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JOSÉ IGNACIO BURGOS GIL1, DAVID HOLMES2 and ROBIN DE JONG2
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Abstract

In this paper we study the singularities of the invariant metric of the Poincaré bundle over a family
of abelian varieties and their duals over a base of arbitrary dimension. As an application of this
study we prove the effectiveness of the height jump divisors for families of pointed abelian varieties.
The effectiveness of the height jump divisor was conjectured by Hain in the more general case of
variations of polarized Hodge structures of weight −1.
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1. Introduction

1.1. Families of curves. By way of motivation of the general results in this
paper, consider the following situation. Let X be a smooth complex algebraic
variety of dimension n, and let π : Y → X be a family of smooth projective curves
parametrized by X . Let A, B be two relative degree zero divisors on Y → X , with
disjoint support. To these divisors we can associate a function h : X → R, given
by the archimedean component of the Néron height pairing

h(x) = 〈Ax , Bx〉∞,

where x ∈ X . Let X ↪→ X be a smooth compactification of X with D = X \ X
a normal crossings divisor. We are interested in the behavior of the function
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h close to the boundary divisor D. As is customary to do, we assume that
the monodromy operators on the homology of the fibers of Y → X about
all irreducible components of D are unipotent. Let x0 be a point of X , and
U

∼

−→ ∆n a small enough coordinate neighborhood of x0 such that D ∩ U is
given by q1 · · · qk = 0. Thanks to a result of Brosnan and Pearlstein [6] (see
also [16, 18] for the case where X has dimension 1), there exist a continuous
function h0 : U \ Dsing

→ R and rational numbers f1, . . . , fk such that on U \ D
the equality

h(q1, . . . , qn) = h0(q1, . . . , qn)−

k∑
i=1

fi log |qi | (1.1)

holds. Since h0 is continuous on U \ Dsing, this determines the behavior of h close
to the smooth points of D. The question remains what happens when we approach
a point of Dsing. In other words, what kind of singularities may h0 have on Dsing?

From the work by Pearlstein [20] we find a more precise statement. Let x0 ∈ X
be as above. Then there exists a homogeneous weight-one function f ∈ Q(x1,

. . . , xk) such that the following holds. Consider a holomorphic test curve φ : C→
X that has image not contained in D, a point 0 ∈ C such that φ(0) = x0, and a
local analytic coordinate t for C close to 0. Assume that φ is given locally by

t 7→ (tm1 u1(t), . . . , tmk uk(t), qk+1(t), . . . , qn(t)),

where m1, . . . ,mk are nonnegative integers, u1, . . . , uk are invertible functions
and qk+1, . . . , qn are arbitrary holomorphic functions. Then the asymptotic
estimate

h(φ(t)) = b′(t)− f (m1, . . . ,mk) log |t | (1.2)

holds in a neighborhood of 0 ∈ C . Here b′ is a continuous function that extends
continuously over 0.

Naively one might expect that the function f is linear and f (m1, . . . ,mk)

is just a linear combination of the numbers fi with coefficients given by the
multiplicities m i of the curve C . In general, however this turns out not to be the
case. Examples of nonlinear f can be found in [3] and [8]. In [1, 3] and [16] one
finds a combinatorial interpretation of the function f in terms of potential theory
on the dual graphs of stable curves.

As a special case of one of the main results of this paper we will have a stronger
asymptotic estimate. Namely

h(q1, . . . , qn) = b(q1, . . . , qn)+ f (−log|q1|, . . . ,−log|qk |)

on U \ D, where b : U \ D → R is a bounded continuous function that extends
in a continuous manner over U \ Dsing. The boundedness of b can be seen as
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a uniformity property on the asymptotic estimates for different test curves. In
general, as shown by Example 3.3 below, the function b cannot be extended
continuously to Dsing, thus the boundedness of b is the strongest estimate that
can be hoped for.

As a concrete example of the shape of the function f , consider the stable curve
Y0 obtained by glueing two projective lines at zero and infinity, and marking the
point (1 : 1) in both components. Let Y → X be a versal deformation of Y0. The
locus in X where the morphism Y → X is not smooth is a normal crossings
divisor, locally defined by q1q2 = 0, say. The examples in [3] and [8] show that
the function f (x1, x2) is given, up to linear forms in x1 and x2, by x1x2/(x1 + x2).

One may ask for further properties of h. For example, a result of Hayama
and Pearlstein [15, Theorem 1.18] implies that h is locally integrable. Another
question is whether the same can be said about the forms ∂h and ∂∂̄h and their
powers. As seen in [8] in a case where X is two-dimensional this may lead to
interesting intersection numbers between infinite towers of divisors. We plan to
address this question in full generality in a subsequent work. In this paper we
will focus on the one-dimensional case because it is the only case needed to treat
Conjecture 1.2 below. Thus assume that the dimension of X is one. Let h0 be the
function appearing in equation (1.1). Then we prove that the 1-form ∂h0 is locally
integrable on U with zero residue. Also the 2-form ∂∂̄h0 is locally integrable
on U .

1.2. Admissible variations of mixed Hodge structures. The correct general
setting for approaching these issues is to consider a variation of polarized pure
Hodge structures H of weight −1 over X , see for instance [13] and [14]. Let H∨
be the dual variation. Let J (H) → X and J (H∨) → X be the corresponding
families of intermediate Jacobians. Then on J (H) ×

X
J (H∨) one has a Poincaré

(biextension) bundle P = P(H) with its canonical (biextension) metric. The
polarization induces an isogeny of complex tori λ : J (H) → J (H∨). Let ν,
µ : X → J (H) be two sections (with good behavior near D, more precisely
admissible normal functions). Then we define

L = Pν,µ
def
= (ν, λµ)∗P,

as a metrized analytic line bundle on X . We put Pν = Pν,ν . This ‘diagonal’ case
will be of special interest to us. One important example, discussed at length in [14]
and [6], is given by the normal function in J (

∧3 H1(Yx)) = H3(J (Yx)) associated
to the Ceresa cycle [Yx ] − [−Yx ] in J (Yx), for a family of curves Y → X .

A second example is provided by the sections determined by two relative degree
zero divisors A, B on a family of smooth projective curves, as above. Let H be the
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variation of Hodge structure given by the homology of the fibers of the family of
curves Y → X . Then J (H) is the usual Jacobian fibration associated to Y → X . It
is principally polarized in a canonical way. The divisors A, B give rise to sections
ν, µ of J (H) → X . The Deligne pairing associates to the line bundles OY (A)
and OY (B) a line bundle 〈A, B〉 on X , in a functorial and bimultiplicative way,
see [10]. The line bundle 〈A, B〉 comes with a canonical rational section sA,B , as
well as a canonical Hermitian metric ‖ · ‖A,B . The metric on 〈A, B〉 is determined
by the archimedean height pairing. More precisely, we have the identity

h(x) = 〈Ax , Bx〉∞ = −log(‖sA,B‖A,B(x))

for all x ∈ X . There is a canonical isometry

〈A, B〉⊗(−1) ∼
−→ Pν,µ.

Thus the singularity near x0 of the biextension metric of the local rational section
sA,B precisely gives the singularity of the function h near x0 as discussed above.

Returning to the general set-up, the result of Brosnan and Pearlstein [6,
Theorems 24 and 79] is that some power L⊗N extends as a continuously metrized
line bundle over X \ Dsing. Here we need to impose the condition that the
monodromy operators on the fibers of H about all irreducible components of D
are unipotent. Moreover, [6, Theorem 233 and Remark 234] provide a canonical
extension of L⊗N on X \ Dsing to an analytic line bundle over the whole of X
(though the metric will in general not extend continuously over Dsing). Note that
if the line bundle L⊗N on X \ Dsing is algebraic, then it has a unique extension to
an algebraic line bundle on X . We denote the resulting line bundle on X by [L⊗N ,

‖−‖]X . This extension is commonly known as the Lear extension of L⊗N , though
the first general proof of its existence is due to Brosnan and Pearlstein in [6]. In
order to remove the dependence on the choice of N we will adopt the formalism of
Q-line bundles, and consider the Lear extension [L , ‖−‖]X = 1/N [L⊗N , ‖−‖]X
as a Q-line bundle on X .

We are interested in the behavior of the biextension metric on L when we
approach a point x0 in the singular locus Dsing. Let s be a section of L = Pν,µ

on U ∩ X that corresponds to an admissible biextension variation of mixed
Hodge structures. Pearlstein [20, Theorem 5.19] has proved that there exists
a homogeneous weight-one function fs ∈ Q(x1, . . . , xk) such that for each
holomorphic test curve φ : C → X as above the asymptotic estimate

−log‖s(φ(t))‖ = b′(t)− fs(m1, . . . ,mk) log |t | (1.3)

holds in a neighborhood V of 0 ∈ C , with b′(t) continuous on V .
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Now assume that the polarized variation H is torsion-free and of type (−1, 0),
(0,−1) over X , so that the family J (H) → X is a family of polarized abelian
varieties over X . Under this assumption we are able to strengthen the result of
Pearlstein’s.

1.3. Statement of the main results. Recall that we work with a smooth
complex algebraic variety X , provided with a partial compactification X with
D = X \ X a normal crossings divisor, and a polarized pure variation of Hodge
structures H of weight −1 over X .

Let (q1, . . . , qn) : U
∼

−→ ∆n be a coordinate chart on X such that D ∩ U =
{q1 · · · qk = 0}. Denote by Di the local component of D with equation given by
qi = 0. For any 0 < ε < 1 write

Uε = {(q1, . . . , qn) ∈ U : |qi | < ε for all i = 1, . . . , n}.

Note that Uε ∩ X is identified via the coordinate chart with (∆∗ε)
k
×∆n−k

ε .

THEOREM 1.1. Assume that H is a variation of torsion-free polarized pure
Hodge structures of type (−1, 0), (0,−1) on X. Assume that the monodromy
operators on the fibers of H about the irreducible components of D are unipotent.
Let ν, µ : X → J (H) be two admissible normal functions of J (H) over X.
Then there exist an integer d, a homogeneous polynomial Q ∈ Z[x1, . . . , xk] of
degree d with no zeros on Rk

>0 and, for each section s of Pν,µ corresponding
to an admissible biextension variation of mixed Hodge structures over U ∩ X,
a homogeneous polynomial Ps ∈ Z[x1, . . . , xk] of degree d + 1 such that the
homogeneous weight-one rational function fs = Ps/Q satisfies the following
properties.

(1) For all ε ∈ R>0 small enough, the function

b(q1, . . . , qn) = −log‖s‖ − fs(−log|q1|, . . . ,−log|qk |)

is bounded on Uε ∩ X and extends continuously over Uε \ Dsing.

(2) The function fs is uniquely determined by the previous property. Moreover, if
s ′ is another section of Pν,µ over U ∩ X, such that

div(s ′/s) =
k∑

i=1

ai Di , (1.4)

then the difference

fs′ − fs =

k∑
i=1

ai(−log|qi |)

is linear in the functions −log|qi |.
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(3) The function fs : Rk
>0 → R extends to a continuous function f s : Rk

>0 → R.

(4) In the case that µ = ν, the function fs is convex as a function on Rk
>0 and

the function f s is convex as a function on Rk
>0.

We make a few remarks about Theorem 1.1. First of all, by [6, Theorem 81], if U
is small enough, admissible sections s as in Theorem 1.1 exist.

Next, by [6, Corollary 177], if U is small enough the set of admissible
biextension variations on U ∩ X is a nonempty torsor over the group of
meromorphic functions with poles only on D. Hence the admissibility of s and
condition (1.4) imply the admissibility of s ′.

Clearly, the function fs from Theorem 1.1 coincides with the fs from
Pearlstein’s asymptotic estimate (1.3). However, we do not assume [20,
Theorem 5.19] in our proof, hence our arguments give an independent proof
of (1.3) for the case of polarized, torsion-free variations of type (−1, 0), (0,−1).

If the family J = J (H) of Jacobians is algebraic, that is, J is an abelian scheme
over X , then any two algebraic sections µ and ν of J over X are admissible, and
for such µ, ν the Lear extension of Pν,µ over X is an algebraic Q-line bundle.

Let the rank of H be 2g. Our proof of Theorem 1.1 in Section 4 will show that
the function fs in the theorem has the shape

fs(x1, . . . , xk) =

( k∑
i=1

xi Ai ci

)t( k∑
i=1

xi Ai

)−1( k∑
i=1

xi Ai ci

)
, (1.5)

where the Ai (i = 1, . . . , k) are positive semidefinite g × g matrices such
that

∑k
i=1 Ai is positive definite, the ci are in Qg, and are determined by the

monodromy of µ and ν about the branches of the divisor D. Thus the singularity
of −log‖s‖ has the shape

fs(−log|q1|, . . . ,−log|qk |)

=

( k∑
i=1

−log|qi |Ai ci

)t( k∑
i=1

−log|qi |Ai

)−1( k∑
i=1

−log|qi |Ai ci

)
.

Finally, Example 3.3 below will show that, in general, the locus of indeterminacy
Dsing of b cannot be reduced to a smaller set.

We next turn to the issue of local integrability, in dimension one. Hain has
made the following conjecture (see [14, Conjecture 6.4]). Assume we work with
an arbitrary polarized variation of Hodge structures (H, λ) of weight −1, whose
underlying local system of abelian groups is torsion-free, and let P be its Poincaré
bundle. Let ν be an admissible normal function of the family of intermediate
Jacobians J (H) over X .
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CONJECTURE 1.2 (Hain). Write P̂ = (id, λ)∗P and let ω = c1(P̂) be the first
Chern form of the pullback of the Poincaré bundle with its canonical metric.
Assume that X is a curve. Let L = Pν = ν∗P̂ with induced metric ‖−‖ and
let N ∈ Z>0 be such that L⊗N extends as a continuous metrized line bundle over
X . Let c1([L⊗N , ‖−‖]X ) be the first Chern class of the extended line bundle [L⊗N ,

‖−‖]X . Then the 2-form ν∗ω is integrable on X , and the equality∫
X
ν∗ω =

1
N

∫
X

c1([L⊗N , ‖−‖]X )

holds.

Note that ν∗ω = c1(Pν), and that the integral on the right hand side equals
1/N degX [L

⊗N , ‖−‖]X . We prove the following result, which implies Hain’s
conjecture in the case of a variation of torsion-free polarized Hodge structure
of type (−1, 0), (0,−1).

THEOREM 1.3. Assume that the polarized variation H over X is torsion-free and
pure of type (−1, 0), (0,−1), and that the monodromy operators on the fibers of
H about all irreducible components of D are unipotent. Let s be a section of Pν,µ

corresponding to an admissible biextension variation of mixed Hodge structures
over U ∩ X and assume that dim X = 1. Write

−log‖s‖ = b(z)− r log |t |

on U ∩ X with r ∈ Q and with b bounded continuous on U, as can be done by
the existence of the Lear extension of Pν,µ over X. Then the 1-form ∂b is locally
integrable on U with zero residue. Moreover the 2-form ∂∂̄b is locally integrable
on U.

