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Lower Escape Rate of Symmetric
Jump-diffusion Processes

Yuichi Shiozawa

Abstract. 'We establish an integral test on the lower escape rate of symmetric jump-diffusion pro-
cesses generated by regular Dirichlet forms. Using this test, we can find the speed of particles escap-
ing to infinity. We apply this test to symmetric jump processes of variable order. We also derive the
upper and lower escape rates of time-changed processes by using those of underlying processes.

1 Introduction

In [27], we studied the upper escape rate of symmetric jump-diffusion processes gen-
erated by regular Dirichlet forms (see [25] and the references given there for sym-
metric diffusion processes and [12,14] for Markov chains on weighted graphs). This
notion expresses how far particles can go for all sufficiently large time, and is thus
regarded as a quantitative version of conservativeness (see [7,10,13,18,19, 26, 28] for
conservativeness criteria of symmetric jump-diffusion processes). The result in [27]
shows how the upper escape rate can be affected by the rates of volume growth, coef-
ficient growth, and big jump. In this paper, we are concerned with the lower escape
rate of symmetric jump-diffusion processes, that is, the speed of particles escaping to
infinity. We can regard this notion as a quantitative version of transience. The pur-
pose of this paper is to establish an integral test on the lower escape rate of symmetric
jump-diffusion processes (Theorem 2.1 and Corollary 3.3). We also apply this test to
symmetric jump processes of variable order. This application ensures the sharpness
of the test.

Dvoretzky and Erdos [6] determined the speed of Brownian particles on R escap-
ing to infinity, and Takeuchi [30] extended this result to symmetric stable processes on
R4, More precisely, let ({X; } s, P) be the symmetric a-stable process on R starting
from the origin for 0 < « < 2. This process is nothing but the Brownian motion for
a = 2. It is well known that for d > a, this process is transient and escapes to infinity
as t — oo almost surely. Furthermore, if we define r, ,(t) = t/%/(log t)as for a
constant p, then

1, p>0,

P(|X¢| > ra,p(t) for all sufficiently large t) = 0 <0
> p = V.
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This result shows that the smaller the index « is, the faster the escape speed of particles
is. For p > 0, the function r, ,(t) is called a lower rate function for the symmetric
a-stable process on R9.

Ichihara [15, Theorem E] extended the result of Dvoretzky and Erdds [6] to sym-
metric diffusion processes on R generated by uniformly elliptic operators with
smooth coefficients. For the proof of this result, full heat kernel estimates and mar-
tingale theory are utilized. Grigor'yan [9] obtained an integral test on the lower es-
cape rate of Brownian motions on Riemannian manifolds (see also [2]). This result
means that lower rate functions can be determined by the upper bounds of the volume
growth rate and the heat kernel on-diagonal part. In the proof of this result, the ca-
pacitary upper estimate by Sturm [29] played an important role in estimating hitting
probabilities to compact sets. On the other hand, Hendricks [11] and Khoshnevisan
[17] extended the result of Takeuchi [30] to direct products of stable processes with
different indices.

Our result is applicable to more general symmetric Markov processes. In fact, we
can generalize the result of Grigor'yan [9] to symmetric jump-diffusion processes.
This generalization reveals that the scaling order of big jumps determines the speed of
particles escaping to infinity. Our approach here is similar to Grigor'yan [9]. Namely,
we first give an upper estimate of the hitting probability to a compact set after a fixed
time in terms of the capacity in a similar way to Bendikov and Saloff-Coste [2]. We
then use the capacitary upper estimate for Dirichlet forms of non-local type as devel-
oped by Okura [23] (see also the recent result of Okura and Uemura [24]). Our result
seems to be the first application of his estimate to the transient case.

We finally note that the upper and lower escape rates of time changed processes
can be determined by using those of underlying processes. For instance, let {Y;} 50
be a Markov process on R? generated by the operator

oo mx)

(_A)oc/z
for 0 < « < 2. Here, m(x) is a positive measurable function on R such that m(x) =
(1 + |x[*)? for some p > 0. This process is nothing but a time changed symmetric
a-stable process such that, if we take large p, then particles move speedily in space.
If we assume that 0 < p < a/2 and d > «, then {Y; }» is conservative and transient.
Moreover, we can find the upper and lower escape rates of {Y; }»9, and thus

log | Y| 1

lim =
t-oo logt  a—2p

almost surely; see Section 5 for details. For a = 2, even though Metafune and Spina
[20] obtained the upper bound of the heat kernel for £, this bound with Theorem 2.1
does not seem to imply the lower escape rate with sharp polynomial growth.
Throughout this paper, the letters ¢ and C (with subscript) denote finite positive
constants that may vary from place to place. For nonnegative functions f(x) and
g(x) onaspace S, we write f(x) < g(x) if there exist ¢; > 0 and ¢, > 0 such that

ag(x) < f(x)<cg(x) foranyxeS.
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2 The Result

2.1 Preliminaries

We recall the notions of Dirichlet forms from [3] and [8]. Let (X,d) be a locally
compact separable metric space and let m be a positive Radon measure on X with full
support. We write C(X) for the totality of continuous functions on X, and Cy(X) for
that of continuous functions on X with compact support. Let (£, F) be a Dirichlet
form on L?(; m); thatis, (€, F) is a closed Markovian symmetric form on L (; m).
We assume that (&, F) is regular: F n Co(X) is dense both in F with respect to the
norm +/€&;, and in Co(X) with respect to the uniform norm. Here for « > 0,
Ealitst) = E(u) + alulPaymys U ET.

