.2%
High education (n = 57) 4 40 12 1 77.2% 78.5% 80.0% 76.9% 25.0% 97.6% Education 0.714 (0.234) 0.947 (0.914) 1.340 (0.200) 2.500 (0.061)
Low education (n = 112) 9 65 29 9 66.1% 59.6% 50.0% 69.1% 23.7% 87.8%

Metzler (n = 164) 18 69 74 3 52.8% 67.0% 85.7% 48.3% 19.1% 96.0%
Female (n = 83) 6 38 37 2 52.9% 62.8% 75.0% 50.7% 13.3% 95.3% Gender 0.872 (0.446) 0.542 (0.310) 0.907 (0.568) 3.250 (0.186)
Male (n = 81) 12 31 37 1 52.7% 68.9% 92.3% 45.6% 24.5% 96.9%
High education (n = 56) 4 32 19 1 64.3% 71.4% 80.0% 62.7% 17.1% 97.0% Education 0.962 (0.812) 1.180 (0.700) 1.630* (0.003) 0.625 (0.771)
Low education (n = 105) 14 35 54 2 46.2% 63.4% 87.5% 39.3% 20.1% 94.7%

Michel (n = 163) 17 60 83 3 46.9% 63.5% 85.0% 42.0% 16.7% 95.3%
Female (n = 81) 6 34 40 1 49.1% 65.8% 85.7% 45.9% 12.4% 97.3% Gender 1.050 (0.775) 0.602 (0.350) 0.867 (0.351) 0.929 (0.984)
Male (n = 82) 11 26 43 2 44.9% 61.1% 84.6% 37.7% 20.6% 92.8%
High education (n = 56) 3 23 29 1 46.4% 59.6% 75.0% 44.2% 9.5% 95.8% Education 1.110 (0.532) 2.150 (0.075) 1.070 (0.651) 0.500 (0.653)
Low education (n = 105) 14 36 53 2 47.2% 64.0% 87.5% 40.4% 20.4% 94.9%

Walder (n = 168) 13 113 32 10 75.1% 67.2% 56.5% 77.9% 28.1% 92.2%
Female (n = 83) 6 53 22 2 71.0% 72.8% 75.0% 70.7% 20.1% 96.6% Gender 1.230 (0.310) 0.487 (0.270) 2.110 (0.016) 0.469 (0.276)
Male (n = 85) 7 60 10 8 78.8% 66.2% 46.7% 85.7% 41.2% 88.2%
High education (n = 55) 3 44 6 2 85.5% 74.0% 60.0% 88.0% 32.5% 95.8% Education 0.876 (0.623) 0.831 (0.746) 2.410* (0.004) 1.110 (0.844)
Low education (n = 108) 10 64 26 8 68.5% 63.3% 55.6% 71.1% 27.1% 89.2%

Functional outcome
Machine learning: role functioning (n = 205) 38 111 29 27 72.3% 68.4% 57.8% 79.0% 56.1% 80.1%

Female (n = 108) 23 51 19 15 68.5% 66.7% 60.5% 72.9% 54.8% 77.3% Gender 0.985 (0.921) 0.913 (0.659) 1.900 (0.022) 0.888 (0.706)
Male (n = 97) 15 60 10 12 77.3% 70.6% 55.6% 85.7% 60.0% 83.3%
High education (n = 91) 22 40 13 16 68.1% 66.7% 57.9% 75.5% 62.9% 71.4% Education 1.030 (0.836) 0.770 (0.328) 0.767 (0.510) 1.000 (0.993)
Low education (n = 111) 15 69 16 11 75.7% 69.4% 57.7% 81.2% 48.4% 86.3%