As also ∂∂̄ log |t | is locally integrable, we find that ∂∂̄ log ‖s‖ is locally integrable.
Since moreover the 1-form ∂b has no residue on U , so that d[∂̄b] = [∂∂̄b], upon
globalizing using bump functions and applying Stokes’ theorem we find∫

X
c1(Pν,µ) =

1
N

∫
X

c1([P⊗N
ν,µ , ‖−‖]X ) = deg[Pν,µ, ‖−‖]X .

In the diagonal case, we mention that by [14, Theorem 13.1] or [21, Theorem 8.2]
the metric on Pν is nonnegative. Thus Theorem 1.3 implies that actually the
inequality

deg[Pν, ‖−‖]X > 0 (1.6)
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holds. We mention that in a letter to Griffiths, Pearlstein sketches a proof of
Conjecture 1.2, and hence of the inequality (1.6), without the assumption that
the type be (−1, 0), (0,−1).

We return again to the setting where the parameter space X is of any dimension.
However, we specialize to the ‘diagonal’ case where µ = ν. Consider, as before a
test curve φ : C → X that has image not contained in D, and a point 0 ∈ C such
that φ(0) = x0. Let φ denote the restriction of φ to C \φ

−1
D. The Q-line bundle

[φ∗(Pν, ‖−‖)]
⊗−1
C
⊗ φ

∗

[Pν, ‖−‖]X

has a canonical nonzero rational section, as it is canonically trivial over C \φ
−1

D.
We call its divisor the height jump divisor J = Jφ,ν on C . R. Hain has made the
following conjecture (see [14, end of Section 14]).

CONJECTURE 1.4. For all holomorphic test curves φ : C → X with image not
contained in D, the height jump divisor J = Jφ,ν on C is effective.

Choose coordinates in a neighborhood U of x0 as before so that x0 has coordinates
(0, . . . , 0) and let fs ∈ Q(x1, . . . , xk) be as in Pearlstein’s asymptotic estimate
(1.3), based on the choice of some admissible section s of Pν on U ∩ X . It
can be shown that the function fs : Rk

>0 → R extends to a continuous function
f s : Rk

>0 → R. Locally around 0 the map φ can be written as

φ(t) = (tm1 u1(t), . . . , tmk uk(t), qk+1(t), . . . , qn(t)),

where, for i ∈ [1, k], m i > 0 and ui(0) 6= 0. Write f s,i
def
= f s(0, . . . , 0, 1, 0, . . . , 0)

(the 1 placed in the i th spot), then

ord0 J = − f s(m1, . . . ,mk)+

k∑
i=1

m i f s,i . (1.7)

Note that indeed ord0 J is independent of the choice of s. The rational number
ord0 J is called the ‘height jump’ associated to the test curve φ, the admissible
normal function ν and the point 0 ∈ C .

The terminology is due to Hain [14], who also observed a first instance where
the height jump is nonzero. We refer the reader to the monograph [6] by Brosnan
and Pearlstein, where an extensive study of the height jump in complete generality
is given. Note that the height jumps precisely when fs is not linear. We mention
that Conjecture 1.4 about the height jump was stated in [14] only for the normal
function on Mg associated to the Ceresa cycle, but it seems reasonable to make
this broader conjecture.
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In this paper we prove Conjecture 1.4 in the case of admissible normal functions
of families of polarized abelian varieties.

THEOREM 1.5. Assume that the polarized variation H over the smooth complex
variety X is torsion-free and pure of type (−1, 0), (0,−1), and that the
monodromy operators on the fibers of H about all irreducible components
of D are unipotent. Let ν be an admissible normal function of the family of
intermediate Jacobians J (H) over X. Then for all holomorphic test curves
φ : C → X with image not contained in D, the associated height jump divisor
J = Jφ,ν on C is effective.

Combining with inequality (1.6) we obtain

COROLLARY 1.6. Assume that C is smooth and projective. Then under the
assumptions of Theorem 1.5, the Q-line bundle φ

∗

[Pν, ‖−‖]X has nonnegative
degree on C.

The key to our proof of Theorem 1.5 is the convexity of the homogeneous function
f s , as asserted in Theorem 1.1(4). We have the following explicit expression for
ord0 J . In equation (1.5) we already gave an expression for fs and hence f s in
terms of matrices Ai and vectors ci for i = 1, . . . , k. We will see in subsection 3.4
that f s,i = ct

i Ai ci for i = 1, . . . , k. Following the general expression (1.7) this
gives

ord0 J = −
( k∑

i=1

m i Ai ci

)t( k∑
i=1

m i Ai

)−1( k∑
i=1

m i Ai ci

)
+

k∑
i=1

m i ct
i Ai ci

for the height jump in our setting.
Turning again to the case of the Ceresa cycle, note that since the intermediate

Jacobian of the primitive part of H3(J (Yx)) is a compact complex torus but not
an abelian variety, we cannot apply directly our results for families of abelian
varieties to this case.

In the special case of families of Jacobians of curves Conjecture 1.4 has been
proved in [3]. The proof in this special case makes heavy use of the combinatorics
of dual graphs of nodal curves, and so cannot readily be extended to families of
abelian varieties, nor does it seem practical to reduce the general case to that of
Jacobians of curves.

REMARK 1.7. After the initial submission of the present paper to arXiv, two
proofs of Conjecture 1.4 have appeared, see [6] and [7].
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1.4. Overview of the paper. We review the content of the different sections
of this paper. In the preliminary Section 2 we start by recalling the notions of
Q-line bundle and of Lear extension, and the Poincaré bundle on the product of a
complex torus and its dual, together with its associated metric. We also recall the
explicit description of the Poincaré bundle and its metric on a family of polarized
abelian varieties. Also we study the period map associated to a family of pointed
polarized abelian varieties. Moreover we give a local expansion for the metric
on the pullback of the Poincaré bundle under this period map. The functions that
appear as the logarithm of the norm of a section of the pullback of the Poincaré
bundle will be called normlike functions.

In Section 3 we study normlike functions and give several estimates on their
growth and that of their derivatives. Finally in Section 4 we prove the main results
on local integrability and positivity of the height jump.

We fix some notation that we will use throughout. Let r be a positive integer.
For any commutative ring R we will denote by Colr (R) (respectively Rowr (R),
Mr (R) and Sr (R)) the set of column vectors of size r with entries in R
(respectively row vectors, matrices and symmetric matrices of size r -by-r ).

We denote by S++r (R) ⊂ Sr (R) (respectively S+r (R) ⊂ Sr (R)) the cone of
positive definite (respectively positive semidefinite) symmetric real matrices. We
denote by Hr Siegel’s upper half space of rank r , and by Pr its compact dual.

By a variety we mean an integral separated scheme of finite type over C.

2. Preliminary results

2.1. Lear extensions. We start by recalling the formalism of Q-line bundles.
Details can be found in [3, Definition 2.10].

DEFINITION 2.1. Let X be a complex variety. An (algebraic respectively
analytic) Q-line bundle over X is a pair (L , r) where L is an (algebraic
respectively analytic) line bundle on X and r > 0 is a positive integer (informally,
we think of it as L⊗1/r ). A metrized Q-line bundle is a triple (L , ‖−‖, r), where
(L , r) is a Q-line bundle and ‖−‖ is a continuous metric on L . An isomorphism
of Q-line bundles (L1, r1) → (L2, r2) is an equivalence class of pairs (a,
f ) where a is a positive integer and f : L⊗ar2

1 → L⊗ar1
2 is an isomorphism,

where the equivalence relation is generated by setting (a, f ) ∼ (an, f ⊗n). An
isomorphism of metrized line bundles is an isometry if one (equivalently all) of
the corresponding morphisms of line bundles is an isometry. Every line bundle L
gives rise to a Q-line bundle (L , 1). Note that, if L is a line bundle and r > 1 is
an integer, then there is a canonical isomorphism (L⊗r , r) ' (L , 1). Moreover,
if L is a torsion line bundle so that L⊗r

' OX , then there is an isomorphism of
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Q-line bundles (L , 1) → (OX , r). If we do not need to specify the multiplicity
r , a Q-line bundle will be denoted by a single letter. We note that the group of
isomorphism classes of Q-line bundles on X is equal to Pic(X)⊗Z Q.

We denote
RatQ(X) = (O(X) \ {0},×)⊗Q.

If (L , r) is a Q-line bundle, a Q-rational section of (L , r) (or rational section
for short) is an equivalence class of symbols s1/rd , where s is a nonzero rational
section of L⊗d . Two symbols s1/rd1

1 and s1/rd2
2 are equivalent if

(s1)
⊗d2 = (s2)

⊗d1

as a section of L⊗d1d2 . The space of rational sections of (L , r) is a torsor over
RatQ(X). Moreover, if s and s ′ are rational sections of (L , r) and (L ′, r ′) then
s⊗ s ′ is a rational section of (L⊗r ′

⊗ (L ′)⊗r , rr ′), but there is no additive structure
of rational sections.

The divisor of the section s1/rd is

div(s1/rd) =
1

rd
div(s).

DEFINITION 2.2 (Lear extension). Let X ⊆ X be an open immersion of smooth
complex varieties, such that the boundary divisor D def

= X \ X has normal
crossings, and L a line bundle on X with continuous metric ‖−‖. A Lear extension
of L is a Q-line bundle (L, r) on X together with an isomorphism α : (L ,
1) → (L, r)|X and a continuous metric on L|X \ Dsing such that the isomorphism
α is an isometry. Since Dsing has codimension at least 2 in X , if a Lear extension
exists then it is unique up to a unique isomorphism. If a Lear extension of L exists
we denote it by [L , ‖−‖]X . Note that the isomorphism class of the Lear extension
of L depends not only on L but also on the metric on L .

If s is a rational section of L , writing s = (s⊗r )1/r , it can also be seen as
a rational section of [L , ‖−‖]X . We will denote by divX (s) the divisor of s as
a rational section of L and by divX (s) the divisor of s as a rational section of
[L , ‖−‖]X .

2.2. Poincaré bundle and its metric. In this section we recall the definition of
the Poincaré bundle and its biextension metric. Moreover we make the biextension
metric explicit in the case of families of polarized abelian varieties.

In the literature one can find small discrepancies in the description of the
Poincaré bundle, see Remark 2.5. These discrepancies can be traced back to two
different choices of the identification of a complex torus with its bidual. Moreover,
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there are also different conventions regarding the sign of the polarization of the
abelian variety. Since one of our main results is a positivity result it is worthwhile
to fix all the signs to avoid these ambiguities.

Complex tori and their duals. Let g > 0 be a nonnegative integer, V a g-
dimensional complex vector space and Λ ⊂ V a rank-2g lattice. The quotient
T = V/Λ is a compact complex torus. It is a Kähler complex manifold, but in
general it is not an algebraic variety.

We recall the construction of the dual torus of T . We denote by V ∗ = HomC(V,
C) the space of antilinear forms w : V → C. This is not the dual V ∨ of V . In fact,
let V denote the abelian group V with the complex structure · given by

α · v = α · v.

Then V ∗ = V
∨

.
The bilinear form

〈·, ·〉 : V ∗ × V → R, 〈w, z〉 def
= Im(w(z))

is nondegenerate. Thus

Λ∨
def
= {λ ∈ V ∗ | 〈λ,Λ〉 ⊂ Z}

is a lattice of V ∗. The latticeΛ∨ is canonically isomorphic to the dual of the lattice
Λ. The quotient T ∨ = V ∗/Λ∨ is again a compact complex torus, called the dual
torus of T .

We can identify V with HomC(V ∗,C) by the rule

z(w) = w(z) (2.1)

so that the bilinear pairing

(V ∗ ⊕ V )⊗ (V ∗ ⊕ V )→ R, (w, z)⊗ (w′, z′) 7→ Im(w(z′))+ Im(z(w′))

is antisymmetric. With this identification the double dual (T ∨)∨ gets identified
with T .

The points of T ∨ define homologically trivial line bundles on T giving an
isomorphism of T ∨ with Pic0(T ). We recall this construction. Let C1 denote the
subgroup of C× of elements of norm one. Let w ∈ V ∗. Denote by [w] its class in
T ∨ and by χ[w] ∈ Hom(Λ,C1) the character

χ[w](µ) = exp(2π i〈w,µ〉). (2.2)
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The line bundle associated to [w] is the line bundle L [w] with automorphy factor
χ[w]. In other words, consider the action of Λ on V × C given by

µ(z, t) = (z + µ, t exp(2π i〈w,µ〉)).

Write L [w] = (V × C)/Λ. The projection V × C→ V induces a map L [w]→ T .
It is easy to check that L [w] is a holomorphic line bundle on T that only depends
on the class [w]. Note that the identification between T ∨ and Pic0(T ) is not
completely canonical because it depends on a choice of sign. We could equally
well have used the character χ−1

[w].

The Poincaré bundle. Note that, although the cocycle equation (2.2) is not
holomorphic in w, the line bundle L [w] varies holomorphically with w, defining
a holomorphic line bundle on T × T ∨ called the Poincaré bundle. See [4,
Section 2.5] for details.

DEFINITION 2.3. A Poincaré (line) bundle P is a holomorphic line bundle on
T × T ∨ that satisfies

(1) the restriction P|T×{[w]} is isomorphic to L [w];

(2) the restriction P|{0}×T∨ is trivial.

A rigidified Poincaré bundle is a Poincaré bundle together with an isomorphism
P|{0}×T∨

∼

−→ O{0}×T∨ .

To prove the existence of a Poincaré bundle, consider the map

aP : (Λ×Λ
∨)× (V × V ∗)→ C×

given by
aP((µ, λ), (z, w)) = exp(π((w + λ)(µ)+ λ(z))). (2.3)

This map is holomorphic in z and w. Moreover, since for (µ, λ) ∈ Λ×Λ∨,

〈λ,µ〉 =
1
2i
(λ(µ)− λ(µ)) ∈ Z,

the map aP is a cocycle for the additive action of Λ × Λ∨ on V × V ∗. Hence, it
is an automorphy factor that defines a holomorphic line bundle P on T × T ∨ =
V × V ∗/Λ×Λ∨.

For a fixed w ∈ V ∗,

aP((µ, 0), (z, w)) = exp(πw(µ)).
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This last cocycle is equivalent to the cocycle equation (2.2). Indeed,

exp(πw(µ)) exp(πw(z + µ))−1 exp(πw(z)) = exp(2π i〈w,µ〉),

and the function z 7→ exp(πw(z)) is holomorphic in z. Thus the restriction
P|T×{[w]} is isomorphic to L [w]. Moreover

aP((0, λ), (0, w)) = 1,

which implies that the restriction P|{0}×T∨ is trivial. The uniqueness of the
Poincaré bundle follows from the seesaw principle (see [4, Appendix A]).

We conclude

PROPOSITION 2.4. A Poincaré bundle exists and is unique up to isomorphism. A
rigidified Poincaré bundle exists and is unique up to a unique isomorphism.

REMARK 2.5. Using the above identification of T with the dual torus of T ∨ we
have that, for a fixed z ∈ V , the restriction P|{[z]}×T∨ agrees with L [z]. In fact

aP((0, λ), (z, w)) = exp(πλ(z)),

and, arguing as in the proof of Proposition 2.4, this cocycle is equivalent to the
cocycle

exp(2π i Im(λ(z))) = exp(2π i〈z, λ〉).