By the Beurling-Deny formula ([8, Theorem 3.2.1, Lemma 4.5.4]),
Er) =€ wv)+ [[ () —u() () - () I (dxdy)

+ x)v(x) k(dx
for u,v € Fn Co(X), where

o (£09,FNCy(X)) is a symmetric form with the strong local property (see [8, p. 120]
for definition);
* ] is a symmetric positive Radon measure on X x X \ diag, where

diag={(x,y) e X x X | x = y};
* k is a positive Radon measure on X.

In particular, these three factors are determined uniquely for (&, F). We call J and k
the jumping measure and the killing measure, respectively, associated with (&, F).

We can extend &(¢) uniquely to F. Furthermore, for u € J, there exists a positive
Radon measure 4, on X such that

c 1 c
& )(”’”) = iﬂ(u)(x)

(see [8, p. 123]). We call By the local part of the energy measure of u.

We first introduce the notion of transience. Let { T} } ;¢ be a strongly continuous
Markovian semigroup on L*(X; m) and

Stf:fOthfds, Fe L} (X m).

Here, the integral is defined as the Bochner integral in L*(; m). We can then extend
Ty and S; on L'(X; m) n L*(X; m) to L'(X; m), uniquely. Let

LL(Xm)={uel'(X;m)|u>0,m-ae} and Gf-= 1\}1_{1:0 Snf> feLl(X;m).
We say that { T} } -0 is transient if
Gf <oco m-ae. forany f e L} (X;m).

This condition is equivalent to the existence of a function f € L'(X;m) strictly pos-
itive m-a.e. on X such that Gf < oo m-a.e. ([8, Lemma 1.5.1]). We also know that, if

https://doi.org/10.4153/CJM-2015-014-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2015-014-x

132 Y. Shiozawa

{T}}ts0 is transient, then there exists a bounded and m-integrable function g strictly
positive m-a.e. on X such that fx g-Ggdm < 1([8, p. 40]). This function is called a
reference function of { Tt} +»o. We say that (€, F) is transient if there exists a bounded
m-integrable function g strictly positive m-a.e. on X such that

fx|u|gdm£\/€(u,u) foranyu € F.

The function g is called a reference function of (€, F). Let { T} } ¢ be a strongly con-
tinuous Markovian semigroup on L (X; m) associated with (€, F). Then by [8, Theo-
rem 1.5.1], (€, F) is transient if and only if { T} } ¢ is transient. Moreover, there exists
a common reference function of { T; } -0 and (&, F).

Let F, be the totality of m-measurable functions u on X such that |u| < co m-a.e.
and there exists a sequence {u, } ¢ F such that lim,_, ., 4, = 4, m-a.e. on X and

lim E(up — tm, ty — thy) = 0.
m,n—oco

This sequence is called an approximating sequence of u. For any u € F, and its ap-
proximating sequence {u, }, the limit

E(u,u) = lim E(uy, uy)

exists and does not depend on the choice of {u,, } ([8, Theorem 1.5.2]). We call (&, £)
the extended Dirichlet space of (€, F) ([8, p. 41]). In particular, if (£, F) is transient,
then J, is complete with respect to £ ([8, Lemma 1.5.5]).

We next introduce the notion of capacity. In what follows, we assume that (&, J)
is transient. Let O be the totality of open sets in X. For A € O, define

La={ueF,|u>lm-ae onA}
and

infyep, E(w,u), La+d
00, La=0.

Cap(g)(A) = {

For any B c X, we define the 0-order capacity by

Cap(o)(B) = Aeél}gcA Cap o) (A).
We see by [8, p. 74] that if L # &, then there exists a unique element el(go) e L such
that

Capyy) (B) = S(el(go), el(;o)).

The function e)(go) is called the equilibrium potential of B.

For A c X, astatement depending on x € A is said to hold quasi everywhere (q.e. for
short) on A if there exists a set N ¢ A of zero capacity such that the statement holds
for every x € AN N.

A function u € J is said to be quasi continuous if for any & > 0, there exists O € O
with Cap o) (O) < & such that u|x. o is finite continuous, where u|x. o is the restric-
tion of u on X\ O. Itis known that every u € J admits its quasi continuous m-version;
see, for instance, [8, Theorem 2.1.3].
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We say that a positive Radon measure ¢ on X is of (0-order) finite energy integral
(ue S(()O) in notation) if there exists C > 0 such that

fx fldu < C\/E(f, f) forany f € Fn Co(X).

Then an s f i d i i
y measure 4 € Sy’ charges no set of zero capacity and associates a unique
element Uy € F,, which is called the (0-order) potential of u, such that

€(U/,t,v):fx’17d‘u foranyv e F,

([8, p. 85]). For any compact set K, there exists a unique measure vk € S(()O) with
supp[vk] c K such that eéo) = Uvk and
(2.1) Cap ) (K) = E(eg]), ef(o)) =vk(K)

(0-order version of [8, Lemma 2.2.6]). The measure v is called the (0-order) equilib-
rium measure of K.