Clinicians’ rating: role functioning (n = 202) 58 71 68 5 64.0% 71.8% 92.1% 51.4% 46.4% 93.4%
Female (n = 105) 31 34 35 5 61.1% 67.7% 86.1% 49.3% 47.0% 87.2% Gender 0.876 (0.063) 1.040 (0.825) 1.080 (0.668) NA (0.040)
Male (n = 97) 27 37 33 0 66.0% 76.4% 100.0% 52.9% 45.0% 100.0%
High education (n = 91) 36 25 28 2 67.0% 71.0% 94.7% 47.2% 56.3% 92.6% Education 0.972 (0.699) 0.641 (0.072) 0.868 (0.448) 2.280 (0.248)
Low education (n = 110) 22 46 39 3 61.6% 71.1% 88.0% 54.1% 36.1% 93.9%

Machine learning: social functioning (n = 205) 65 95 33 12 78.7% 79.8% 84.4% 75.2% 67.7% 88.7%
Female (n = 108) 38 46 19 5 77.8% 79.6% 88.4% 70.8% 66.7% 90.2% Gender 1.050 (0.547) 1.010 (0.886) 1.320 (0.280) 0.565 (0.428)
Male (n = 97) 27 49 14 7 78.4% 78.6% 79.4% 77.8% 65.9% 87.5%
High education (n = 91) 43 34 12 2 84.6% 84.7% 95.6% 73.9% 78.2% 94.4% Education 0.805 (0.021) 0.686 (0.055) 0.922 (0.801) 7.030* (0.006)
Low education (n = 111) 22 60 19 10 73.9% 72.3% 68.8% 75.9% 53.7% 85.7%

Clinicians’ rating: social functioning (n = 202) 67 67 59 9 66.5% 70.9% 88.2% 53.6% 53.6% 88.2%
Female (n = 105) 36 33 30 6 64.8% 69.0% 85.7% 52.4% 54.5% 84.6% Gender 0.947 (0.532) 1.060 (0.757) 1.030 (0.878) 1.620 (0.310)
Male (n = 97) 31 34 29 3 67.0% 72.6% 91.2% 54.0% 51.7% 91.9%
High education (n = 91) 42 24 22 3 72.5% 72.8% 93.3% 52.2% 65.6% 88.9% Education 0.903 (0.233) 0.625 (0.044) 0.953 (0.795) 2.900 (0.059)
Low education (n = 110) 25 43 36 6 61.6% 67.5% 80.6% 54.4% 41.0% 87.8%

TP, true positive; TN, true negative; FP, false positive; FN, false negative; ACC, accuracy; BAC, balanced accuracy (BAC); TPR, true-positive rate; TNR, true-negative rate; PPV, positive predictive value; NPV, negative predictive value; FPER, false-positive error rate; FNER, false-
negative error rate; CHR, clinical high risk for psychosis; PRS, polygenic risk score; MRI, magnetic resonance imaging; NAPLS, North American Prodrome Longitudinal Study risk calculator.
* Bonferroni corrected P < 0.05. All fairness metrics are stated as metric value (P-value).
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participants with higher educational level; we did not find any stat-
istically significant fairness violations for gender.

All performance and fairness metrics are presented in Table 2.
Figure 1 depicts fairness metrics for the sensitive attribute gender,
Fig. 2 for the sensitive attribute education.

Fairness of models for the prediction of transition to
psychosis

In a first analysis, we investigated six previously published prediction
models for the transition to psychosis that showed the highest accur-
acy when applied to the PRONIA data-set as an independent test
sample18 and the North American Prodrome Longitudinal Study
(NAPLS) risk calculator, which has been validated for the prediction
of transition to psychosis in the PRONIA data-set.19,25 Features used
in predictionmodels can be found in Supplementary Table 1. Five out
of seven examined models fulfilled the criteria accuracy equality for
both gender and education, with accuracy equalities in the permis-
sible range and no significant deviations of accuracy in any of the sen-
sitive attributes. The four-fifths rule was violated by the prediction
model of Malda et al (2019),18 which had a higher accuracy for

females and participants with higher educational level, and by the
NAPLS risk calculator, which had a higher accuracy for males. On
predictive parity, we observed a systematic deviation in all seven pre-
diction algorithms and clinicians’ predictions towards higher positive
predictive values for males, although none reached statistical signifi-
cance. All prediction models, including clinicians’ predictions,
showed a higher false-positive rate for participants with lower
educational level, with three models showing statistically significant
deviations (model by Metzler:18 FPER = 1.630, P = 0.003; model
by Walder:18 FPER = 2.410, P = 0.004; NAPLS risk calculator:25