Note that the definition of the Poincaré bundle in [13, Section 3.2] states that
P|{[z]}×T∨ = L [−z]. The discrepancy between [13] and the current paper is due to
a different choice of identification between T and (T ∨)∨.

REMARK 2.6. As we will see later, in equation (2.12), the cocycle (2.3) is not
optimal because it does not vary holomorphically in holomorphic families of tori.

Group theoretical interpretation of the Poincaré bundle. We next give a group
theoretic description of the Poincaré bundle. We start with the additive real Lie
group W given by

W = V × V ∗.

Denote by W̃ the semidirect product W̃ = W n C×, where the product in W̃ is
given by

((z, w), t) · ((z′, w′), t ′) = ((z + z′, w + w′), t t ′ exp(2π i〈w, z′〉)). (2.4)

Clearly the group
WZ = Λ×Λ

∨ (2.5)

is a subgroup of W̃ .
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Consider the space
P def
= V × V ∗ × C× (2.6)

and the action of W̃ on P by biholomorphisms given by

((µ, λ), t) · ((z, w), s) = (z + µ,w + λ, ts exp(π(w + λ)(µ)+ πλ(z))). (2.7)

The projection P → V ×V ∗ induces a map WZ \ P → T ×T ∨. The action of C×
on P by acting on the third factor provides WZ \ P with a structure of C×-bundle
over T × T ∨. Denote by PT = (WZ \ P) ×

C×
C the associated holomorphic line

bundle. The structure of P as a product space induces a canonical rigidification
PT |{0}×T∨ = O{0}×T∨ .

PROPOSITION 2.7. The line bundle PT is a rigidified Poincaré line bundle.

Proof. From the explicit description of the cocycle equation (2.3) and of the
action equation (2.7) we deduce that PT is a Poincaré bundle.

The metric of the Poincaré bundle. The Poincaré bundle has a metric that is
determined up to constant by the condition that its curvature form is invariant
under translation. On a rigidified Poincaré bundle, with given rigidification
PT |{0}×T∨

∼

−→ O{0}×T∨ , the constant is fixed by imposing the condition ‖1‖ = 1.
We now describe explicitly this metric.

Let W̃1 =WnC1 with the product described before. Denote byP×T the Poincaré
bundle with the zero section deleted. Since P×T = WZ \ P , the invariant metric of
PT is described by the unique function ‖ · ‖ : P → R>0 satisfying the conditions

(1) (Norm condition) For (z, w, s) ∈ P , we have

‖(z, w, s)‖ = |s|‖(z, w, 1)‖.

(2) (Invariance under W̃1) For g ∈ W̃1 and x ∈ P , we have

‖g · x‖ = ‖x‖

(3) (Normalization) ‖(0, 0, 1)‖ = 1.

Using the explicit description of the action given in equation (2.7), we have that

(z, w, s) = (z, w, 1) · (0, 0, s exp(−πw(z))),

from which one easily derives that the previous conditions imply

‖(z, w, s)‖2
= |s|2 exp(−π(w(z)+ w(z))). (2.8)

https://doi.org/10.1017/fms.2018.13 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.13


J. I. Burgos Gil, D. Holmes and R. de Jong 16

Holomorphic families of complex tori. Let X be a complex manifold and T → X
a holomorphic family of dimension g complex tori. This means that T is defined
by a holomorphic vector bundle V of rank g on X and an integral local system
Λ ⊂ V of rank 2g such that, for each s ∈ X , the fiber Λs is a lattice in Vs and the
flat sections ofΛ are holomorphic sections of V . IndeedΛ is the local system s 7→
H1(Ts,Z) and V the holomorphic vector bundle s 7→ H1(Ts,C)/F0 H1(Ts,C).

We now want to give to the dual family of compact tori a holomorphic structure.
That is, we want to construct a holomorphic family of compact tori T ∨ with
a canonical identification (T ∨)s = (Ts)

∨. This construction is not completely
obvious because the vector spaces (Vs)

∗ vary antiholomorphically with s. We will
use the latticeΛ to define a holomorphic structure on this family of vector spaces.

Write HC = Λ ⊗ OX . It is a holomorphic vector bundle, with a holomorphic
surjection HC → V and an integral structure that determines a complex
conjugation in HC. The kernel F 0

= Ker(HC → V) is a holomorphic vector
bundle. For every s ∈ X , the surjection HC → V allows us to identify F 0

s with
Vs , hence F 0

s with V s . Let Λ∨ be the dual local system to Λ. On the dual vector
bundle H∨ = Λ∨ ⊗OX consider the orthogonal complement (F 0)⊥ to F 0. Then
(F 0)⊥ is isomorphic with the dual vector bundle V∨. The quotient H∨/(F 0)⊥ is
a holomorphic vector bundle that we denote by V∗. The identification F 0

s = V s

gives us the equality

(V∗)s = (H∨/(F 0)⊥)s = (F 0
s )
∨
= (V s)

∨
= (Vs)

∗,

that explains the notation.
Then the dual family of tori is defined as

T ∨ = V∗/Λ∨.

Let U ⊂ X be a small enough open subset such that the restriction of T to U
is topologically trivial. Choose s0 ∈ U and an integral basis

(a, b) = (a1, . . . , ag, b1, . . . , bg)

of Λs0 such that (a1, . . . , ag) is a complex basis of Vs0 . By abuse of notation, we
denote by ai , bi , i = 1, . . . , g the corresponding flat sections of Λ. We can see
them as holomorphic sections of HC and we will also denote by ai , bi their images
in V . After shrinking U if necessary, we can assume that the sections ai form a
frame of V , thus we can write

(b1, . . . , bg) = (a1, . . . , ag)Ω (2.9)

for a holomorphic map Ω : U → Mg(C). We call Ω the period matrix of the
variation on the basis (a, b). Note that condition equation (2.9) is equivalent to
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saying that F 0
⊂ HC is generated by the columns of the matrix(

−Ω

Id

)
.

Writing HR for the real vector subbundle of HC formed by sections that
are invariant under complex conjugation, we have that F 0

∩ HR = 0. This
implies that ImΩ is nondegenerate. The complex basis (a1, . . . , ag) gives us
an identification of V|U with the trivial vector bundle Colg(C) and the basis
(a, b) identifies Λ with the trivial local system Colg(Z) ⊕ Colg(Z). With these
identifications, the inclusion Λ→ V is given by

(µ1, µ2) 7→ µ = µ1 +Ωµ2.

Let now (a∗, b∗) = (a∗1 , . . . , a∗g, b∗1, . . . , b∗g) be the basis of Λ∨s0
dual to (a, b).

As before we extend the elements a∗i , b∗i , i = 1, . . . , g to flat sections of Λ over
U . Then b∗1, . . . , b∗g is a frame of V∗. One can check that, on V∗, the equality

(a∗1 , . . . , a∗g) = −(b
∗

1, . . . , b∗g)Ω
t

holds. Thus if we identify V∗ with the trivial vector bundle Rowg(C) using the
basis (b∗) and Λ∨ with the trivial local system Rowg(Z) ⊕ Rowg(Z) using the
basis (a∗, b∗) we obtain that the inclusion Λ∨→ V∗ is given by

(λ1, λ2) 7→ λ = −λ1Ω + λ2. (2.10)

In the fixed bases, one can check that the pairing between V∗ and V is given by

w(z) = −w(ImΩ)−1 z̄, (2.11)

where w ∈ Rowg(C) and z ∈ Colg(C), while the pairing between the lattice Λ
and its dual Λ∨ is given by

〈(λ1, λ2), (µ1, µ2)〉 = λ1µ1 + λ2µ2,

where λ1, λ2 ∈ Rowg(Z) and µ1, µ2 ∈ Colg(Z). Clearly the pairing between Λ
and Λ∨ has integer values.

The cocycle aP from equation (2.3) can now be written down explicitly as

aP((µ1, µ2), (λ1, λ2), (z, w))
= exp(−π((w − λ1Ω + λ2)(ImΩ)−1(µ1 + Ω̄µ2)

+ (−λ1Ω̄ + λ2)(ImΩ)−1z)), (2.12)

which is not holomorphic with respect to Ω . Thus it does not give us on the nose
a holomorphic Poincaré bundle in families. Nevertheless the construction of the
Poincaré bundle can be given a holomorphic structure.

https://doi.org/10.1017/fms.2018.13 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.13


J. I. Burgos Gil, D. Holmes and R. de Jong 18

PROPOSITION 2.8. Let X be a complex manifold and T → X a holomorphic
family of dimension g complex tori. Let ν0 : X → T ×

X
T ∨ be the zero section.

Then

(1) the fiberwise dual tori form a holomorphic family of complex tori T ∨→ X;

(2) on T ×
X

T ∨ there is a holomorphic line bundle P , together with an

isomorphism ν∗0P
∼

−→ OX , called the rigidified Poincaré bundle, which is
unique up to a unique isomorphism, and is characterized by the property
that for every point p ∈ X, the restriction P|Tp×T ∨p is the rigidified Poincaré
bundle of Tp;

(3) there is a unique metric on P that induces the trivial metric on ν∗0P = OX

and whose curvature is fiberwise translation invariant.

Proof. Fix an open subset U ⊂ X as before. The dual family of tori T ∨ is
holomorphic by definition.

In order to prove that the Poincaré bundle defines a holomorphic line bundle
on the family we need to exhibit a new cocycle that is holomorphic in z, w and
Ω and that, for fixed Ω , is equivalent to aP holomorphically in z and w. Write
λ = −λ1Ω + λ2 and µ = µ1 + Ωµ2 as before with λ1, λ2 ∈ Rowg(Z) and µ1,

µ2 ∈ Colg(Z). Consider the cocycle

bP((λ, µ), (z, w)) = exp(2π i((w − λ1Ω + λ2)µ2 − λ1z)) (2.13)

for w ∈ Rowg(C) and z ∈ Colg(C). Then bP is holomorphic in z, w, and Ω .
Consider also the function

ψ(z, w) = exp(−πw(ImΩ)−1z), (2.14)

which is holomorphic in z and w. Since

bP((µ, λ), (z, w)) = aP((µ, λ), (z, w))ψ(z, w)ψ(z + µ,w + λ)−1

we deduce that the cocycle bP determines a line bundle that satisfies the properties
stated in item (2.8) from the proposition over the open U . The uniqueness follows
again from the seesaw principle. By the uniqueness, we can glue together the
rigidified Poincaré bundles obtained in different open subsets U to obtain a
rigidified Poincaré bundle over X .

The fact that the invariant metric has invariant curvature fixes it up to a function
on X that is determined by the normalization condition. Thus if it exists, it is
unique. Since the expression for the metric in equation (2.8) is smooth in Ω and
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the change of cocycle function in equation (2.14) is also smooth inΩ we obtain an
invariant metric locally. Again the uniqueness implies that we can patch together
the different local expressions.

REMARK 2.9. Since the cocycle aP does not vary holomorphically in families,
the frame for the Poincaré bundle used in equation (2.8) is not holomorphic in
families. The cocycle bP and the rigidification do determine a holomorphic frame
of the Poincaré bundle over X × V × V ∗. In this holomorphic frame the metric is
given by

‖(z, w, s)‖2
= |s|2 exp(−π(w(z)+ w(z)))|ψ(z, w)|2

= |s|2 exp(4π Im(w)(ImΩ)−1 Im(z)), (2.15)

where ψ is the function given in (2.14).

Abelian varieties. We now specialize to the case of polarized abelian varieties.
A polarization on the torus T = V/Λ is the datum of an antisymmetric
nondegenerate bilinear form E : Λ×Λ→ Z such that for all v,w ∈ V ,

E(iv, iw) = E(v,w), −E(iv, v) > 0, for v 6= 0.

Here we have extended E by R-bilinearly to V = Λ⊗ R. Note that the standard
convention in the literature on abelian varieties is to ask E(iv, v) to be positive.
But this convention is not compatible with the usual convention in the literature
on Hodge Theory. We have changed the sign here to have compatible conventions
for abelian varieties and for Hodge structures.

Since E is antisymmetric and nondegenerate we can choose an integral basis
(a, b) such that the matrix of E on (a, b) is given by(

0 ∆

−∆ 0

)
, (2.16)

where ∆ is an integral diagonal matrix. We will call such basis a Q-symplectic
integral basis. From a Q-symplectic integral basis (a, b) we can construct a
symplectic rational basis (a∆−1, b).

With the choice of a Q-symplectic integral basis, the condition E(iv, iw) =
E(v,w) is equivalent to the product matrix ∆Ω being symmetric. Thus Ω t∆ =

∆Ω . The condition−E(iv, v) > 0 is equivalent to∆ ImΩ being positive definite.
This last condition is equivalent to that any of the symmetric matrices (ImΩ)t∆,
((ImΩ)−1)t∆ or ∆(ImΩ)−1 is positive definite.

Recall from (2.9) that Ω ∈ Mg(C) is determined by the relation b = aΩ . The
polarization E defines a positive definite Hermitian form H on V given by

H(v,w) = −E(iv,w)− i E(v,w),
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so that we recover the polarization E as the restriction of − Im(H) to Λ × Λ.
In the basis (a1, . . . , ag) of V , the Hermitian form H is given by ∆(ImΩ)−1

=

((ImΩ)−1)t∆. That is, under the identification V = Colg(C), we have

H(v,w) = vt∆(ImΩ)−1w. (2.17)

The polarization defines an isogeny λE : T → T ∨ that is given by the map
V → V ∗, v 7→ H(v,−). Under the identification V ∗ = Rowg(C) given by the
basis (b∗), by equations (2.11) and (2.17), we deduce that λE is given by

λE(v) = −v
t∆. (2.18)

The fact that ∆Ω is symmetric and ∆ is integral implies that this map sends Λ to
Λ∨ defining an isogeny. The dual polarization E∨ on V ∗ is given by the Hermitian
form H∨(e, f ) = e(ImΩ)−1∆−1 f

t
so that the map V → V ∗ is an isometry.

Consider now the composition of the diagonal map with the polarization map
on the second factor (id, λE) : T → T × T ∨ and let P be the Poincaré bundle on
T × T ∨. Then (id, λE)

∗P is an ample line bundle on T whose first Chern class
agrees with the given polarization of T .

THEOREM 2.10. The metric induced on the bundle (id, λE)
∗P is given by the

function ‖ · ‖ : V × C×→ R>0,

‖(z, s)‖2
= |s|2 exp(−4π Im(z)t∆(ImΩ)−1 Im(z)). (2.19)

Proof. This follows from equations (2.15) and (2.18).

Hodge structures of type (−1, 0), (0,−1). Recall that a pure Hodge structure of
type (−1, 0), (0,−1) is given by

(1) A finite rank Z-module, HZ.

(2) A decreasing filtration F• on HC
def
= HZ ⊗ C such that

F−1 HC = HC, F1 HC = 0, HC = F0 HC ⊕ F0 HC.