We write B(X) for the family of all Borel measurable subsets of X. Let X4 = X U
{A} be the one point compactification of X and

B(Xa) =B(X)u{BU{A}:BeB(X)}.

Let M = ({X¢} 205 {Px xex) be an m-symmetric Hunt process on X generated by
(€,F), and let {p;}+>0 be the transition function of M given by

pi(x,A) =P (X, €A), xeX,t>0, AecB(X).

A set B c X is called nearly Borel measurable if for any probability measure y on X,
there exist By, B, € B(X,) such that B; ¢ B, and

P,(X; € B, \ By forsome t > 0) = 0.

We say that a set N c X is properly exceptional if N is nearly Borel measurable such
that m(N) = 0 and X \ N is M-invariant, that is,

Px(Xte(DC\N)A and X;— € (XN N)u foranyt>0) =1, xeX\N.

Here, (X \ N)p = (X~ N) u {A} and X;- = limg X;. Note that any properly
exceptional set N is exceptional, and thus Cap ¢, (N) =0 Dby [8, Theorem 4.2.1].
We now impose the following assumption on M.

Assumption 1 (Absolute continuity) There exist a properly exceptional Borel set
N c X and a nonnegative symmetric kernel p;(x, y) on (0,00) x (X~ N) x (X \ N)
such that p;(x,dy) = p:(x, y) m(dy) and

pes(x,y) = fx\Np,(x,z)ps(z,y) m(dz), xyeX~N, t,s>0.
If there exists a positive left continuous function M(t) on (0, co0) such that
I T:floo < M(t)| f]1, forany f e L'(X;m)and t >0,

then Assumption 1 holds with
pe(x,y) <M(t) forx,yeX~Nandt>0
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(see [1, Theorem 3.1]). We define p;(x,y) = 0 for (x,y) ¢ (X~ N) x (X \ N) and
t > 0 so that

(2.2) Pres(x,y) = fxpt(x,z)ps(z,y) m(dz), x,yeX, t,s>0.
Assume that (&, F) is transient. Let r(x, y) be the Green kernel defined by

)= [ ey
Ru(x) = [ r(x.p) u(dy)

for y € SSO). We then see that Ry is a quasi continuous and excessive version of Uy
in the same way as in [3, Lemma 6.1.1].

2.2 Result

Let (&,9) be a regular Dirichlet form on L?(X;m). We say that a function u on
X belongs to J locally (4 € Jj,. in notation), if for any relatively compact open set
G c X, there exists a function ug € F such that u = ug m-a.e. on G. We can then
define ”Zu) for any u € Foc ([8, p. 130]).

Let A be the totality of functions p in Fjoc N C(X) such that
(a) iy is absolutely continuous with respect to m;
(b) limy_,a p(x) = oo;
(c) foreachr >0, theset B,(r):= {x € X|p(x) < r} is relatively compact.

We impose the next assumption on (&, F).
Assumption 2 (i) A is non-empty.
(ii) The jumping measure J(dxdy) satisfies
J(dxdy) = J(x,dy)m(dx)

for some kernel J(x,dy) that associates a positive Radon measure on B(X \
{x}) for each x € X and depends on x € X in a measurable way.
(iii) The killing measure k vanishes.

Fix p € A and define
w((R) = ess.supT*(p)(x),

x€B,(R)
WO R)=ess.sup [ {(p(x) = () A R} (3 dy),
xeX An{x}
where I'°(p) is the density function of u¢ ) with respect to m. Let f be a strictly
positive and nondecreasing function on (0, co) such that
f(r) 2m(B,(r)) foranyr>0.

Let g be a strictly positive, nonincreasing, and differentiable function on (0, c0) such
that

g(r) > lz(w(c)(r) +W(j)(1’)) for any r > 0.
r
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Define h(r) =1/g(r) and
co L/

AU

f(1)
Note that the function h(t) expresses the scaling order of (€,F). For instance, we
assume that (&, ) is associated with the independent sum of a Brownian motion
and a symmetric a-stable process on R for some « € (0,2). Namely,

E(u,v) = 1 .[Rd Vu(x)-Vv(x)dx

2

1 (u(x) —u(y))(v(x) -v(y))
" ECd’“ \[/]l;dX]Rd\diag dXdy

|x _y‘d+a

I(R) =

?:{ueLz(Rd)‘ %eﬁ(md), 1<i<df

with
a2 72T ((d + a)/2)
nd2T(1- a/2)

Then by letting p(x) = |x|, we get

Cd,a =

wO(r)<e and w(r) <cpr®™®
for some ¢; > 0 and ¢, > 0. Hence, we can take h(r) = c3r* for some c3 > 0. This
implies that if d > &, then I(R) = c4R*" for some ¢4 > 0.

We finally impose the next assumption on the volume growth of the underlying
measure.

Assumption 3 (Volume doubling condition) There exists ¢y > 0 such that

m(B,(2R)) < cy-m(B,(R)) forany R > 0.

Let M = ({X:}t20, {Px }xex) be an m-symmetric Hunt process on X generated
by (€, F). Then M has no killing inside because the killing measure vanishes by As-
sumption 2(iii). The main result in this paper is the following integral test on the lower
escape rate of M.