FPER = 1.850, P < 0.001).
Overall, there was no systematic difference of bias between

clinicians and algorithms.
In a second analysis, we investigated multimodal models for the

prediction of transition to psychosis based on clinical, neuroima-
ging and genetic data and a stacked model based on the listed
data modalities, which were previously developed in the PRONIA
data-set. All four models fulfilled accuracy equality for both sensi-
tive attributes, with a slight systematic deviation for higher balanced
accuracies for females, whereas the positive predictive value was
higher for males in all models and in clinicians’ predictions. In

A
cc

ur
ac

y
eq

ua
lit

y
FN

ER
ba

la
nc

e
FP

ER
ba

la
nc

e
Pr

ed
ic

tiv
e

pa
rit

y

Fairness index Fairness index

0.8 1 1.25

A
cc

ur
ac

y
Eq

ua
lit

y
FN

ER
B

al
an

ce
FP

ER
B

al
an

ce
Pr

ed
ic

tiv
e

Pa
rit

y

0.8 1 1.25

Clinician rating
Model by hengartner
Model by lencz
Model by malda
Model by metzler
Model by michel
Model by walder
NAPLS psychosis prediction

Role functioning - clinician
Role functioning - ML
Social functioning - clinician
Social functioning - ML

A
cc

ur
ac

y
Eq

ua
lit

y
FN

ER
B

al
an

ce
FP

ER
B

al
an

ce
Pr

ed
ic

tiv
e

Pa
rit

y

0.8 1 1.25

Clinician rating
Model based on clinical data
Model based on MRI data
Model based on PRS
Stacked model

(a)

(c)

(b)

Bias towards femalesBias towards males

Fairness index

Bias towards femalesBias towards males

Bias towards femalesBias towards males

Fig. 1 Fairness of prediction models validated on PRONIA data for the sensitive attribute ‘gender’, with males as the reference group.
(a) The fairness of predictions of functional outcome. (b) and (c) The fairness of predictions of transition to psychosis. The continuous line at x = 1
shows absolute fairness and the dashed lines at x = 0.8 and x = 1.25 cover the permissible fairness range according to the four-fifths rule. Values
higher than 2 were replaced with x = 2 in the figures. The false-negative error rate (FNER) balance could not be calculated for the model by
Hengartner, the North American Prodrome Longitudinal Study (NAPLS) risk calculator and polygenic risk score (PRS)model because therewere 0
false negatives in the reference group. ML, machine learning; MRI, magnetic resonance imaging.
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comparison, clinicians’ ratings fulfilled accuracy equality, FNER
balance and predictive parity, while violating FPER balance, with
higher false-positive rates in males.

For education, all machine learning models and the clinicians’
ratings fulfilled accuracy equality. Positive predictive rate was
lower for participants with higher educational level in clinical/
neuropsychological, neuroimaging- and genetics-based models,
whereas it was higher for those with higher educational level in
the stacked model.

Fairness of models for the prediction of psychosocial
functioning

In a fourth analysis we investigated fairness criteria in a model for
the prediction of psychosocial outcomes which was previously
developed in the PRONIA data-set.17 There was no violation of

accuracy equality for any of the tested sensitive attributes.
Clinicians assigned more favourable outcomes to males, whereas
machine learning-based predictions fulfilled three of four fairness
criteria, violating only predictive equality. False-positive rates
were higher in for females (role functioning: FPR = 27.1% for
females versus 14.3% for males; social functioning: FPR = 29.2%
for females versus 22.2% for males).