A polarization of a Hodge structure of type (−1, 0), (0,−1) is a nondegenerate
antisymmetric bilinear form Q : HZ ⊗ HZ → Z which, when extended to HC by
linearity, satisfies the ‘Riemann bilinear relations’

(1) The subspace F0 HC is isotropic.

(2) If x ∈ F0 HC, then i Q(x, x) > 0.
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We will be interested only in torsion-free Hodge structures. We recall that
the category of torsion-free Hodge structures of type (−1, 0), (0,−1) and the
category of compact complex tori are equivalent; see [4, Exercise 1.5.10]. If H =
(HZ, F•) is such a Hodge structure, we write V = HC/F0 and π : HC→ HC/F0

for the projection. ThenΛ def
= π(HZ) is a lattice in V , that defines a torus T = V/Λ.

This torus is denoted by J (H) and called the Jacobian of H .
Conversely, if T is a complex torus, then H1(T,Z) is torsion-free and has a

Hodge structure of type (−1, 0), (0,−1).
If (HZ, F•) has a polarization Q then, identifying Λ with HZ and writing

E = Q, we obtain a polarization of T . We finish by verifying that, indeed E
is a polarization in the sense of complex tori. That E is nondegenerate follows
from the nondegeneracy of Q. Let v,w ∈ V , choose x̄, ȳ ∈ F0 HC such that
π(x̄) = v and π(ȳ) = w. Write x , y for the complex conjugates of x̄ and ȳ,
respectively. Then x + x̄ ∈ HZ ⊗ R and π(x + x̄) = v, while i x − i x̄ ∈ HZ ⊗ R
and π(i x − i x̄) = −iv. Thus by the first Riemann bilinear relation

E(iv, iw) = Q(−i x + i x̄,−iy + i ȳ) = Q(x, ȳ)+ Q(x̄, y)
E(v,w) = Q(x + x̄, y + ȳ) = Q(x, ȳ)+ Q(x̄, y).

Thus E(iv, iw) = E(v,w). Moreover, by the second bilinear relation

H(v, v) = −E(iv, v) = −Q(−i x + i x̄, x + x̄) = 2i Q(x, x̄) > 0.

2.3. Nilpotent orbit theorem. The aim of this section is to formulate a version
of the Nilpotent orbit theorem that allows us to deal with variations of mixed
Hodge structures, in a setting with several variables. Such a Nilpotent orbit
theorem is stated and proved in [19]. In order to formulate this theorem, we
need quite a bit of background material and in particular define the notion of
‘admissibility’ for variations of mixed Hodge structures. Also we need to take a
detailed look at the behavior of monodromy on the fibers of the underlying local
systems. Most of the introductory material below is taken from [22, Section 14.4]
and [19].

Variations of polarized mixed Hodge structures. Let X be a complex manifold.
A graded-polarized variation of mixed Hodge structures on X is a local system
H → X of finitely generated abelian groups equipped with:

(1) A finite increasing filtration

W • : 0 ⊆ · · · ⊆ W k ⊆ W k+1 ⊆ · · · ⊆ HQ

of HQ = H ⊗Q by local subsystems, called the weight filtration.
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(2) A finite decreasing filtration

F • : HC ⊗OX ⊇ · · · ⊇ F p−1
⊇ F p

⊇ · · · ⊇ 0

of the vector bundle H = HC ⊗OX by holomorphic subbundles, called the
Hodge filtration.

(3) For each k ∈ Z a nondegenerate bilinear form

Qk : GrW
k (HQ)⊗ GrW

k (HQ)→ QX

of parity (−1)k ,

such that:

(1) For each p ∈ Z the Gauss–Manin connection ∇ on H satisfies the ‘Griffiths
transversality condition’ ∇F p

⊆ Ω1
X ⊗F p−1,

(2) For each k ∈ Z the triple (GrW
k (HQ),F •GrW

k (H), Qk) is a variation of pure
polarized rational Hodge structures of weight k. Here for each p ∈ Z we write
F pGrW

k (H) for the image of F pH∩W kH in GrW
k (HC) under the projection

map W kH→ GrW
k (HC).

A variation of polarized mixed Hodge structures will be called torsion-free if
H is a local system of torsion-free abelian groups. A Q-variation of polarized
mixed Hodge structures is defined analogously with the difference that H is a
local system of finite-dimensional Q-vector spaces.

Period domains. If (H,W•, F•) is a mixed Hodge structure, then HC has a unique
bigrading I •,• such that

F p HC = ⊕r>p,s I r,s, Wk HC = ⊕r+s6k I r,s, I r,s
= I

s,r
mod ⊕p<r,q<s I p,q .

The integers hr,s
= dim I r,s are called the Hodge numbers of (H,W•, F•).

Given a quadruple (H,W•, Qk, h) with H a rational vector space, W• an
increasing filtration of H , Qk a collection of nondegenerate bilinear forms of
parity (−1)k on GrW

k (H), and a partition of dim(H) into a sum of nonnegative
integers h = {hr,s

} satisfying the symmetry condition hr,s
= hs,r , there exists a

natural classifying space (also known as a period domain) M =M(h) =M(H,
W•, Qk, h) of mixed Hodge structures (W•, F•) on H which are graded-polarized
by Qk .

We recall the construction of M from [19, Section 3]. Write

f p
=

∑
r>p, s

hr,s and f p
k =

∑
r>p

hr,k−r
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and let M̌ be the set of all decreasing filtrations F• of HC satisfying

dim(F p) = f p, dim(F pGrW
k ) = f p

k , and Qk(F pGrW
k , F k−p+1GrW

k ) = 0.

The group
GC = {g ∈ GL(HC)

W
| Grk(g) ∈ AutC(Qk)}

is a complex algebraic group that acts transitively on M̌ giving to it a structure of
complex manifold. The manifold M̌ is usually called the ‘compact dual’ of M
by analogy with the pure case, although in general it is not compact.

The period domain M is the subset of M̌ formed by the filtrations F• such that
(H,W•, F•, Q) is a polarized Q-mixed Hodge structure. By [19, Lemma 3.9] M
is an open subset of M̌, hence it has an induced structure of complex manifold.
By the same lemma, the group

G P = {g ∈ GL(HC)
W
| Grk(g) ∈ AutR(Qk)}

acts transitively on M. We also consider the group

GR = {g ∈ GL(HR)
W
| Grk(g) ∈ AutR(Qk)}. (2.20)

Note that we have inclusions

GR ⊂ G P ⊂ GC.

REMARK 2.11. The group GR acts transitively on the subset MR of filtrations
defining a mixed Hodge structure that is split over R. If the filtration W has only
two nontrivial weights that are adjacent, that is, if there is a k such that

0 = Wk−2 ⊂ Wk−1 ⊂ Wk = H,

then any mixed Hodge structure on M(H,W, Q, h) is split over R. Therefore
MR =M and GR acts transitively on M. This will hold for the case of interest
to us in Section 2.4.

Relative filtrations. Let H be a rational vector space, equipped with a finite
increasing filtration W•. We let N denote a nilpotent endomorphism of H ,
compatible with W•. We call an increasing filtration M• of H a weight filtration
for N relative to W• if the two following conditions are satisfied:

(1) for each i ∈ Z we have N Mi ⊆ Mi−2,

(2) for each k ∈ Z and each i ∈ N we have that N i induces an isomorphism

N i
: GrM

k+i GrW
k H

∼

−→ GrM
k−i GrW

k H

of vector spaces.
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It can be verified that if H has a weight filtration for N relative to W•, then it is
unique. We call N strict if N (H)∩Wk = N (Wk) for all k ∈ Z. By [26, Proposition
2.16], if the filtration W• has length two (in the sense that H = Wk and Wk−2 = 0
for some k), and if H has a weight filtration for N relative to W•, then N is strict.

Admissible variations of mixed Hodge structures. Now let (H,W •,F •, Qk) be
a variation of graded-polarized mixed Hodge structures over the punctured unit
disc ∆∗. Let s0 ∈ ∆

∗ and (H,W•, F•, Qk) the fiber of (H,W •,F •, Qk) over s0.
Let γ be a generator of the fundamental group π1(∆

∗, s0) and T the monodromy
operator defined by γ acting on H . Since W • is a filtration by local subsystems,
the monodromy operator preserves W •. The operator T can be written as T =
Ts Tu , where Ts is semisimple and Tu is unipotent. The monodromy is said to be
quasiunipotent if T r

s = Id for certain integer r > 1. We denote by N = log Tu the
logarithm of the unipotent part of the monodromy. Clearly N is nilpotent.

By [11, II Remarque 5.5] the vector bundle H = H ⊗CO∆∗ can be ‘canonically’
extended to a vector bundle H̃ on the unit disk. Moreover, the subbundles Wk =

W k ⊗O∆∗ also extend canonically to subbundles W̃k of H̃. These extensions are
really canonical when the monodromy is unipotent. In case it is not, the extensions
depend on the choice of a logarithm, but, as explained in [11, Section II 5] this
choice can be made once and for all.

Following [17, 22] and [26] we call the variation (H,W •,F •, Qk)

preadmissible if:

(1) the monodromy is quasiunipotent;

(2) the logarithm N of the unipotent part of the monodromy has a weight
filtration M•(H,W•, N ) relative to W• on H ;

(3) the subbundles F • of H extend to subbundles F̃ • of H̃ in such a way that
the coherent sheaves Grp

F̃GrW̃k are locally free.

Assume now that X is an open submanifold of a manifold X , where D =
X \ X is a normal crossings divisor. Let (H,W •,F •, Qk) be a graded-polarized
variation of mixed Hodge structures over the complex manifold X . We then
call the variation (H,W •,F •, Qk) admissible if for every holomorphic map
f̄ : ∆→ X with f̄ (∆∗) ⊂ X , the variation f ∗H on∆∗ is preadmissible. Here we
denote by f the restriction of f̄ to ∆∗.

In algebraic geometry, admissible variations of mixed Hodge structures come
about as follows. Let π : Y → X be a morphism of complex algebraic varieties.
Then there is a nonempty open subset ι : U → X such that the constructible
sheaf H = ι∗Riπ∗ZY is a local system that has a canonical structure of
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admissible graded-polarized variation of mixed Hodge structures (H,W •,F •,
Qk). Moreover, there is a finite étale map g : Ũ → U such that g∗H has unipotent
monodromy.

In general, the usual cohomological operations like direct images or
relative cohomology will produce mixed Hodge modules [24, 25] which are
a generalization of the notion of admissible variations of polarizable mixed
Hodge structures, where the local system H is replaced by a perverse sheaf of
Q-vector spaces. There is a criterion for when a mixed Hodge module is indeed
an admissible variation of mixed Hodge structures: given a mixed Hodge module
H (with a given polarization), if the underlying perverse sheaf is a local system,
then H is an admissible Q-variation of polarized mixed Hodge structures. See
for instance [2] for a survey on mixed Hodge modules.

For admissible variations of mixed Hodge structures we have the following
compatibility between the graded polarization and the monodromy. Let (H,W•,
F•, Qk) be a reference fiber of the variation near the boundary divisor D = X \ X
of the smooth algebraic variety X . We denote the local monodromy operators
around the branches of D by T1, . . . , Tm , and the corresponding logarithms of the
unipotent part by N1, . . . , Nm . We denote by gC the Lie algebra Lie GC of the
group CC defined above. Then, in this generality, the Ti belong to GC, and the Ni

belong to gC, for each i = 1, . . . ,m. The R>0-span C of the local monodromy
logarithms Ni inside gC is called the open monodromy cone of the reference fiber
(H,W•, F•, Qk). Each element of C is nilpotent, and it can be proved that the
relative weight filtration M• of (H,W•) is constant on C.

The period map. To an admissible graded-polarized variation of mixed Hodge
structures (H,W •,F •, Qk) over X = (∆∗)k × ∆n−k we can associate a period
map, as follows. Let M =M(h) be the period domain associated to (H,W•, Qk)

and set GC as above. Let Γ ⊂ GC be the image of the monodromy representation
ρ : π1(X, x0)→ GC. The period map φ : X → Γ \M is the map that associates
to x ∈ X the Hodge filtration of H x . The period map is holomorphic.

Let H ⊂ C be the upper half plane. Let e : Hk
→ (∆∗)k be the uniformization

map given by (z1, . . . , zk) 7→ (exp(2π i z1), . . . , exp(2π i zk)). Then along e the
period map φ lifts to a map φ̃ : Hk

× ∆n−k
→M. In other words, we have the

following commutative diagram

Hk
×∆n−k φ̃ //

(e,id)
��

M

��
(∆∗)k ×∆n−k φ // Γ \M

where the right hand arrow is the canonical projection. As Ni ∈ Lie GC we find
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exp(
∑k

i=1 zi Ni) ∈ GC for all z1, . . . , zk ∈ H. Let ψ̃ : Hk
× ∆n−k

→ M̌ be the
map given by

ψ̃(z1, . . . , zk, qk+1, . . . , qn) = exp
(
−

k∑
i=1

zi Ni

)
.φ̃(z1, . . . , zk, qk+1, . . . , qn).

Then ψ̃ descends to an ‘untwisted’ period map ψ : (∆∗)k × ∆n−k
→ M̌, fitting

in a commutative diagram

Hk
×∆n−k ψ̃ //

��

M̌

(∆∗)k ×∆n−k

ψ

99

Note that, importantly, the map ψ takes values in the compact dual M̌, and not
in a quotient of it.

Nilpotent orbit theorem. The following result is the starting point of Pearlstein’s
Nilpotent orbit theorem (see [19, Section 6]) for admissible graded-polarized
variations of mixed Hodge structures and is enough for showing the estimates
we need.

THEOREM 2.12 (Pearlstein). Let (H,W •,F •, Qk) be an admissible graded-
polarized variation of mixed Hodge structures over X = (∆∗)k × ∆n−k . Then
the untwisted period map ψ extends to a holomorphic map ψ : ∆n

→ M̌.

2.4. Families of pointed polarized abelian varieties. Period vectors.
Assume that (H, F•, Q) is a polarized pure Hodge structure of weight−1, torsion-
free, of type (−1, 0), (0,−1), and of rank 2g. Recall that given a Q-symplectic
integral basis (a1, . . . , ag, b1, . . . , bg) of (H, Q), there exists a unique basis
(w1, . . . , wg) of F0 HC determined by demanding that wi = −

∑g
j=1Ωi j a j + bi

for some (period) matrix Ω ∈ Mg(C) (see equation (2.9)). We call this new basis
the associated normalized basis. As we have seen, the Riemann bilinear relations
imply that Ω t∆ = ∆Ω and ∆ ImΩ > 0.