Theorem 2.1 Let Assumptions1-3 hold. Assume that (€, F) is transient and I(r) < oo
forany r> 0. If r(t) is a positive and strictly increasing function on (0, oo) such that

e 1
(2.3) ————sup ps(x,y)ds<oo foranyxeX
o T0(e) e Plr ) dscoe Jorany

with some ty > 0, then
(2.4) Pi(p(X¢) > r(t) for all sufficiently large t) =1, q.e. x € X.
The function r(t) in (2.4) is called a lower rate function for M with respect to p.

On the other hand, a positive and strictly increasing function 7(¢) on (0, c0) is called
a lower rate function for M if

Px( d(x,X;) > 7(t) for all sufficiently large t) =1, q.e.x € X.

https://doi.org/10.4153/CJM-2015-014-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2015-014-x

136 Y. Shiozawa

We then see that, if p(x) = d(0, x) for some 0 € X and r(t) — oo as t - oo in (2.4),
then for any small ¢ > 0, the function (1 - ¢)r(¢) is a lower rate function for M.

Remark 2.2 Let Assumption 1 hold. If

[ sup ps(x,y)ds < oo foranyx € X,
I yeX

then Gf < oo m-a.e. for any f € L'(X;m) n B, (X) strictly positive m-a.e. on X,
because

Gf:foopsfds, m-a.e.on X
0

and

[ pras
= (Y Lopensom@n) dse [T [ pe)s)ymidy) o
<Ufll 17 [ sup el ) ds < o0
I yeX

for q.e. x € X. Therefore, (&€, F) is transient as we mentioned in Subsection 2.1 (see
also [8, Lemma 1.5.1]).

3 Proof of Theorem 2.1

In this section, we give a proof of Theorem 2.1. As mentioned before, our approach is
similar to that of Grigor’yan [9].

Let K be a compact set in X and let ox = inf{t > 0 | X; € K} be the hitting
time of M to K. If (€, F) is transient, then the function px(x) = Py(0x < ) is a

quasi continuous modification of 61(<0) = Uvk ([8, Theorem 4.3.3]), whence px = Rvk
m-a.e. under Assumption 1
We first derive an upper bound of the probability yx (¢, x) given by

vk (t,x) = Po(X; € K forsomes>t), x € X\ N, ¢t >0.

Lemma 3.1 Let Assumption 1 hold and assume that (€, F) is transient. Then for any
compact set K in X,

y/K(t,x)SCap(o)(K)f sup ps(x,y)ds, t>0, xe X\ N.
L yeX

This lemma is a 0-order version of Bendikov and Saloff-Coste [2, Theorem 3.10],
and our proof is similar to theirs.

Proof of Lemma 3.1 Let {6;};5 be the shift operator of sample paths of M. Then
by the Markov property,

(31) l//K(t,x):PX(UK06[<OO):Ex[PXt(O'K<OO):|
= [ PG )pic(y) m(dy).
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Since px = Rvg m-a.e. and supp[vi] c K, the last expression in (3.1) is equal to
[ pieRuc) mdy) = [ pie)( [ r(rn2)vi(d)) m(dy)
= [ ([ pex)r(nz) m(dn) vic(da).
Then
G2 [ ey mdn) = [ pey)( [ purn2)ds) m(ay)
= [ (fopee)pnz)m(dy)) ds

By (2.2), the last expression in (3.2) is equal to

fo Pres(x,2)ds = ft ps(x,2)ds.
Hence by (2.1),

we(tx) = [( [T pmrds) vede) = [T [ pelwzpve(da)) ds

< vi(K) ft sup ps(x,z) ds = Cap ) (K) ft su%zps(x, y)ds. ®
ye

zeK

We next obtain the capacitary upper bound as an application of the result by Oku-
ra [23].

Lemma 3.2 Let Assumptions 2 and 3 hold. If I1(r) < oo for any r > 0, then there
exists C > 0 such that for any r > 0,

—= C
33 Cap(B < —.
( ) ap( P(r)) I(r)
Proof Fix p € A. For R > r > 0, we define
_ R-p(x)
(/5,)R(x) —Ov(ﬁ) Al

TR = [ (@) mid).

Note that ¢, g € Fn Co(X). We will show that for any ¢y > 1,

(3.4) 3E(prr-brr) < Cf(r)g(R) forcy <R/r<cj
and
(3.5) 4]Jo(r,R) < Cf(r/cﬁ)g(ch) for R/r > ¢

with some positive constant C > 0, which will be explicitly given below. By [23, The-
orem 2.6], (3.4) and (3.5) imply that

R B (t) dt) -1

Cap(B,(r), B,(R)) < C( (1)
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for1 < r < cor < R. Here for a compact set K and a relatively compact open set G with
KcgG,

Cap(K,G) =inf{ &(u,u) | u € Fn Co(X),u>1onK,u=00nG}.
Noting that

CaP(O)(EP(r)) < Cap(B,(r),B,(R)) < C(

R p/(¢t -1
(t) dt) ’
r f(1)
we get (3.3) by letting R — oo.
In what follows, we show (3.4) and (3.5). Since
1

P($ra) () = e (P)C) Torpiorcny (),
we have
68 €t = s [ T M)

< ﬁm(zap(zz)) WO (R),

On the other hand, since

|6r,r(x) = ¢rr(¥)| <

we obtain for any ¢ > 1,

(37) /LXC)C\diag( ¢r,R(x) B ¢r,R (y)) ’ ](X, d}’) m(dx)
i [/BP(CR)XBp(ER)\diag(¢r’R(x) = $rr(2)) " J(x,dy) m(dx)
= ffB,,uR)XBP(CR)C(WR(x) = ¢r.r(y))" J(x,dy) m(dx)

1

~ r{IP(X) ~pIA(R=1)},

R

3 .
2 e
< (R—r)zm(Bp(CR)) w(R).
Assume first that ¢y < R/r < ¢ for some ¢q > 1. Then
1 Co 2 1
3.8 < =
(3.8) (R-r1)? (co—l) R?