For education, neither the clinicians’ ratings nor the machine
learning models fulfilled the four-fifths rule for all fairness criteria.
Both clinicians’ and machine learning’s predictions had a higher
positive predictive rate for participants with higher educational
level for both role and social functioning. False-negative rates
were higher for participants with lower educational level, indicating
that the rate of those who were incorrectly assigned as poor outcome
was higher in people with lower educational level (social functioning
machine learning model: FNER = 7.030, P = 0.006). Algorithmic
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(a) The fairness of predictions of functional outcome. (b) and (c) The fairness of predictions of transition to psychosis. The continuous line at x = 1
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resonance imaging.
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predictions were not more systematically biased than clinicians’
predictions.

Discussion

In the present study, we empirically investigated algorithmic fair-
ness on a range of models for the prediction of outcome in people
at clinical high risk for psychosis. A substantial number of investi-
gated algorithms were not within the predefined permissible fair-
ness range for the sensitive attributes of gender and years of
education.

Educational bias in models

Overall, apart from algorithms based on neuroimaging data and
polygenic risk score (PRS), there was a general tendency to
predict more favourable outcomes for participants with higher edu-
cational level at baseline. In the majority of examined prediction
models, participants with lower educational level were more often
falsely predicted to have a transition to psychosis or a poor func-
tional outcome than those with more education: in 6 out of 11 pre-
diction models for transition to psychosis, both accuracy and
balanced accuracy were higher for participants with higher educa-
tional level, whereas with the exception of the PRS-based prediction
model, all prediction models for transition to psychosis had a higher
FPR in participants with lower educational level. Clinicians simi-
larly had a higher rate of false positives for participants with
lower educational level. Given that the analysed models were
masked to years of education, one explanation for these findings
could be that they included features directly or indirectly associated
with education years. Supporting this hypothesis, the three signifi-
cantly unfair models included education-related features: the
model by Metzler et al included verbal IQ,18 the model by Walder
et al included scholastic adjustment in childhood and functioning18

and the NAPLS risk calculator included scores from two neuro-
psychological tests (the Hopkins Verbal Learning Test – Revised
total raw score, testing verbal learning and memory, and the Brief
Assessment of Cognition in Schizophrenia symbol coding raw
score, testing processing speed).25 Furthermore, the models based
on polygenic risk score and neuroimaging data – two data modal-
ities that are likely to be less associated with education years than
neuropsychological data – were the only models without a bias
towards participants with higher educational level: higher positive
predictive values in participants with lower educational level were
revealed in both the PRS and magnetic resonance imaging (MRI)
models, and the PRS model was the only model with higher false-
negative and false-positive rates as well as lower accuracy for parti-
cipants with higher educational level. Another hypothetical explan-
ation for the discrepancies in prognostic performance due to
educational level is that medical research does not sufficiently
represent people with lower educational level and the consequent
lack of sufficient data leads to worse algorithmic performance.

Similar to algorithmic educational bias, clinicians also assigned
more favourable outcomes to participants with higher educational
level. Clinicians’ educational bias is a phenomenon that has not
been explored in this context before. There are studies showing
bias in clinicians’ behaviour in medicine, with the focus so far
being on factors such as race, ethnicity, gender, age and weight
(bias against obese patients).30 Specifically, in psychiatry, research
on bias-related misdiagnosis shows that previous experiences and
certain prototypes might bias psychiatrists’ clinical decision-
making while simultaneously being a source of expertise.31 In
psychiatry, bias-related misdiagnoses have been examined for
race,31 sexual orientation32 and ethnicity,6 although education-

related bias has not been explored to date. A bias associating
more favourable outcomes to patients with higher educational
level could be caused by confirmation bias of clinicians: because
educational attainment is one of the most relevant environmental
risk factors for psychosis,33 clinicians might be more likely to asso-
ciate higher educational level with lower risks of transition to psych-
osis or poor psychosocial outcome. To the best of our knowledge,
our study is the first to show a tendency towards educational bias
in psychiatry.