Assume an extension

0→ H → H ′→ Z(0)→ 0 (2.21)

in the category of mixed Hodge structures is given. Then H ′ has weight filtration

W• : 0 ⊂ W−1 = HQ ⊂ W0 = H ′Q.
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Taking F0(−)C in (2.21) yields the extension

0→ F0 HC→ F0 H ′C→ C→ 0

of C-vector spaces. As can be readily checked, for each a0 ∈ H ′ that lifts the
canonical generator of Z(0) in (2.21) there exists a unique w0 ∈ F0 H ′C such
that w0 ∈ a0 + C-span(a1, . . . , ag). Given such a lift a0, we let δH ′ = (δ1,

. . . , δg)
t
∈ Colg(C) be the coordinate vector determined by the identity w0 =

a0 +
∑g

j=1 δ j a j . We call δH ′ the period vector of the mixed Hodge structure (H ′,
F•,W•) on the basis (a0, a1, . . . , ag, b1, . . . , bg) of the Z-module H ′. It can be
verified that replacing a0 by some element from a0 + H changes δ by an element
of Zg

+ ΩZg. The resulting map Ext1
MHS(Z(0), H)→ Cg/(Zg

+ ΩZg) is finite,
and gives Ext1

MHS(Z(0), H) a canonical structure of complex torus.
Let A = J (H) be the Jacobian of H . Thus A is a polarized complex abelian

variety of dimension g with H = H1(A). Let ν ∈ A, and write H(ν) for the
relative homology group H1(A, {0, ν}). There is an extension of mixed Hodge
structures

0→ H → H(ν)→ Z(0)→ 0

canonically associated to (A, ν). Here Z(0) is to be identified with the reduced
homology group H̃0({0, ν}). The map A → Ext1

MHS(Z(0), H) given by sending
ν to the extension H(ν) is a bijection, compatible with the structure of complex
torus on left and right hand side.

The period map of a family of pointed polarized abelian varieties. Let X be
a smooth complex variety with an open immersion X ⊂ X into a smooth
complex algebraic variety, with D = X \ X a normal crossings divisor. Let
(H,F •, Qk) be a variation of polarized torsion-free pure Hodge structures of
weight −1 and type (−1, 0), (0,−1) over X . We note that such a pure polarized
variation is necessarily admissible. Write Y = J (H) and let π : Y → X be the
associated analytic family of polarized abelian varieties over X , with polarization
λ : Y → Y ∨.

We will now work locally complex analytically. Thus we will suppose that X
is the polydisk ∆n , and D is the divisor given by the equation q1 · · · qk = 0, so
that X = (∆∗)k × ∆n−k . We further assume that all local monodromy operators
T1, . . . , Tk about the various branches determined by q1, . . . , qk are unipotent (for
instance, this is the case if the family extends as a semiabelian scheme Y → X ).
Let g be the relative dimension of Y → X . Also, we will henceforth usually
suppress the polarization from our notation.

Let (H, F•) be a reference fiber of H near the origin. Let N be any element
of the open monodromy cone of H . Then we have N 2

= 0 and the filtration
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associated to N simply reads

0 ⊂ M−2 ⊂ M−1 ⊂ M0 = HQ

with M−2 = Im N and M−1 = Ker N . Since, in this case the group GR acts
transitively on M, the operator N belongs to the Lie algebra of GR, thus there
exist a Q-symplectic integral basis (a1, . . . , ag, b1, . . . , bg) of (H, Q) and a
nonnegative integer r 6 g such that:

(1) M−2 = span (a1, . . . , ar );

(2) M−1 = span (a1, . . . , ag, br+1, . . . , bg).

In particular, (ār+1, . . . , āg, b̄r+1, . . . , b̄g) is a Q-symplectic integral basis of the
pure polarized Hodge structure GrM

−1 H of type (−1, 0), (0,−1). Clearly, with
respect to this basis, each local monodromy operator N j has the form

N j =

(
0 A′j
0 0

)
.

Let ∆ be the matrix associated to the polarization as in equation (2.16). Each
A′j is integral and the g-by-g matrices A j

def
= ∆A′j are symmetric and positive

semidefinite. Moreover, the left upper r -by-r block of A j is positive definite.
See [9] for more details in the above construction.

To avoid the appearance of the polarization matrix ∆ and thus to simplify the
notation we will sometimes replace the Q-symplectic integral basis (a, b) by the
symplectic Q-basis (a∆−1, b). In this new basis each local monodromy operator
N j has the form

N j =

(
0 A j

0 0

)
.

On this new basis we can realize the period domain associated to H as the usual
Siegel’s upper half space Hg of rank g. We have GR = Sp(2g,R), and the action
on Hg is given by the usual prescription(

A B
C D

)
· M = (AM + B)(C M + D)−1,

(
A B
C D

)
∈ Sp(2g,R), M ∈ Hg.

In this representation the period map Ω : X → Γ \Hg is made explicit by
associating to each x ∈ X the matrix Ω(x) = ∆ΩYx , where ΩYx is the period
matrix of the fiber Yx on the chosen Q-symplectic integral basis of H . Here Γ is
the image of the monodromy representation into Sp(2g,R). In the new basis, the
monodromy representation sends the local monodromy operator T j to the matrix(

1 A j

0 1

)
∈ Sp(2g,R).
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We will now extend this picture to include an admissible normal function ν.

DEFINITION 2.13. Let U ⊂ X be a nonempty open subset. An admissible normal
function of Y on U is a holomorphic section ν : U → Y |U such that the associated
graded-polarized mixed Hodge structures H x(ν), x ∈ U form an admissible
variation over U .

Let ν be an admissible normal function of Y on X . Varying x ∈ X we thus find
an extension

0→ H → H(ν)→ Z(0)→ 0

of admissible variations of graded-polarized mixed Hodge structure. The weight
filtration of this variation looks like

W• : 0 ⊂ W−1 = HQ ⊂ W 0 = H(ν)Q,

so that GrW
−1 H(ν)Q = HQ and GrW

0 H(ν) = Q(0). We denote the Hodge filtration
of H(ν) by F •. We start by taking a reference fiber H(ν) of H(ν) and augmenting
our chosen Q-symplectic integral basis of H by an a0 ∈ H(ν) lifting the canonical
generator of Z(0).

Since by assumption, H(ν) is an admissible variation of polarized mixed
Hodge structures, the relative weight filtration M ′

•
on our reference fiber H(ν)

exists. Let N ′ be an element of the open monodromy cone of H(ν) such that
N = N ′|H . We will now proceed to determine the matrix shape of N ′ on the basis
(a0, a∆−1, b) of H(ν). As N ′2 = 0, the filtration associated to N ′ on H(ν) is

L• : 0 ⊂ L−1 ⊂ L0 ⊂ L1 = H(ν)Q,

with L−1 = Im(N ′), L0 = Ker(N ′). As the monodromy action on GrW
0 = Q(0)

is trivial, we have that Im(N ′) ⊂ HQ, so that N ′−1 HQ = H(ν)Q (here by N ′−1 HQ
we denote the inverse image of HQ under N ′). As W• has length two, and as by
admissibility the weight filtration of N ′ relative to W• exists, as we noted above
it follows that N ′ is strict. Explicitly, we have that H(ν)Q = N ′−1 HQ = HQ +

Ker(N ′). The equality H(ν)Q = HQ + Ker(N ′) implies that Ker(N ′) % Ker(N )
and hence that Im(N ′) = Im(N ).

The period domain associated to (H(ν),W•) can be realized as Cg
× Hg. The

group GR in this case is

GR =


1 0 0

m A B
n C D

 : m, n ∈ Rg,

(
A B
C D

)
∈ Sp(2g,R)

 .
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The action of GR on Cg
×Hg is given by1 0 0

m A B
n C D

 (v,M) = (v+m+Mn, (AM + B)(C M + D)−1), v ∈ Cg, M ∈ Hg.

Varying x ∈ X = (∆∗)k × ∆n−k and then taking F0 we obtain a period map
associated to the variation H(ν)

(δ,Ω) : X → Γ \ (Cg
×Hg)

that is given by
(δ(x),Ω(x)) = (∆δH(ν(x)),∆ΩYx ).

We denote by
(δ̃, Ω̃) : Hk

×∆n−k
→ Cg

×Hg

the lift of the period map along the map (e, id) : Hk
×∆n−k

→ X , where we recall
that we denote by e : Hk

→ (∆∗)k the map

e(z1, . . . , zk) = (exp(2π i z1), . . . , exp(2π i zk)).

THEOREM 2.14. There exist a holomorphic mapψ : ∆n
→ Sg(C), a holomorphic

map α : ∆n
→ Cg, and vectors c1, . . . , ck ∈ Qg with ∆−1 A j c j ∈ Zg for j = 1,

. . . , k such that for (z, t) ∈ Hk
× ∆n−k with e(z) sufficiently close to zero the

equalities

Ω̃(z, t) =
k∑

j=1

z j A j + ψ(e(z), t), δ̃(z, t) =
k∑

j=1

z j A j c j + α(e(z), t)

hold in Sg(C) respectively Cg.

Proof. Let N j denote the local monodromy operator of H around the branch of
D determined by q j = 0. We have

exp(z j N j) = T z j
j =

(
1 z j A j

0 1

)
and hence exp(z j N j).M = z j A j + M for each M ∈ Hg, z j ∈ U , and j = 1,
. . . , k (here U is an open subset of H consisting of points with sufficiently large
imaginary part). Denote by Pg the compact dual of Hg. The untwisted period map
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ψ : ∆n
→ Pg obtained by Theorem 2.12 extending exp(−

∑k
j=1 z j N j).Ω̃(z, t)

factors through Sg(C) ⊂ Pg. We obtain the equalities

Ω̃(z, t) = exp
( k∑

j=1

z j N j

)
.ψ(e(z), t) =

k∑
j=1

z j A j + ψ(e(z), t)

in Sg(C).
Let N ′j denote the local monodromy operator of H(ν) around the branch of D

determined by q j = 0. The equality Im(N ′j) = Im(N ′j |HQ) on H(ν)Q that follows
from our above considerations shows that N ′j has a matrix 0 0 0

∆−1 A j c j 0 ∆−1 A j

0 0 0


on the integral basis (a0, a1, . . . , ag, b1, . . . , bg), for some c j ∈ Qg. Since the
monodromy is integral in such basis, we deduce that ∆−1 A j c j has to be integral.
In the Q-basis (a0, a∆−1, b), the matrix of N ′j is 0 0 0

A j c j 0 A j

0 0 0

 .
Then for (v,M) ∈ Cg

× Hg and z j ∈ U we have exp(z j N ′j).(v,M) = (v +
z j A j c j ,M+ z j A j). Let (α, ψ) : ∆n

→ Cg
×Pg denote the untwisted period map.

We find the equalities

δ̃(z, t) = exp
( k∑

j=1

z j N ′j

)
.α(e(z), t) =

k∑
j=1

z j A j c j + α(e(z), t)

in Cg.

The norm of a section. Denote by P the Poincaré bundle on Y ×X Y ∨ with its
canonical C∞ Hermitian metric as described in Section 2.2. Given two admissible
normal functions ν, µ : X → Y we will denote

Pν,µ = (ν, λµ)
∗P, Pν = Pν,ν,

where λ : Y → Y ∨ is the isogeny provided by the polarization. We are interested
in studying the singularities of the metric of Pν,µ when we approach the boundary
of X .
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Consider the five maps

m, p1,3, p1,4, p2,3, p2,4 : Y ×X Y ×X Y ∨ ×X Y ∨ −→ Y ×X Y ∨,

where m(x, y, z, t) = (x + y, z+ t) and pi, j is the projection over the factors i, j .
Then we have a canonical isomorphism

m∗P ∼

−→ p∗1,3P ⊗ p∗1,4P ⊗ p∗2,3P ⊗ p∗2,4P (2.22)

of holomorphic line bundles over Y ×X Y ×X Y ∨ ×X Y ∨, in other words, the
Poincaré bundle is a biextension on Y ×X Y ∨ in the sense of [12, Exposé VII].
The explicit description of the cocycle bP in equation (2.13) and of the metric of
the Poincaré bundle in Remark 2.9 shows that the canonical isomorphism (2.22)
is in fact an isometry for the canonical induced metrics on left and right hand side.
We obtain in particular

LEMMA 2.15. Let ν1, ν2, µ1, µ2 be holomorphic sections of the family Y → X.
Then we have a canonical isometry

(ν1 + ν2, λ(µ1 + µ2))
∗P

∼

−→ (ν1, λµ1)
∗P ⊗ (ν1, λµ2)

∗P ⊗ (ν2, λµ1)
∗P ⊗ (ν2, λµ2)

∗P

of Hermitian line bundles on X.

Let f : Y ×X Y ∨ → Y ×X Y ∨ be the map given by (x, `) 7→ (λ∨(`), λ(x)).
Then we have a canonical isometry f ∗P ∼

−→ P⊗d , where d = det∆ is the degree
of the polarization λ. This leads to canonical isometries

P⊗d
ν,µ

∼

−→ P⊗d
µ,ν and P⊗2d

ν,µ

∼

−→ P⊗d
ν+µ ⊗ P⊗(−d)

ν ⊗ P⊗(−d)
µ .

Hence, in order to study the singularities of the metric on Pν,µ it suffices to
study the singularities of the metric on Pν , Pµ and Pν+µ. In particular, for the
purpose of proving our main results, it suffices to focus on the diagonal cases Pν .

Let ν be an admissible normal function of the family Y → X . Let s be a
section on X of Pν . Interpreting the Poincaré bundle as parametrizing biextension
variations of mixed Hodge structures (see [13]) we can canonically associate to
the section s a biextension variation of mixed Hodge structures over X . We say
that the section s is admissible if this variation is admissible.

Let x0 be a point of X . The purpose of the present section is to give an
asymptotic expansion of the logarithm of the norm of an admissible section of
Pν near x0. From equation (2.19) it follows that it suffices to give asymptotic
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expansions of the period matrix of the family Y → X , and of the period vector
(see below) associated to ν.

We use now Theorem 2.14 to obtain an expression of the norm of the section
s. Let ‖−‖ denote the canonical metric on Pν = ν

∗P . Continuing the notation
from Theorem 2.14, let a = 2π Imα and B = 2π Imψ . For j = 1, . . . , k let
x j = −log|t j |.

COROLLARY 2.16. For every admissible section s of Pν on (∆∗)k × ∆n−k there
exists a meromorphic function h on ∆n which is holomorphic on (∆∗)k × ∆n−k ,
such that the identity

−log‖s‖ = −log|h| +
( k∑

j=1

x j A j c j + a
)t( k∑

j=1

x j A j + B
)−1( k∑

j=1

x j A j c j + a
)

(2.23)
holds on (∆∗)k ×∆n−k .

Proof. The vector z and the matrix Ω in Theorem 2.10 are expressed in the
integral basis (a, b), while δ(x) and Ω(x) are expressed in the Q-basis (a∆−1,

b). Writing z = ∆−1δ(x) and Ω = ∆−1Ω(x), we obtain that

−log‖s(x)‖ = −log|h(x)| + 2π(Im δ(x))t(ImΩ(x))−1(Im δ(x))

for a suitable meromorphic function h on ∆n which is holomorphic on
(∆∗)k × ∆n−k . Note that, even though Ω(x), δ(x) are multivalued, their
imaginary parts are single valued. From Theorem 2.14 we obtain, noting that
Im z j = −1/2π log |t j |,

ImΩ(x) = −
1

2π

k∑
j=1

A j log |t j | + Imψ,

Im δ(x) = −
1

2π

k∑
j=1

A j c j log |t j | + Imα.