If we choose N > 1o that cc2/2V <1, then
m(B,(R)) < m(B,(cR)) < (cV)Nm(BP(cR/ZN))
< (CV)Nm(BP(cc(Z)r/ZN)) < (cV)Nm(Bp(r)),

by Assumption 3. Hence the last expressions in (3.6) and (3.7) are less than

2 w(©
) m(By ()

(CV)N( co
2 Co -1

Co
3(CV)N(ﬁ

and
w(R)
RZ

)" m(B,(r)-
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respectively, which implies that

Co

o) <3(er) (= 22) (B (1) - (WO (R) + W (R)).

Co — 1
Assume next that R/r > ¢, for some ¢y > 1. Then

(3.9)
]()(7', R)

B /Bp(r)( fBP(R)c{l/\ ( W)} ](x,dy)) m(dx)

< (R—lr)zm(Bp(r))'isfé,,Sg? x\{x}{(P(y) =p(x))* A (R=1)*} J(x,dy)

co \2 w(j)(R)
S(ico—l) m(Bp(r)). =
by (3.8). We now take M > 1o that 2™ > ¢2. Since

m(Bp(r)) < (cv)"m(B,(r/2")) < (cv)m(B,(r/c5))

by Assumption 3, the last expression in (3.9) is less than

(220) ebter) - m(B(rfch))-

1
(c5R)?

w) (2R).
As a result of the argument above, we arrive at (3.4) and (3.5) for any ¢y > 1, where

¢ CO"'°_1)2(9(CV)N Vet (ey)™).

Hence the proof is complete. ]

Proof of Theorem 2.1 Fix x € X and let
J(0)= [ suppa(ey) s
L yeX

Then by Lemmas 3.1 and 3.2,

Vi, (8:%) < Capoy (B ()T (1) < CF .

Let {ti } 4=, be an increasing sequence such that
1
J(tin) = ST (1)
for any k > 0. Then
J(ter) = 2] (1) = 47(8) = 2] (1) = 4(J (1) = I (tn))

i1

=4 sup ps(x, y) ds,
ty yeX
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which implies that

](tk—l) L1 1
= tr— 5 < C = 4C s > d
VB, (r(1)) (k1> %) () [ I(r(tk))f,lggp (x. y) ds

<4C

i1

t I(r( )) yeppS(x y)

for any positive and strictly increasing function r(t). Hence,

2 VE (v (thm1> %) < 00
k=1

by (2.3). In particular, since
Pi(p(X;) < r(t) for some t € [y, tk))
< P.(p(X¢) < r(ty) for some t € [ty_y, ti))
< P.(p(X¢) < r(ty) for some t > ti_;)
= Wfp(r(tk))(tk—l)x)>

we have
S Po(p(Xs) < r(t) for some t € [t5_y, tx)) < o0
k=1
so that
Py(p(X;) > r(t) for all sufficiently large t) =
by the Borel-Cantelli lemma. This completes the proof. ]

For applications of Theorem 2.1, we make the following assumption.

Assumption 4 In addition to Assumptions 1-3, the following hold.
(i) There exist p > 0 and ¢; > 0 such that for any x € X,

pe(x,x) < forall t > 1.

1
()
(ii) There exist v > 0 and ¢; > 0 such that forany r > 0and R > r,

fR) | ( )
fi) 2\

(iii) There exists c; > 1 such that for any R > 0, h(c3R) > 2h(R).

Let r(t) be a positive, strictly increasing function on (0, co) such that r(¢)/t# — 0
as t - oo. Then by Assumption 4(iii),

ar(®) B (u) 1 Ch(r(t))
I(r(t))zfr(t) ) duzf(c3r(t))(h(csr(t)) h(r(t))) > flar(t)

Hence, for all sufficiently large t > 0,

£(7) o
FUDI(1)) 2 2 S h(r() 2 o (t)) M) = 5

o)
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by Assumption 4(ii). Since
1
su x,y) <su V) S
ysgpr( y) yejlgpt(y y) ()

by (2.2) and Assumption 4(i), we have

clc3 r(t)v

ey U P15, ) S S ) S e RO

which implies the following corollary.

Corollary 3.3  Let Assumption 4 hold. Assume that (€, F) is transient and I(r) < oo
forany r > 0. If r(t) is a positive and strictly increasing function on (0, c0) such that

r(t)/t? - 0ast — oo and
©_r@®)’
fto tf”’h(())dt<oo

for some to > 0, then (2.4) holds.

4 Examples

In this section, we apply Theorem 2.1 and Corollary 3.3 to symmetric jump processes.