Gender-related bias

In all prediction models for transition to psychosis, positive predict-
ive values were consistently higher for males, and in 9 out of 11
models for transition to psychosis, the deviation from absolute fair-
ness in positive predictive value transgressed the predefined permis-
sible range of fairness. The clinicians’ predictions also had a higher
positive predictive value for males, remaining in the permissible
fairness range. Furthermore, clinicians more often falsely predicted
poor functional outcome for females, whereas machine learning
models more often falsely predicted good functional outcome for
females. The male and female patients in the PRONIA data-set
did not significantly differ in their key characteristics, including
age, years of education and risk symptoms on the Structured
Interview for Psychosis-Risk Syndromes (SIPS).

Clinician versus algorithmic bias

Our results suggest that algorithmic predictions were not systemat-
ically more biased than clinicians’ predictions. Of 11 algorithms that
predicted transition to psychosis, only 1 (Walder) was less fair than
clinicians’ predictions on all fairness criteria for the sensitive attri-
bute gender, and only one (the stacked model) was less fair on all
fairness criteria for the sensitive attribute education. Although clin-
icians were less fair regarding false-positive predictions for the sen-
sitive attribute gender, they made fairer predictions from an overall
accuracy point of view. Similarly, although clinicians were fairer
regarding false-negative predictions for the sensitive attribute edu-
cation, 6 out of 11 predictionmodels were fairer on overall accuracy.
Thus, our data did not show any sign of generalised systematic bias
of algorithms in comparison with clinicians’ predictions.

Algorithmic fairness is a novel field of research in medicine and,
so far, investigations of fairness of algorithmic predictions without
benchmarking them to standard procedures found biased decisions
disadvantageous to specific populations characterised by race,4,34

gender32 and age.35 However, they did not quantify the amount of
clinician bias: thus, it was not possible to conclude whether the pre-
diction models led to more or less fairness compared with standard
procedures. By comparing algorithmic and clinicians’ predictions,
we allow a framework for weighing the additional harm that can
be caused by employing algorithms in predictive medicine. Based
on our findings that the examined algorithms did not show stronger
bias compared with clinicians’ predictions, their clinical use might
not pose an ethical conflict from a fairness perspective. We under-
line here that comparing an algorithmwith the current standard (i.e.
clinicians’ judgements) might serve as a pragmatic benchmark for
assessing the ethical permissibility of an algorithm in terms of
fairness.

Fairness metrics and their relevance

Our study shows that the degree of fairness differs depending on the
fairness metric. The algorithms we analysed all showed comparable
and little bias in accuracy equality; however, their degree of fairness
vacillated more in FPER and FNER balance. The priority that
should be given to a fairness metric would depend on the predictive
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task at hand. In our study, we focused on the prediction of transition
to psychosis, in which case, a non-recognition (false-negative pre-
diction) would have different consequences than overdiagnosis
(false-positive prediction). Non-recognition would possibly
deprive the mispredicted individual of necessary preventive mea-
sures that could delay the onset, speed up the diagnosis and ameli-
orate the course of disease. In this context, a higher educational level
could present a double-edged sword, as it is associated with higher
health literacy,36 better health outcomes37 and might be a protective
factor against psychiatric disorders;38 but at the same time, a bias
associating more favourable outcomes to patients with higher edu-
cational level could lead to a higher risk of non-recognition of CHR
states and to lack/delay of necessary preventive health measures. On
the other hand, higher rates of overdiagnosis in patients with lower
educational level could reinforce stigma against these patients, could
harm them by overtreatment with medications with substantial
side-effects (e.g. antipsychotics) but might simultaneously lead to
better preventive care through more frequent follow-up visits and
early recognition of psychosis symptoms.