Combining we find equation (2.23).

3. Normlike functions

The purpose of this section is to carry out a systematic study of the functions

ϕ =

( k∑
j=1

x j A j c j + a
)t( k∑

j=1

x j A j + B
)−1( k∑

j=1

x j A j c j + a
)
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that appear on the right hand side of the equality in Corollary 2.16. We call such
functions normlike functions.

Let f : Rn
→ R be a function. The recession function of f is the function

rec( f )(x) = lim
λ→+∞

1
λ

f (λx).

If the recession function exists, it is homogeneous of weight one, in the sense that

rec( f )(µx) = µ rec( f )(x) for µ ∈ R>0.

We show that normlike functions ϕ have a well-defined recession function
rec(ϕ) with respect to the variables x j , and we are able to calculate rec(ϕ)
explicitly. In our main technical lemma Theorem 3.2 we give bounds for the
difference ϕ − rec(ϕ) and, in the case where k = 1, for the first- and second-
order derivatives of ϕ − rec(ϕ). The bound on the difference will be key to the
proof of our first main result Theorem 1.1, the bounds on the derivatives will be
used in our proof of Theorem 1.3. In Section 3.4 we prove, among other things,
that the recession functions rec(ϕ) are convex. This will lead to the effectivity
statement in Theorem 1.5.

3.1. Some definitions. Recall that we have denoted by Mr (R) the space of r -
by-r matrices with real coefficients, by S+r (R) ⊂ Mr (R) the cone of symmetric
positive semidefinite real matrices inside Mr (R), and by S++r (R) ⊂ S+r (R) the
cone of symmetric positive definite real matrices.

LEMMA 3.1. Let N1, . . . , Nk be a finite set of positive semidefinite symmetric
real g-by-g matrices such that N1 + · · · + Nk has rank r. Then there exists an
orthogonal matrix u ∈ Og(R) such that, upon writing Mi = ut Ni u for i = 1, . . . ,
k, we have

Mi =

(
M ′i 0
0 0

)
,

with all M ′i ∈ S+r (R) and
∑

M ′i ∈ S++r (R).

Proof. It will be convenient to use the language of bilinear forms. If Q is a
symmetric positive semidefinite bilinear form on Rg and f1, . . . , fg is a basis
of Rg such that Q( fα, fα) = 0 for α = r + 1, . . . , g, then Q( fα, fβ) = 0 for
β = 1, . . . , g and α = r + 1, . . . , g. Indeed, for all λ ∈ R we have Q(λ fα − fβ,
λ fα − fβ) > 0, that is

−2λQ( fα, fβ)+ Q( fβ, fβ) > 0.

Since this inequality is satisfied for all λ we deduce that Q( fα, fβ) = 0.
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Let N = N1 + · · · + Nk , and denote by Q the symmetric positive semidefinite
bilinear form that N defines on the standard basis (e1, . . . , eg) of Rg. Note that
Q has rank r . By the spectral theorem, upon replacing the basis (e1, . . . , eg) of
Rg by ( f1, . . . , fg) = (e1, . . . , eg)u for some orthogonal matrix u we can assume
that the expression of Q in the basis ( f1, . . . , fg) is

M =
(

A 0
0 0

)
,

with A ∈ S+r (R) invertible and diagonal. In particular, Q( fα, fα) = 0 for α =
r + 1, . . . , g. For i = 1, . . . , k let Qi denote the symmetric positive semidefinite
bilinear form that Ni defines on the standard basis (e1, . . . , eg) of Rg. Note that
Q = Q1 + · · · + Qk . Since all the Qi are positive semidefinite, we deduce that
Qi( fα, fα) = 0 for i = 1, . . . , k. Note that Mi = ut Ni u is the expression of Qi in
the basis ( f1, . . . , fg). By the previous discussion we have

Mi =

(
M ′i 0
0 0

)
,

with M ′i ∈ S+r (R) and
∑

M ′i = A ∈ S++r (R), proving the lemma.

Suppose we are given the following data:

– three integers k > 0, m > 0, g > 0;

– a real number κ > 0;

– a compact subset K ⊆ Rm ;

– matrices A1, . . . , Ak ∈ S+g (R) all of rank > 1;

– vectors c1, . . . , ck ∈ Rg;

– functions a : K → Rg and B : K → Sg(R) which are restrictions of smooth
functions on some open neighborhood of K ;

such that for all (x1, . . . , xk, λ) ∈ Rk
>κ × K , we have that

P(x1, . . . , xk, λ)
def
=

k∑
i=1

xi Ai + B(λ) > 0. (3.1)

Note that if g = 0, then necessarily k = 0.
To these data we associate a smooth function ϕ : Rk

>κ × K → R by
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ϕ(x1, . . . , xk, λ) =

( k∑
i=1

xi Ai ci + a(λ)
)t( k∑

i=1

xi Ai + B(λ)
)−1

×

( k∑
i=1

xi Ai ci + a(λ)
)
. (3.2)

By condition (3.1), the function ϕ is well defined and its values are nonnegative.
We call ϕ the normlike function associated to the 4-tuple ((Ai), (ci), a, B). We
call the natural number k the dimension of ϕ. Write r = rk

∑k
i=1 xi Ai for some

(hence all) (x1, . . . , xk) ∈ Rk
>κ . Note that r > 1 if k > 0.

Let u ∈ Og(R). Replacing the vector ci by u−1ci , a by u−1a, the matrix B by
ut Bu and Ai by ut Ai u one checks that the function ϕ remains unchanged. By
Lemma 3.1 we can thus restrict to considering normlike functions where the Ai

have the shape

Ai =

(
A′i 0r,g−r

0g−r,r 0g−r,g−r

)
,

with each A′i ∈ S+r (R) and such that
∑

xi A′i ∈ S++r (R) for all (x1, . . . , xk) ∈ Rk
>κ

(hence for all (x1, . . . , xk) ∈ Rk
>0).

From now on we assume that the matrices Ai indeed have this shape. We write

ci =

(
c′i
?g−r

)
, a =

(
a1

a2

)
, and B =

(
B11 B12

B21 B22,

)
where c′i and a1 have size r , and B11 is an r -by-r matrix. The second block of the
vector ci is marked with an asterisk because the function ϕ is independent of its
value. Condition (3.1) implies that B22(λ) is positive definite for all λ ∈ K , and
the symmetry of B implies that B21 = B t

12.
We define another smooth function f : Rk

>κ × K → R by

f (x1, . . . , xk, λ) =

( k∑
i=1

xi A′i c
′

i

)t( k∑
i=1

xi A′i

)−1( k∑
i=1

xi A′i c
′

i

)
. (3.3)

This function f is well defined as
∑k

i=1 xi A′i is positive definite on Rk
>0. The

function f depends trivially on λ and is clearly homogeneous of degree 1 in the
xi , and so defines a smooth function Rk

>0 → R, which we also call f . Again, the
values of f are nonnegative. By convention, if k = 0, the function f is zero.

Finally, the ‘recession’ of ϕ is defined as the pointwise limit

rec(ϕ) : Rk
>κ × K → R

(x1, . . . , xk, λ) 7→ limµ→∞

1
µ
ϕ(µx1, . . . , µxk, λ),

if it exists. Again, if k = 0, then rec(ϕ) = 0.
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3.2. Statement of the technical lemma. We can now state the ‘main technical
lemma’:

THEOREM 3.2. In the notation of the previous section, write ϕ0 = ϕ − f . Note
that ϕ0 is a smooth function on R>κ × K . Then

(1) the function |ϕ0| is bounded on Rk
>κ ′ × K for some κ ′ > κ . The recession

of ϕ exists and is equal to f . In particular, rec(ϕ) is independent of the
parameter λ;

(2) the function f is bounded on the open simplex ∆0
= {(x1, . . . , xk) ∈ Rk

>0 :∑k
i=1 xi = 1};

(3) when k = 1,

(a) the function ϕ0 : R>κ×K → R extends continuously to a function from
R>κ × K to R, where by R>κ we denote R>κ t {∞} with the natural
topology;

(b) the derivatives of ϕ0 satisfy the estimates

∂ϕ0

∂x1
= O(x−2

1 ) and
∂2ϕ0

∂x2
1

= O(x−3
1 ),

as x1 →∞, where the implicit constant is uniform in K .

EXAMPLE 3.3. When k > 1, in general we cannot extend ϕ0 to a continuous
function on R>κ

k
× K as the following example shows. Put g = 1, k = 2, m = 0,

A1 = A2 = 1, c1 = 1, c2 = 2, B = 0, κ = 1 and a = 1. Then

ϕ0 = ϕ − f =
2(x1 + 2x2)+ 1

x1 + x2
.

The sequences {(n, n)}n>1 and {(n, 2n)}n>1 converge, when n→∞, to the point
(∞,∞) ∈ R>1

2
. Nevertheless

lim
n→∞

ϕ0(n, n) = 3, lim
n→∞

ϕ0(n, 2n) = 10
3 ,

showing that ϕ0 cannot be continuously extended to R>1
2
.

Before starting the proof of Theorem 3.2 we recall a few easy statements related
to Schur complements and inverting a symmetric block matrix. For a symmetric
block matrix

M =
(

A B
B t C

)
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with C invertible we call A − BC−1 B t the Schur complement of the block C in
M . We have a product decomposition

M =
(

A B
B t C

)
=

(
1 BC−1

0 1

)(
A − BC−1 B t 0

0 C

)(
1 0

C−1 B t 1

)
.

In particular, M is invertible if and only if A − BC−1 B t is invertible, and if these
conditions are satisfied we have

M−1
=

(
(A − BC−1 B t)−1

−(A − BC−1 B t)−1 BC−1

−C−1 B t(A − BC−1 B t)−1 C−1
+ C−1 B t(A − BC−1 B t)−1 BC−1

)
.

Also, if M is positive semidefinite, then so is the Schur complement A− BC−1 B t .

3.3. Proof of the technical lemma. First we observe that, if k = 0, then ϕ is a
continuous function on a compact set, hence is bounded. Moreover, the function
f is zero. Thus the statements are trivially true and we are reduced to the case
k > 0 and hence g > 0.

Assume that we have already shown that |ϕ− f | is bounded on Rk
>κ ′×K . Then,

for each (x1, . . . , xk, λ) ∈ Rk
>κ ′ × K we have

lim
µ→∞

1
µ
ϕ(µx1, . . . , µxk, λ) = lim

µ→∞

1
µ

f (µx1, . . . , µxk).

The latter limit exists and is equal to f (x1, . . . , xk) by weight-one homogeneity
of f . Thus the recession function of ϕ exists and agrees with f . In consequence,
in order to prove Theorem 3.2(1) and (2) we only need to show the boundedness
of |ϕ − f | and of f on the required subsets.

We next show that we can assume a simplifying hypothesis.

DEFINITION 3.4. We say that the set of symmetric positive semidefinite matrices
A1, . . . , Ak satisfies the flag condition if Ker(Ai) ⊆ Ker(Ai+1), for i = 1, . . . ,
k − 1.

Consider the subset

U = {0 < x1 6 x2 6 · · · 6 xk} ⊂ Rk
>0.

Since
Rk
>κ =

⋃
σ∈Sk

(σ−1U ∩ Rk
>κ)
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and
∆0
=

⋃
σ∈Sk

(σ−1U ∩∆0),

by symmetry it is enough to prove the boundedness of |ϕ − f | in U ∩ Rk
>κ and

of f in U ∩ ∆0. Writing y1 = x1, yi = xi − xi−1 for i = 2, . . . , k we find that
xi =

∑i
j=1 y j and that U ∩Rk

>κ is parametrized by the set y1 > κ , y2, . . . , yk > 0.
Note that

k∑
i=1

xi Ai =

k∑
i=1

yi

k∑
j=i

A j and
k∑

i=1

xi Ai ci =

k∑
i=1

yi

k∑
j=i

A j c j .

LEMMA 3.5. Writing Ãi =
∑k

j=i A j we have that Ker Ãi ⊆ Ker Ãi+1. Moreover
we have Im( Ãi) =

∑k
j=i Im(A j).

Proof. We first observe that, if A is a symmetric positive semidefinite real matrix,
then Ax = 0 if and only if x t Ax = 0. Indeed, clearly Ax = 0 implies x t Ax = 0.
Conversely, assume that x t Ax = 0 and let y be any vector. Then, for all λ ∈ R,

0 6 (y + λx)t A(y + λx) = yt Ay + 2λyt Ax

which implies that yt Ax = 0. Therefore Ax = 0.
We show that this observation implies that Ker Ãi =

⋂k
j=i Ker A j . We have

x ∈ Ker Ãi if and only if

0 = x t Ãi x =
k∑

j=i

x t A j x .

Since the matrices A j are positive semidefinite this implies that x t A j x = 0, j = i,
. . . , k. Therefore x ∈

⋂k
j=i Ker A j . The converse is clear. As a result

Ker Ãi =

k⋂
j=i

Ker A j ⊆

k⋂
j=i+1

Ker A j = Ker Ãi+1.

Since, for a symmetric positive semidefinite matrix A, the image Im(A) is the
orthogonal complement of Ker(A) we deduce

Im( Ãi) = Ker( Ãi)
⊥
=

( k⋂
j=i

Ker(A j)

)⊥
=

k∑
j=i

Ker(A j)
⊥
=

k∑
j=i

Im(A j).

This proves the lemma.
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It follows from the Lemma that there exist vectors c̃i ∈ Rg such that
k∑

j=i

A j c j = Ãi c̃i .

Replacing Ai by Ãi , xi by yi and ci by c̃i we are reduced to proving the
boundedness of |ϕ − f | on R>κ × Rk−1

>0 × K and of f on the set{
(x1, . . . , xk) ∈ Rk

>0 : x1 > 0, xi > 0 for all i > 1,
k∑

i=1

(k − i + 1)xi = 1
}

under the extra hypothesis that the matrices A1, . . . , Ak satisfy the flag condition
from Definition 3.4. Clearly, by the homogeneity of f it is enough to prove the
boundedness of f on the set

H =
{
(x1, . . . , xk) ∈ Rk

>0 : x1 > 0, xi > 0 for all i > 1,
k∑

i=1

xi = 1
}
.

From now on we assume the flag condition and we write ri = rk(Ai). Then
r = r1 > · · · > rk > 1. Thanks to the flag condition, we can assume furthermore
that the basis of Rg has been chosen in such a way that

A′i =
(

A′′i 0
0 0

)
, (3.4)

with A′′i ∈ S++ri
(R).

The following is our main estimate.

LEMMA 3.6. There exists a constant c such that for all 1 6 α, β 6 r and all
(x1, . . . , xk) ∈ R>0 × Rk−1

>0 we have the following bound on the α, β-entry in the
inverse of the r-by-r matrix

∑k
i=1 xi A′i :∣∣∣∣( k∑

i=1

xi A′i

)−1

αβ

∣∣∣∣ 6 c∑
j : r j>min(α,β)

x j

6
c
x1
.