Example 41 Forx e Xandr >0,let B,(r) ={y e X |d(y,x) < r}. We assume
that B, (r) is relatively compact for any x € X and r > 0, and that for some « > 0,

m(By(r)) xr* foranyx € X.
Let y be a positive measurable function on X x X such that

Nn<y(xy) <y, xyeX

for some y1, 9, € (0,2) with y; < y,. Let J(x, y) be a symmetric and strictly positive
function on X x X \ diag such that

1

](x,)/) X W.

We also assume that C(l)ip(f)C) c Fand
E(u,u) = ﬂcxx\diag(u(x) —u()*J(x, y)m(dx)m(dy), ueFnCo(X).

Here, C:)ip(f)C) is the totality of Lipschitz continuous functions on X with compact
support. Then for a fixed point o € X, the function p(x) := d(o, x) belongs to Fjoc N
C(X).

(i) Let

B dG <
7)) {ﬁz d(x,y)>1
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for some B;, B € (0,2) and ¢(s) = P11y + 5151y Then
J(x.7) > 1
0 ¢(d(x, y))m(Bx(d(x, ¥)))
for any (x, y) € X x X \ diag and

9(R) | (3 )’WZ
¢(r) \r

for any 0 < r < R < co. Hence by [1, Theorem 3.1] and [5, Theorems 3.1 and 3.2], there
exists a properly exceptional Borel set N c X such that

pi(x,dy) = pi(x, y)m(dy)
for some positive symmetric kernel p;(x, y) on (0,00) x (X \ N) x (X \ N). Fur-
thermore, there exist ¢; > 0 and ¢, > 0 such that

O R CT)]

for any t > 0 and x, y € X \ N. Therefore, for some ¢ > 0,
c
pe(x,y) < PN forall t > 1.
We now assume that 0 < 8, < 2A « so that (&, F) is transient by Remark 2.2. Since

w0 =sup [ (oG =p(0) A7} ey m(dy)

< sup (d(x,y)> A t)](x, y) m(dy) < ct?> P
xeX JXN{x}

for some ¢ > 0, we can take h(t) = ¢'tP* for some ¢’ > 0. Then by letting v = a and
p =1/, in Corollary 3.3, we get

oo r(t)® < r(t)® o p(t)*P
ﬂ‘twmmag) 1 te/Per(t)bo 1 telb

In particular, the last expression above is finite for r(t) = ct'/#2/(log t)‘:%/‘sz with any
¢ > 0and ¢ > 0. We thus obtain

Po(d(x,X;) > /P2 | (log t)“ljiﬁsz for all sufficiently large t) =1, q.e. x € X.

This result is similar to that for the symmetric f3,-stable process on R? (see Takeu-
chi [30]).

(ii) Assume that
Bi<y(x,y) <Py ford(x,y) <1,
p1<y(x,y) <y, ford(x,y) 21
for some By, B, € (0,2) with 81 < B, and y1, ¥, € (0,2) with y; < y,. Since

G
](X,y) > W for d(x,y) <1,

C2
](X;y)ZW fOI‘d(X,y)Zl,
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we have

(u(x) —u(y))*
E(u,u) > c( ffd(x et d(x y)<h m(dx)m(dy)

(u(x) —u(y))’
[fd<xy)>1 d(x, y)*+r: (dx)m(dy))

for some ¢ > 0. By [1, Theorem 3.1] and [5, Theorems 3.1 and 3.2] again, there exists a
properly exceptional Borel set N ¢ X such that p;(x,dy) = p;(x, y)m(dy) for some
positive symmetric kernel p;(x, y) on (0, 00) x (X \ N) x (X \ N) satisfying

c
pe(x,y) < Talr forall t > 1.

We assume that 0 < y; < y, < 2 A a so that (€, F) is transient by Remark 2.2. Since
w)(t) < ¢'t* 7, we can take h(t) = ct”. Then by letting v = « and p = 1/y, in
Corollary 3.3, we get

= r(@)° = r(n)° () ™
SASO P PSR (A S T dt
_[ I h(r(£)) ~[ tlrr(f)n ﬁ‘ ol

I s +e
The last expression is finite for () = ct7 =n /(logt) = with anyc>0ande >0,
and thus

P, (d(x,X,) > ti%/(log t)“l%;l for all sufficiently large t) =1, qexeX.

Example 4.2 For each i = 1,2, let (X(V), d;) be a locally compact separable metric
space and m; a positive Radon measure on X(*) with full support. Set X = X x ()
and m = m; ® m,. Let (), F()) be a regular Dirichlet form on L?(X(");m;) and
M) = ({Xt(i)}tzo, {P,} ,cx») an associated m;-symmetric Hunt process on X(.
Let M = ({X,} 150> { Px } xex) be the direct product of M) and M(®) defined by

X;=(XL,X2), Py=P,®P,, x=(x1,%)eX.