Strengths

To the best of our knowledge, this study is the first to examine bias
in psychosis prediction and the first to compare predictive bias
between clinicians and algorithms in medicine. By testing the fair-
ness of various predictive algorithms based on different data modal-
ities, we provide evidence for a pattern of educational bias in
psychosis prediction. None of the models we analysed included edu-
cation years and only one model contained gender as a model
feature (model by Malda et al); therefore, the investigated models
mostly did not directly include the sensitive attributes they were
analysed for, allowing an assessment of inherent biases incorporated
in the models. Moreover, by analysing models that were developed
using other data-sets than PRONIA, we could also assess bias inde-
pendent from training data-sets, allowing a more realistic assess-
ment of model fairness. The educational bias we detected was
consistent in all models. By analysing models based on different
data modalities, such as genetic, imaging and clinical data, we
assessed whether model bias depends on data modalities used in
model development and showed that models based on genetic
and imaging data are less susceptible to educational bias. In add-
ition, our study is the first in the literature to find educational
bias in psychosis prediction.

Limitations

Our study has several limitations. First, the ethnic and racial homo-
geneity of our sample – consisting mostly of White European
patients – limits the generalisability of our findings. Fairness ana-
lyses need to be replicated in samples with higher heterogeneity to
control for ethnic and racial bias, especially since previous work
hints at racial and ethnic bias in psychiatric diseases.6,31 Second,
our work compares bias in algorithms with bias in clinicians’ predic-
tions but cannot address the question of whether these biases are
compounded in algorithm-supported decision-making processes
in which predictions are not made by a clinician or an algorithm
alone but algorithms are used to support clinicians’ decisions.
Third, the follow-up period of the patients presented in this study
was limited to 18 months. Longer follow-ups can change the per-
formance metrics of the presented models for transition to psych-
osis, as the number of patients developing psychosis will probably
be higher over a longer follow-up period. Fourth, although we
found evidence for an educational bias, educational status in our
study was based on years of education and not on the type and
level of education. However, even in a sample with a relatively
high overall educational status, we found a clear tendency of

predicting more favourable outcomes for those with more years of
education. Fifth, in the absence of a consensus, we applied the
four-fifths rule as an orientation for a permissible fairness range.
However, we note that this range is arbitrary and can be adapted
according to the fairness question at hand. Sixth, we analysed the
algorithms according to the categories and cut-offs of the original
studies, since changing categories or shifting cut-offs would
require training the algorithms anew, which would result in new
algorithms. Thus, although our research focused on assessing the
fairness of existing algorithms and addressed the deployment
phase of algorithms, future research should also investigate the
development phase and control for effects of changing labels/cat-
egories as well as shifting cut-offs. Finally, although this study unra-
vels a pattern of educational bias, it remains unclear whether the
observed educational bias would translate to a disadvantage in
mental healthcare for patients with higher educational level at clin-
ical high risk for psychosis. Psychosis prediction algorithms are not
widely used in clinical psychiatry and in order to investigate the
consequences of such bias, data from clinical settings in which pre-
dictive algorithms are employed are necessary. Data from clinical
settings would also allow researchers to determine whether there
are compounding effects of clinicians’ interaction with a biased
algorithm.

Implications

Even though educational status was not directly included as a pre-
dictive feature in the algorithms we evaluated, the consistent
pattern of educational bias found in our study highlights the fact
that dissecting biases in algorithms requires comprehensive analyses
and may not always be straightforward since fairness violations
might be present for demographic attributes that are not included
in the algorithmic decision-making process.

As predictive algorithms gain importance in medical practice, it
is of paramount importance to ensure their compliance with ethical
principles. The accuracy of clinical decisions based on predictions
can only be tested at a later point, by which time the disparate allo-
cation of resources based on algorithmic decision-making might
already have resulted in disparities in healthcare, putting certain
demographic groups at higher risk or depriving them of necessary
preventive measures. Thus, fairness as a core principle of bioethics
should be incorporated in the development of precision medicine
approaches to avoid the emergence, perpetuation and reinforce-
ment of health disparities.
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