Proof. This follows immediately from two intermediate results:

CLAIM 3.6.1. There exists a constant c1 > 0 such that for all (x1, . . . , xk) ∈

R>0 × Rk−1
>0 we have the bound

det
( k∑

i=1

xi A′i

)
> c1

r∏
j=1

∑
i :ri> j

xi > 0.
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To prove this claim, define the r -by-r matrix

Ji =

(
Idri 0
0 0

)
. (3.5)

Since A′′i is positive definite, there exists ε > 0 such that for all i , we have that
A′i − ε Ji is positive semidefinite. Then∑

i

xi A′i =
∑

i

xi(A′i − ε Ji)+
∑

i

xiε Ji . (3.6)

The proof of the following lemma is left to the reader.

LEMMA 3.7. Let A, B be positive semidefinite symmetric r × r matrices. Then
det(A + B) > det(A)+ det(B). �

Combining Lemma 3.7 with equation (3.6), we deduce

det
(∑

i

xi A′i

)
> det

(∑
i

xiε Ji

)
= εr

r∏
j=1

∑
i :ri> j

xi > 0

as required. The second intermediate result is as follows:

CLAIM 3.7.1. There exists a constant c2 > 0 such that for all 1 6 α, β 6 r and
all (x1, . . . , xk) ∈ R>0 × Rk−1

>0 we have the following bound on the cofactors of
the matrix

∑k
i=1 xi A′i :∣∣∣∣cofα,β

( k∑
i=1

xi A′i

)∣∣∣∣ 6 c2

r∏
α′=1

α′ 6=min(α,β)

∑
i :ri>α′

xi .

To prove this second claim, write A =
∑

i xi A′i . Then there is a constant c3 such
that for 1 6 α′, β ′ 6 r one has

|Aα′,β ′ | 6 c3

∑
i :ri>max(α′,β ′)

xi 6 c3

∑
i :ri>α′

xi .

Let σ : {1, . . . , α̂, . . . , r}
∼

−→ {1, . . . , β̂, . . . , r} be a bijection (theˆmeans ‘omit’).
Then ∏

α′ 6=α

|Aα′,σ (α′)| 6 cr−1
3

∏
α′ 6=α

∑
i :ri>α′

xi
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and since Aα′,σ (α′) = Aσ(α′),α′ we also have∏
α′ 6=α

|Aα′,σ (α′)| 6 cr−1
3

∏
α′ 6=β

∑
i :ri>α′

xi .

Choosing the smaller upper bound of the two we find∏
α′ 6=α

|Aα′,σ (α′)| 6 cr−1
3

∏
α′ 6=min(α,β)

∑
i :ri>α′

xi

and hence
|cofα,β(A)| 6 (r − 1)!cr−1

3

∏
α′ 6=min(α,β)

∑
i :ri>α′

xi .

This proves the second claim and, consequently, Lemma 3.6.

Proof of Theorem 3.2(2). From Lemma 3.6 we deduce the existence of a constant
c4 > 0 such that, for all 1 6 α, β 6 r ,∣∣∣(∑ xi A′i c

′

i

)t

α

(∑
xi A′i

)−1

α,β

(∑
xi A′i c

′

i

)
β

∣∣∣ 6 c4 ·

(∑
j : r j>α

x j
)(∑

i : ri>β
xi
)∑

j : r j>min(α,β) x j

= c4 ·
∑

j : r j>max(α,β)

x j

and hence

0 6 f =
∑
α,β

(∑
xi A′i c

′

i

)t

α

(∑
xi A′i

)−1

α,β

(∑
xi A′i c

′

i

)
β
6 c4

∑
α,β

∑
j : r j>max(α,β)

x j .

This is clearly bounded on H . This proves Theorem 3.2(2).

Proof of Theorem 3.2(1). We start by noting that

P =
(∑

xi A′i + B11 B12

B21 B22

)
,

with B22 invertible. Moreover, as P is invertible, so is the Schur complement∑
xi A′i + B11 − B12 B−1

22 B21 of B22 in P . If we put

Q =
(∑

xi A′i + B11 − B12 B−1
22 B21

)−1

then we get

P−1
=

(
Q −Q B12 B−1

22

−B−1
22 B21 Q B−1

22 + B−1
22 B21 Q B12 B−1

22

)
. (3.7)
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Write A =
∑

xi A′i and M = B11 − B12 B−1
22 B21 so that Q = (A + M)−1. Recall

that A is invertible, so that Q = (Idr + A−1 M)−1 A−1.

CLAIM 3.8. There exists a κ ′ > κ such that the series

A−1
− A−1 M A−1

+ A−1 M A−1 M A−1
+ · · · + (−1)m(A−1 M)m A−1

+ · · ·

converges to Q on R>κ ′ × Rk−1
>0 × K .

Proof. The entries of the matrix M are continuous functions on the compact set
K , hence bounded. Let c be the constant of Lemma 3.6, choose

κ ′ > max(cr 2 max(Mαβ), c, κ)

and put ε = cr 2 max(Mαβ)/κ
′. Note that 0 < ε < 1. Moreover, by Lemma 3.6

and the condition x1 > κ ′,

(|(A−1 M)m A−1
|)αβ 6

c
x1

(c max(Mαβ)r 2)m

κ ′m
< εm .

It follows that the series converges absolutely. By construction, the limit of the
series is (A + M)−1

= Q finishing the proof of the claim.

Write M1 = (Idr +M A−1)−1 and M2 = (Idr + A−1 M)−1. Then Q = A−1 M1 =

M2 A−1. An argument similar to that of Claim 3.8 shows that the entries of M1 and
M2 are bounded on the set R>κ ′ × Rk−1

>0 × K .
We deduce from Lemma 3.6 that there is a constant c2 such that

|Qαβ | 6
c2∑

j : r j>min(α,β) x j

on the same set. It follows that∣∣∣(Q
(∑

xi A′i c
′

i

))
β

∣∣∣ and
∣∣∣((∑ xi A′i c

′

i

)t
Q
)
α

∣∣∣
are bounded on R>κ ′ × Rk−1

>0 × K . Moreover, since Q − A−1
= A−1 M3 A−1 with

again M3 having bounded entries, we deduce that there is another constant c3 such
that

|(Q − A−1)αβ | 6
c3(∑

j : r j>α
x j
)(∑

i : ri>β
xi
) ,

and consequently ∣∣∣(∑ xi A′i c
′

i

)t
(Q − A−1)

(∑
xi A′i c

′

i

)∣∣∣
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is bounded. Finally, to prove that |ϕ − f | is bounded we compute

ϕ − f =
(∑

xi A′i c
′

i

)t
(Q − A−1)

(∑
xi A′i c

′

i

)
+ 2at

1 Q
(∑

xi A′i c
′

i

)
+ at

1 Qa1 − 2at
2 B−1

22 B21 Q
(∑

xi A′i c
′

i

)
− 2at

2 B−1
22 B21 Qa1 + at

2(B
−1
22 + B−1

22 B21 Q B12 B−1
22 )a2

and we use the previously obtained bounds. This proves Theorem 3.2(1).

Proof of Theorem 3.2(3). From now on we assume that k = 1 so we have
ϕ : R>κ × K → R and f : R>0 → R. Explicitly,

ϕ(x1, λ) = (A1x1c1 + a)t P−1(A1x1c1 + a)

with P = A1x1 + B, and f = ct
1 A1c1x1. Recall that we write ϕ0 = ϕ − f . Put

w0 = a − Bc1.

LEMMA 3.9. We have

ϕ0(x1, λ) = 2at c1 − ct
1 Bc1 + w

t
0 P−1w0.

Proof. We compute

ϕ0(x1, λ) = (A1x1c1 + a)t P−1(A1x1c1 + a)− ct
1 A1c1x1

= (w0 + Pc1)
t P−1(w0 + Pc1)− ct

1 A1c1x1

= wt
0 P−1w0 + 2ct

1w0 + ct
1 Pc1 − ct

1 A1c1x1

= wt
0 P−1w0 + 2ct

1a − ct
1 Bc1.

We continue to assume that k = 1. It follows that A′1 is invertible.

LEMMA 3.10. In the above notation and with k = 1, we have

P−1
=

(
0 0
0 B−1

22

)
+

1
x1

(
A′−1

1 −A′−1
1 B12 B−1

22

−B−1
22 B21 A′−1

1 B−1
22 B21 A′−1

1 B12 B−1
22

)
+ O(x−2

1 )

and

P−1 A1 =
1
x1

(
1 0

−B−1
22 B21 0

)
+ O(x−2

1 )

as x1 →∞, where the implicit constants are uniform in K .
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Proof. From equation (3.7) we obtain

P−1
=

(
0 0
0 B−1

22

)
+

(
Q −Q B12 B−1

22

−B−1
22 B21 Q B−1

22 B21 Q B12 B−1
22

)
.

Also recall that Q = (Idr + A−1 M)−1 A−1 with A = A′1x1 and M bounded. This
yields Q = x−1

1 A′−1
1 + O(x−2

1 ) as x1 → ∞. The first estimate readily follows.
Upon recalling that

A1 =

(
A′1 0
0 0

)
the second estimate also follows.

To finish the proof of Theorem 3.2(3), note that by combining Lemma 3.9 and
Lemma 3.10 that

ϕ0(x1, λ) = 2at c1 − ct
1 Bc1 + w

t
0

(
0 0
0 B−1

22

)
w0 + O(x−1

1 )

as x1 →∞. From this it is immediate that ϕ0 extends continuously to a function
from R>κ × K to R. Next, from Lemma 3.9 we have

∂ϕ0

∂x1
= −wt

0 P−1 A1 P−1w0,
∂2ϕ0

∂x2
1

= 2wt
0 P−1 A1 P−1 A1 P−1w0.

Combining this with Lemma 3.10 we find the estimates

∂ϕ0

∂x1
= O(x−2

1 ),
∂2ϕ0

∂x2
1

= O(x−3
1 ),

completing the proof of Theorem 3.2(3).

3.4. On the recession function of a normlike function. Let f : Rk
>0→ R be

the recession function of the normlike function ϕ associated to ((Ai), (ci), a, B)
as above. The purpose of this section is to list a number of useful properties of f .

PROPOSITION 3.11. The function f is convex, that is, for all x, y ∈ Rk
>0 and all

λ ∈ [0, 1] we have f (λx + (1− λ)y) 6 λ f (x)+ (1− λ) f (y).

Proof. Example 3.4 on [5, page 90] states that the function hg : Rg
×S++g (R)→ R

given by hg(x, Y ) = x t Y−1x is convex. The function f : Rk
>0 → R is the

composition of hg with the linear map

Rk
>0 → Rg

× S++g (R), (x1, . . . , xk) 7→

( k∑
i=1

xi A′i c
′

i ,

k∑
i=1

xi A′i

)
.
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Since the composition of a linear map followed by a convex function is again
convex, we deduce that f is convex.

PROPOSITION 3.12. The function f extends to a continuous function f : Rk
>0→

R>0. The function f is homogeneous of weight one and convex.

Proof. By Theorem 3.2(2) we know that the function f is bounded on the open
standard simplex ∆0. Define

f : ∆→ R>0

by the formula

f (x1, . . . , xk) = inf(pl )l→(x1,...,xk ) liminfl→∞ f (pl);

here the infimum is over sequences in ∆0 tending to the point (x1, . . . , xk). This
function f is well defined because f is bounded on∆0. It follows easily from the
definition of f that f is convex and lower semicontinuous. Since ∆ is a convex
polytope, it follows from [23, Theorem 10.2] that f is continuous. Now extend f
to Rk

>0 \ {0} by homogeneity. By sending in addition 0 to 0 we obtain the required
continuous and convex function f : Rk

>0 → R>0.

We can make the function f explicit as follows. Let I ⊆ {1, . . . , k} be any
subset, and set J = {1, . . . , k} \ I . We consider the restriction of f to the subset
RI
>0 ⊆ Rk

>0 given by setting x j equal to zero for all j ∈ J . Let

r I = rk
(∑

i∈I

xi Ai

)
: xi > 0,

and for i ∈ I set

Ai =

(
A′′i 0
0 0

)
(3.8)

where A′′i has size r I , and similarly

ci =

(
c′′i
?

)
,

where c′′i has length r I .
Note that, if I 6= ∅, then r I > 1. Let K ⊂ RJ

>0 be an arbitrary compact subset.
Write x I = (xi)i∈I and x J = (x j) j∈J . We define the function

f I : RI
>0 × K → R, (x I ; x J ) 7→ f (x1, . . . , xk).

https://doi.org/10.1017/fms.2018.13 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.13


Singularities of the biextension metric for abelian varieties 47

Write
a(x J ) =

∑
j∈J

x j A′j c
′

j , B(x J ) =
∑
j∈J

A′j x j ,

then we see that

f I (x I ; x J ) =

(∑
i∈I

xi A′i c
′

i +a(x J )

)t(∑
i∈I

xi A′i + B(x J )

)−1(∑
i∈I

xi A′i c
′

i +a(x J )

)
and hence by Theorem 3.2 f I has a recession function rec( f I ) : RI

>0 → R which
can be written as

rec( f I (x I )) =

(∑
i∈I

xi A′′i c′′i

)t(∑
i∈I

xi A′′i

)−1(∑
i∈I

xi A′′i c′′i

)
,

when I 6= ∅, and rec( f∅) = 0. Note that rec( f I ) is independent of the choice of
K . Also note that, by Theorem 3.2, | f I − rec( f I )| is bounded on RI

>0 × K .

PROPOSITION 3.13. Let I ⊆ {1, . . . , k} be any subset. We have

f |RI
>0
= rec( f I ).

Proof. When I = ∅ the equality is trivially true. We assume that I 6= ∅. Choose
c ∈ RJ

>0 and x I ∈ RI
>0 arbitrarily. By Theorem 3.2(1) with K = {c}, there exists

a constant δ > 0 depending on c and x I such that for all λ ∈ R>0 we have

|(rec( f I ))(λx I )− f I (λx I ; c)| 6 δ.

We deduce that for all λ ∈ R>0 we have∣∣∣∣(rec( f I ))(x I )− f
(

x I ,
c
λ

)∣∣∣∣ 6 δ

λ
. (3.9)

As f extends f continuously we have

lim
λ→∞

f
(

x I ,
c
λ

)
= f |RI

>0
(x I )

independently of the choice of c. Combining with the bound (3.9), we find that

(rec( f I ))(x I ) = f |RI
>0
(x I ),

as required.
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A special case of interest is when |I | = 1. For each 1 6 i 6 k, set

Ai =

(
Ae

i 0
0 0

)
, (3.10)

where Ae
i has size ri = rk Ai and hence is positive definite; here e is short for

‘essential’. Similarly set

ci =

(
ce

i
?

)
,

where ce
i has length ri . Define

µi = ct
i Ai ci = (ce

i )
t Ae

i c
e
i .

Then µi > 0 and we have for all xi > 0

f (0, . . . , 0, xi , 0, . . . , 0)= (rec( f{i}))(xi)= xi(ce
i )

t(Ae
i )

t x−1
i (Ae

i )
−1xi Ae

i c
e
i = xiµi .