Then by [21, Theorem 1.4] and [22, Theorem 3.1], M is an m-symmetric Markov pro-
cess on X and the associated Dirichlet form (&, F) on L?(X; m) is regular. Moreover,
if (") is a core for (£, F()), then so is € = V) @ C?) for (€, F) and

e(uv) = [ €2 ulx, ) v(x, ) m(dn)
# [ V@3- x2)) ma(dxa)
for u,v € C. Here €M ® €3 is the linear span of functions u" ® u®(x, y) :=

u® ()u® () for u e @,
In what follows, we assume that for each i = 1,2, Cg? (X)) ¢ €() and

0w = [l () =4 T yymi(dxymid),
ue FD A cy(x™)y

https://doi.org/10.4153/CJM-2015-014-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2015-014-x

144 Y. Shiozawa

for some positive measurable function J;(x, y) on X7 x X() \ diag. Assume also
that for some a; > 0 and 0 < f3; < 2, we have mi(B,(cl)(r)) = 1% for any x € X() and
1
](x’y) -~ di(x)y)oc,-+ﬁ,' '
In a similar way to Example 4.1(i), there exists a properly exceptional Borel set N(!) c
X such that _ '
Pt (xdy) = i (x, y)mi(dy)
for some positive symmetric kernel pﬁ') (x,y) on
(0,00) x (XD W NDY x (x L ND),
Furthermore, there exists ¢ > 0 such that for any x, y € X0 \ N(),

pgi)(x,y) < t“% forall t > 1.
Therefore, if we denote by p;(x,dy) the transition probability of M, then
pi(x,dy) = pe(x, y)m(dy)
for pe(x,7) = pi"” (31, 31)p;” (32, 72), and thus
pe(x,y) < t% forall t >1

forany x = (x1,%2), ¥ = (31, 2) € X \ N. Here,
A=a/Br+ay/Bs and N =X~ {(XD W NDY)x (x@ L N®)Y,
Note that N is of zero capacity with respect to (&, F) ([22, Theorem 4.3 (3)]).
We now assume that $; > f5; and A > 1 so that (&, F) is transient by Remark 2.2.
We further assume that for each i = 1,2, the set B,(f)(r) ={ye XD | di(x,y) <r}is
relatively compact for any x € X(*) and r > 0. Then by letting d(x, y) = d;(x1, y1) +

dy(x2, y2) for x = (x1,x2), ¥y = (31, y2) € X, for a fixed point 0 € X, the function
p(x) :=d(o,x) belongs to Fi, N C(X) and

w0 <sup{ [ (@) A ) o n)m(dn)

Xe
+ dy(x2, y2)* A 12 , d
i‘:jlz{ [xm\{xz}( 2(x2,72) ) J2(x2, y2) ma( )’2)}
<c(t PPy g p2he
This means that we can take () = ct#* for some ¢ > 0. Since m (B, (r)) x r*17°2, we
letv =0y +ayand p=A1/(a; + ) in Corollary 3.3 so that

fméﬂigmxfwﬂiifﬁa
1 trh(r(t)) 1 th
For instance, if we set
r(t) = ctam T [(log ) e 7
for any ¢ > 0, then the last expression above is finite for any € > 0. Hence by Corollary

3.3,
Px( d(x, (X}, X}?)) > r(t) for all sufficiently large t) =1 qge.xeX.
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Assume that M(") is a recurrent symmetric f8;-stable process on R% for each i =
1,2. Hendricks [11] showed that for a constant p, the function

s(t) = 7 [(log t) RGD

is a lower rate function for M if and only if p > 0, where A = d;/B; + d2/32. Since

r(t) =s()amt and (A -1)By/(ar + a2 — B2) <1,

our result is not sharp for f8; > f,.

5 Time Changed Processes

In this section we discuss the escape rate of time changed processes. Let (€,F) be
a regular Dirichlet form on L*(X;m) and let M = ({X;}+0, {Px } xex> {) be an m-
symmetric Hunt process on X generated by (€, F). Here, { := inf{t >0 | X; = A} is
the life time. Let y be a positive Radon measure on X charging no set of zero capacity
and let A, be the positive continuous additive functional with Revuz measure y (see,
e.g. [3] or [8] for definitions). Let Y be the topological support of i and let Y be the
quasi support of y:
(a) Yis a quasi closed set such that u(X \ Y) = 0;
(b) IfYisa quasi closed set with g (X H) =0,thenY cY q.e.
We denote by M = ({X,} 50, { Px } ) the time changed process of M with respect
to u:

X, =X, 71 =inf{s>0]|A>t}.
Then M is a y-symmetric Markov process on Y and the associated Dirichlet form
(é, 3") on L*(Y; u) is regular (see [8, Theorem 6.2.1] or [3, Section 5.2]). In particular,
if y has full quasi support, then

v

F=F,nL*(Np), E(uu)=E&(uu), ued.

We now assume that M is conservative: P,({ = 00) = 1for q.e. x € X. If f(¢) and
g(t) are strictly increasing functions on (0, oo ) such that

P.(f(t) < Ay < g(¢) for all sufficiently large t) =1, q.e.x € X,
then
P.(g7'(t) < 7, < f7'(¢) for all sufficiently large t) =1, q.e.x € X.
Hence if R(t) is an upper rate function for M, that is,
P, (d(x,X;) < R(¢) for all sufficiently large t) =1, q.e.x € X,

then P,-a.s.,

d(x,X;) =d(x,Xy,) <R(t:) <R(f(1))
for all sufficiently large ¢ > 0. This means that R(f~!(¢)) is an upper rate function
for M. In the same way, if (¢) is a lower rate function for M, then so is r(g~'(t)) for
M. A similar argument as above was used in [14] to obtain upper rate functions for
Markov chains on weighted graphs.
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Example 5.1 Let {a;;} be a family of symmetric measurable functions on R such

that
d

> aij(x)&&; < |¢* foranyx e R? and & € R?.

i,j=1
We denote by C* (R?) the totality of smooth functions on R? with compact support.
If we define

d ou ov
&(u,v) = / ; P (x)d
() = [, 30 () S5 ) 32 () d

for u,v € C°(R?), then (&, Cs*(R?)) is closable on L2(R?) (see [8, p. 111]) and the
closure (&, F) is a regular Dirichlet form on L?(R%).