In particular, the function f (0, . . . , 0, xi , 0, . . . , 0) is homogeneous linear in xi ,
and

µi = f (0, . . . , 0, 1, 0, . . . , 0).

We call µ1, . . . , µk > 0 the coefficients associated to ϕ.

4. Proofs of the main results

In this section we prove our main results. We will continue to work with the
‘diagonal case’ where we consider the pullback Poincaré bundle Pν associated
to a single admissible normal function ν of our family π : Y → X . As was
explained at the beginning of Section 2.3, by the biextension property of the
Poincaré bundle this is sufficient for the purpose of proving the main results as
stated in the introduction.

4.1. Singularities of the biextension metric. In this section we will prove
Theorem 1.1.

Proof of Theorem 1.1. Following Theorem 2.14, take

– a small enough ε > 0,

– matrices
A1, . . . , Ak ∈ Sg(R)

of positive rank such that ∆−1 Ai ∈ Mg(Z) for i = 1, . . . , k,
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– vectors
c1, . . . , ck ∈ Qg

such that ∆−1 Ai ci ∈ Zg for i = 1, . . . , k,

– bounded holomorphic maps α : ∆n
ε → Cg and ψ : ∆n

ε → Pg,

such that the multivalued period mapping

(Ω, δ) : Uε ∩ X →M = Hg × Cg (4.1)

of the variation of mixed Hodge structures H(ν) on Uε is given by the formula

(q) = (q1, . . . , qn) 7→

( k∑
j=1

A j
log q j

2π i
+ ψ(q),

k∑
j=1

A j c j
log q j

2π i
+ α(q)

)
(4.2)

(recall that Uε was defined in Section 1.3). Put a = 2π Imα, B = 2π Imψ , and
define κ ∈ R via κ = −logε. As above define the function ϕ : Rk

>κ ×∆
n
ε → R>0

via

ϕ(x1, . . . , xk; q) =
( k∑

i=1

xi Ai ci + a
)t( k∑

i=1

xi Ai + B
)−1( k∑

i=1

xi Ai ci + a
)
.

Choose any 0 < ε ′ < ε. The restriction of ϕ to Rk
>κ × ∆

n
ε′ is then a normlike

function of dimension k. Let f : Rk
>0→ R>0 be the associated recession function

f = rec(ϕ). Recalling the explicit expression (3.3) for f , the conditions

∆−1 Ai ∈ Sg(R) ∩ Mg(Z), ∆−1 Ai ci ∈ Zg,

for each i = 1, . . . , k imply that the Ai and Ai ci are themselves integral and that
f is the quotient of two homogeneous polynomials in Z[x1, . . . , xk]. In particular,
f ∈ Q(x1, . . . , xk). It is clear that f is homogeneous of weight one, and by
Proposition 3.11 the function f is convex when seen as a real-valued function
on Rk

>0.
Let s be an admissible section of Pν over Uε ∩ X . Following Corollary 2.16 we

have
−log‖s‖ = −log|h| + ϕ(−log|q1|, . . . ,−log|qk |; q)

on Uε ∩ X with h a meromorphic function on Uε , holomorphic on Uε ∩ X . As
s is locally generating over Uε ∩ X we have that h has no zeros or poles on
Uε ∩ X . Hence there is a linear form l ∈ Z[x1, . . . , xk] and a holomorphic map
u : Uε → C∗ such that

−log|h| = l(−log|q1|, . . . ,−log|qk |)+ log |u|

on Uε ∩ X . The image of U ε′ under the map u is compact.
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Put fs = f + l in Q(x1, . . . , xk). Then fs is again homogeneous of weight one
and convex as a function on Rk

>0. Our claim is that fs satisfies all the requirements
of Theorem 1.1. We need to show first of all that −log‖s‖ − fs(−log|q1|, . . . ,

−log|qk |) is bounded on U ε′ ∩ X and extends continuously over U ε′ \ Dsing.
In order to see this, put ϕ0 = ϕ − f on Rk

>κ ×∆
n
ε . Then

−log‖s‖(q) = fs(−log|q1|, . . . ,−log|qk |)+ log |u|
+ϕ0(−log|q1|, . . . ,−log|qk |; q)

on Uε ∩ X . Note that log |u| extends in a continuous and bounded manner over
the whole of U ε′ . We are reduced to showing that ϕ0(−log|q1|, . . . ,−log|qk |; q)
is bounded on U ε′ ∩ X and extends continuously over U ε′ \ Dsing.

For this we invoke Theorem 3.2(1). This readily gives the boundedness of ϕ0

via the map
(−log| · |, id) : (∆∗ε)

k
×∆n

ε → Rk
>κ ×∆

n
ε .

Let p ∈ (D \ Dsing) ∩ U ε′ . Up to a change in the order of the variables, we can
assume that the coordinates of p satisfy q1 = 0, qi 6= 0 for i = 2, . . . , N . We take
a small polydisk Vε′′ ⊂ U ε′ of small radius ε ′′ with center at p such that Vε′′ ∩ X
can be identified with ∆∗ε′′ × ∆

n−1
ε′′ and hence Vε′′ ∩ D can be identified with the

divisor q1 = 0 on ∆n
ε′′ . Write

r = (r2, . . . , rk) = (−log|q2|, . . . ,−log|qk |)

for q ∈ Vε′′ ; then r can be assumed to move through a compact subset K ′ ⊂ Rk−1.
Put K ′′ = K ′ × ∆

n
ε′ . We define functions ϕ′ : R>κ × K ′′ → R>0 and f ′ : R>κ ×

K ′′→ R>0 via

ϕ′(x1; r , q) = ϕ(x1, r; q), f ′(x1; r) = f (x1, r).

Then both ϕ′, f ′ are normlike of dimension one. Write

A1 =

(
A′1 0
0 0

)
, A′1 =

(
A′′1 0
0 0

)
,

with A′1 positive semidefinite of size r , and A′′1 = Ae
1 positive definite of size and

rank r1. Then it is readily verified that both rec( f ′) and rec(ϕ′) are equal to the
linear function x1µ1 = x1ct

1 A1c1 = f (x1, 0, . . . , 0). Note that

ϕ0(−log|q1|, . . . ,−log|qk |; q) = ϕ′(−log|q1|; r , q)− f ′(−log|q1|; r)

on Vε′ ∩ X . We are done once we show that ϕ′ − f ′ extends continuously over
R>κ × K ′′. Following Theorem 3.2(3) we have that both ϕ′ − rec(ϕ′) and f ′ −
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rec( f ′) extend continuously over R>κ × K ′′. As rec(ϕ′) = rec( f ′) we find the
required extension result.

The second item of Theorem 1.1 is clear. As fs is up to a linear form
the recession function of a normlike function we have that fs is convex, and
by Proposition 3.12 that fs extends as a convex, continuous homogeneous
weight-one function f s : Rk

>0 → R. This finally proves items (3) and (4) of
Theorem 1.1.

4.2. The Lear extension made explicit. Let s be an admissible section of
P = Pν . We recall that this means that s corresponds to an admissible biextension
variation of mixed Hodge structures on X . Then s can also be seen as a rational
section of the Lear extension [P, ‖−‖]X of P over X . We can now compute
the global Q-divisor divX (s) that represents [P, ‖−‖]X . We do this after a little
digression.

Write U = Uε′ , V = Vε′′ to reduce notation. Let µ1, . . . , µk ∈ Q be the
coefficients of ϕ (see end of Section 3.4 for the definition), and νi = ordDi h for
i = 1, . . . , k, and ai = µi + νi . Here Di is the divisor on X given locally on U by
qi = 0. We obtain from the above proof that

−log‖s‖(q) = −a1 log |q1| + ψ1(q) (4.3)

on V ∩ X where ψ1(q) extends continuously over V .
We say that p ∈ X is of depth k if p is on precisely k of the irreducible divisors

Di . The set Σk of points of depth k on X is a locally closed subset of X and for
k > 1 they yield a stratification of D = X \ X . For p ∈ Σk take a coordinate
neighborhood U ⊂ X such that p = (0, . . . , 0) and D ∩ X is given by the
equation q1 · · · qk = 0. Theorem 1.1 yields an associated homogeneous weight-
one function f p,s ∈ Q(x1, . . . , xk).

LEMMA 4.1. The map Σk → Q(x1, . . . , xk) given by p 7→ f p,s is locally
constant.

Proof. Take p, U as above and let y = (0, . . . , 0, yk+1, . . . , yn) ∈ U be another
point of depth k. Let q ′i = qi for i = 1, . . . , k, q ′i = qi − yi for i = k + 1, . . . , n.
Then q ′ are coordinates centered around y and we have

−log‖s‖ = f p,s(−log|q1|, . . . ,−log|qk |)+ ψp(q)

= fy,s(−log|q ′1|, . . . ,−log|q ′k |)+ ψy(q ′)

= fy,s(−log|q1|, . . . ,−log|qk |)+ ψy(qi − yi)
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on U ∩ X with ψp, ψy bounded on U ∩ X . We find that f p,s − fy,s is bounded on
Rk
>κ and, being homogeneous of weight one, it vanishes identically.

In order to compute the divisor divX (s) that represents the Lear extension of
Pν over X we are interested in the behavior of the function fs : Σ1 → Q(x)
obtained from Lemma 4.1 by restricting to k = 1. Note that Σ1 = D \ Dsing.
Let D =

⋃d
α=1 Dα be the decomposition of D into irreducible components. Take

any irreducible component Dα. Since Dα \ Dsing is connected, we deduce from
Lemma 4.1 that the function

fs,α : Dα \ Dsing
→ Q(x)

is constant. Its value is a homogeneous linear function which we write as
fs,α(x) = aαx , with aα ∈ Q. In this notation we find:

COROLLARY 4.2. Let s be a section of P corresponding to an admissible
biextension variation on X. Let L = [P, ‖−‖]X be the Lear extension of P over
X. Then L is represented by the Q-divisor

divX (s) =
d∑
α=1

aαDα

on X.

4.3. Local integrability. Our next task is to investigate ∂∂̄ log ‖s‖ over curves.

Proof of Theorem 1.3. We use the estimates from Theorem 3.2(3). We assume
k = n = 1, but otherwise keep the notation and assumptions from Section 4.1. In
particular, we have the normlike function ϕ(x1, q1) on R>κ×∆ε and the associated
recession function f = rec(ϕ) on R>0. Put ϕ0 = ϕ− f . Put ϕ1(q1) = ϕ0(−log|q1|,

q1). By Corollary 2.16 on Uε ∩ X , noting that f is linear, we have

−log‖s‖(q1) = −log|h|(q1)+ ϕ1(q1)

for some meromorphic function h. Note that

∂ϕ1 = −
1
2
∂ϕ0

∂x1

dq1

q1
+
∂ϕ0

∂q1
dq1.

Here ∂ϕ0/∂q1 is smooth and bounded on Uε′ , and by Theorem 3.2(3) we have a
constant c1 such that ∣∣∣∣∂ϕ0

∂x1

∣∣∣∣ 6 c1 · x−2
1 .
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Hence for a smooth vector field T with bounded coefficients we find a constant
c2 such that

|∂ϕ1(T )| 6 c2 ·
1

(−log|q1|)2|q1|

on Uε ∩ X . A similar argument yields

|∂̄ϕ1(T )| 6 c2 ·
1

(−log|q1|)2|q1|

on Uε ∩ X . In particular, there is a constant c3 such that∥∥∥∥ ∫
∂Uε

∂ϕ1

∥∥∥∥ 6 c3
ε

(log ε)2ε
.

Thus the residue res0(∂ϕ1) of ∂ϕ1 at zero is zero.
Next, there exists a smooth (1, 1)-form ζ on Uε such that

∂∂̄ϕ1 =
1
4
∂2ϕ0

∂x2
1

1
|q1|

2
dq1dq1 + ζ.

By Theorem 3.2(3) we have a constant c4 such that∣∣∣∣∂2ϕ0

∂x2
1

∣∣∣∣ 6 c4 · x−3
1 .

Hence for smooth vector fields T,U with bounded coefficients we find a constant
c5 and an estimate

|∂∂̄ϕ1(T,U )| 6 c5 ·
1

(−log|q1|)3|q1|
2

on Uε ∩ X . This shows that ∂∂̄ϕ1 is locally integrable on Uε .

4.4. Effectivity of the height jump divisor. In this section we prove
Theorem 1.5. We continue again with the notation as in Section 4.1. In particular,
we have U = Uε , we have s an admissible section of Pν on U ∩ X , and
fs : Rk

>0 → R the associated homogeneous weight-one function such that

−log‖s‖ − fs(−log|q1|, . . . ,−log|qk |)

is bounded on U ∩ X and extends continuously over X \ Dsing. Moreover fs

extends as a convex homogeneous weight-one function f s : Rk
>0 → R (see
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Theorem 1.1). It is clear that a convex homogeneous weight-one function is
subadditive, hence we have the estimate

f s(x1, . . . , xk) 6
k∑

i=1

f s(0, . . . , 0, xi , 0, . . . , 0) (4.4)

on Rk
>0.

Now let φ : C → X be a map from a smooth curve, sending a point 0 in C to
p = (0, . . . , 0), and such that there exists an open neighborhood V of 0 in C such
that φ maps V into U . We also assume that φ does not map V into D. Then φ is
given locally at 0 ∈ C by

φ(t) = (tm1 u1, . . . , tmi ui , . . .),

where t is a local coordinate on C at 0, the m i are nonnegative integers, and ui are
units. Write φ for the restriction of φ to V \ {0}.

PROPOSITION 4.3. We have an equality of Q-divisors on V:

div(φ∗s)|V = f s(m1, . . . ,mk) · [0],

where φ∗s is viewed as a rational section of the Lear extension [φ∗(Pν, ‖−‖)]V .

Proof. It suffices to show that

−log‖φ∗s‖ ∼ − f s(m1, . . . ,mk) log |t |

on V \ {0}, where ∼ denotes that the difference is bounded and extends
continuously over V . As by Theorem 1.1

−log‖s‖ − fs(−log|q1|, . . . ,−log|qk |)

is bounded on U ∩ X we obtain the boundedness by pullback along φ. The
continuous extendability over V then follows from the boundedness combined
with the existence of a Lear extension for φ∗(Pν, ‖−‖).

PROPOSITION 4.4. We have an equality of divisors on V :

φ∗(divX (s)) =
k∑

i=1

f s(0, . . . , 0,m i , 0, . . . , 0) · [0],

where s is viewed as a rational section of the Lear extension [Pν, ‖−‖]U .
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Proof. This follows immediately from Corollary 4.2.

Proof of Theorem 1.5. Combining Propositions 4.3 and 4.4 one sees that the line
bundle

[φ∗(Pν, ‖−‖)]
⊗−1
C
⊗ φ

∗

[Pν, ‖−‖]X

has a canonical nonzero rational section, whose divisor is(
− f s(m1, . . . ,mk)+

k∑
i=1

f s(0, . . . , 0,m i , 0, . . . , 0)
)
· [0]

on V , which is indeed independent of the choice of rational section s. This divisor
is effective by the subadditivity of fs expressed by inequality (4.4). In particular,
the section is global.
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