LetM = ({X;} 150> { Px } xepe ) be a symmetric diffusion process on R? generated by
(&, 7). Let h be a positive measurable function on R? such that 4(x) < 1/(1 + |x|*)?
for some p > 0 and p(dx) = h(x) dx. Then

t t 1
A= thdxfid.
‘ /0 X)ds= | Taxme &

Assume that 0 < p < 1. Let M be a time changed process of M with respect to 4.

Since we see by [25, Example 3.4] that R; () := ¢\/tlog t is an upper rate function for
M, there exists ¢’ > 0 such that

t 1
A > ’f —d
20 o ArrR(9)2)F "

for all sufficiently large ¢ > 0. Hence if we define

! t 1
f(t):cfo CRe

then R;(f~!(t)) is an upper rate function for M. For all sufficiently large ¢ > 0, noting

that

t7F/(logt)?, 0<p<1,

£ = {1 /(log _P

oglogt, p=1

we get
1 '
f_l N tr (logt)™=r, 0<p<l,
h exp(exp(ct)), p=1,

and thus

t209 (log £) 107, 0<p<l,
exp(exp(ct)/2) -exp(ct/2), p=1
We next consider lower rate functions for M. Assume that d > 3. Then M is tran-
1+e
sient and Corollary 3.3 implies that for any & > 0, the function r(t) = \/t/(logt) 2
is a lower rate function for M. We note that if the coefficients a;; are smooth, then

Ichihara [15, Theorem E] obtained the same lower rate function and further showed
the sharpness. Hence, for some ¢ > 0,

t 1 d
A -
<e ) Arr(s)2)r

Ri(f7(1)) X{
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for all sufficiently large ¢ > 0. This shows that r(g!(¢)) is a lower rate function for
M, where

¢ 1
g(t):(:/o‘ st

For all sufficiently large ¢ > 0, since

2p(1+e)
t=P(logt) a2, 0<p<l,
() x { (log ) P

c(logt) 2, p=1

we obtain

which implies that

F30P) /(logt) PR, 0< p<1
d—2 1+e
exp(ctd+28/2)/td+25’ p=L

r(g”()) = {

Example 5.2 Let c(x, y) be a positive measurable function on R? x R such that
c(x, y) = 1. If we define

_ (u(x) —u()(v(x) -v(¥))
E(u,v) = M@ded\diag c(x,y)dxdy

|x _ y|d+oc

for u,v € C3°(R?), then (&, Cg° (R?)) is closable on L2(R%) (see [8, p. 111]), and the
closure (&, F) is a regular Dirichlet form on L2(R¢).

Let M = ({X/}1s05 {Px } xera) be a symmetric Hunt process on R? generated by
(&, F). This process is called a symmetric stable-like process as introduced by Chen
and Kumagai [4]. As in Example 5.1, let & be a positive measurable function on R¢
such that h(x) < 1/(1 + |x|*)? for some p > 0 and u(dx) = h(x)dx.

Let M be a time changed process of M with respect to . As mentioned in [27],
R(t) := t«(logt)"s" is an upper rate function for M if ¢ > 0. For the symmetric
a-stable process, this upper rate function is obtained by Khintchine [16]. Then for
some ¢ > 0,

t 1
A > f S — |
2 )y RGP

for all sufficiently large ¢ > 0. By letting

¢ 1
1) :cfo TrRE

R(f7'(t)) is an upper rate function for M under the condition that 0 < p < a/2. We
2p(1+¢) 2p(i+e)
a=2p

then get f(t) < t%/(log )"« ,and thus f7'(¢) x t=% (logt)
that for all sufficiently large ¢ > 0,

R(f7'(t)) = t= (logt) 3.
We next consider lower rate functions for M. If we assume that d > «, then
M is transient and Corollary 3.3 implies that for any ¢ > 0, the function r(¢) =

. This implies
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tx /(logt)#= is a lower rate function for M (see Takeuchi [30] for symmetric stable
processes). This yields that for some ¢ > 0,

t 1 d
A < -
"Cfo (1+r(s)2)r

for all sufficiently large ¢ > 0. Thus, if we define

t 1
(1) :cfo T &

then r(g~'(t)) is a lower rate function for M. For all sufficiently large ¢ > 0, noting

that
(< [ og) ™ 0<p<ar,

3 (log 1) %, p=af2,

we have
o 2pa | 1+e
o tw [(logt)=2 ==, 0<p<al2
g (t) = d-a
exp( Ctdvas ) , p=1

which implies that

4 1+e

tv5 [(logt) % @e, 0<p<al2
exp(c't%)/tﬁ, p=al2

r(g' (1)) x
This lower rate function is compatible with that for « = 2 (see Example 5.1).
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