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On the Cardinal Function of Interpolation Theory.

By J. M. WHITTAKER.

(Received 3rd December 1926. Received, in revised form, 13th January
1927. Read lith January 1927.)

1. The cardinal function is the interpolation function

f D i l l "i l»v U- I t.

— (x — a — rw)
w

which takes the values ar at the points a + rw. Its principal pro-
perties were discovered by Professor Whittaker,1 amongst others that

(.4) When C (x) is analysed into periodic constituents by Fourier's
integral-theorem, all constituents of period less than 2w are absent.

This statement requires some modification. Thus in Professor
Whittaker's Example 2, in which ar is always either 0 or 1, the
cardinal series converges to the sum

2 . jr(x-a)
•7= s i n v ;

V3 3w

and this function cannot be analysed by Fourier's Theorem. The
reason for this appears from Theorem 2 below, wherein it is shown
that (roughly) the cardinal series converges and has the property (A)
when and only when 2 ar

2 converges. The remainder of the paper is
concerned with questions of the convergence and summability of the
series denning the cardinal function.

2. There is no loss of generality in taking a = 0, w = 1, and
this will be done in the sequel. The cardinal function is then
denned to be

(1) C(x) =aovo(x)+ 2 arvr(sc)+ £ a.rv_r(x)
r = l r= l

where
, . sin IT (x — r)

vT(x) = • - - v
 r ' ,

( )

1 Proc. Roy. Soc. Edin., XXXV (1915), p. 181.
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I t h a s been s h e w n b y F e r r a r 1 t h a t if 2 ( — l)'ar, 2 ( — l ) r a _ ,
r = l r = l

both oscillate finitely, the cardinal series converges and represents
an analytic function. Theorem 1 deals with a similar set of
conditions, namely that

2 ( - l) r— » 2 ( - l ) r " r

r r

be convergent, and it is shewn that these conditions are also
necessary. It is convenient to regard convergence as summability
(CO) and to discuss the summability (Ck) of the cardinal series for
a positive integral k. With this understanding we prove

THEOREM 1. / / the cardinal series (1) is summable (Ck) for any
(complex) value of x other than x — 0, ± r, it is uniformly summable
(Ck) in any finite region of the x-plane and its sum is an integral
function.

The series (1) will be summable (Ck) to an integral function if and
only if

2(-ir-r, i;(-ir~r

r=i r r = 1 r

are summable (Ck).

Assume in the first place that the series

is summable (Ck). Let
r

ur (x) = sin TTX.
x -— r

Then
"c ~\var "- sin IT (a; —r)

Thus by a theorem due to Hardy 2 the series on the right will be
uniformly summable (Ck) if for a fixed k and in any finite region
of the x-plane

(2) 2 f*i A*+Ii*r | <!£", independent of a;.
r = 0

1 ibid. XLV (1925), p. 275. See also a later paper by the same author (ibid.
XLVI (1926), p. 323) where further references to the literature are given.

2 Proc. Land. Math. Soc. (2) 6, 255. Theorem A.

https://doi.org/10.1017/S0013091500007318 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500007318


43

Now
. / r + 1 r \ . x sin nx
Aur = sin 772; =\x — r — 1 x — r) (x — r — \){x — r)

and generally, as is easily verified by induction

.,. k! x sin nx
(x — r) (x — r — \) ... (x — r — k)

so that in a finite region of the z-plane

the constant implied in 0 being independent of x, r. Thus the rth term

of the series (2) is 0\— ) and so the series is bounded uniformly with

respect to x. The other parts of the theorem are all proved in the
same way.

3.1 The general nature of Theorem 2 has been discussed in the
introduction. The precise statement is

THEOREM 2. If {ar} is a sequence of real numbers such that

(a) 2 «r2 is convergent

then the cardinal series is absolutely convergent, and its sum is of
the form

(/3) C (x) = {(/>(t) cos TTxt + ijj(t) sin irxtjdt, with <f>, I/J each ZA
Jo

There is at most one function Ct {x) of the form (/3) which takes the
values ar at the points x — r and if there is such a function then the
condition (a) is satisfied and the cardinal series converges absolutely
to C^x).

We have interpreted the property (̂ 4) to mean only that C(x)
can be put in the form (/?), without insisting that this analysis into
periodic components can be effected by applying Fourier's integral
theorem to C(x). Now

2 o r
2 = a o

2 + | £ («r+ a.,.)2+ \ 2 («»— «-r)2

T= - 30 r = l r=:l

and thus (a) implies the convergence of the series

1 This section has been rewritten in accordance with the valuable suggestions of
Mr W. L. Ferrar, who kindly read the paper in manuscript.
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(a') O0
2+i £ K+ff-rf, \ 2 («r-0. r)2-

Define

<£P (<) = a0 + 2 («r + a -r) cos nrt. i/,p (t) = 2 (ar — «-r) sin TTT<
I - = 1 r = l

Then, as in the proof of the Riesz-Fischer theorem,1 the condition

(a') implies the existence of functions <f>(t), \jj(t) of integrable square

such that

- <§> (<) > dt —$• 0 , 1 ^ *fi(t) — tpp (t) j- dt —> 0, as p —j> oo.

Thus if x is confined to a finite region of the x-plane in which the
upper bound of | cos rrxt |, j sin nxt | is K, (0 <^ t <C 1), we have

I 1 /- -v P r \

\(f>{t) cosnxt + ifi(t) sinnxtldt — aovo(x) — 2 \arvr{x) + a_rv^r{x)

os TT^ dt+[ Uj(t) - if,p (t) I sin nxt dt
cos nxtdt

-> 0 uniformly with respect to x, as p -> oc.
Thus the series

(3) aovo(x)+ ^k{arvr(x) + a_rv_r(x)}
r= l

is uniformly convergent in any finite region of the z-plane and its
sum is the integral (/?).

Now the convergence of 2«r
2 implies that of 2 i ar/

r I a n ( i this series
majorises the cardinal series. Thus the latter is absolutely and
uniformly convergent, and since it can be rearranged as the series (3)
its sum is the integral (̂ 3). Again, let

6*1 ix) ~ I {<f>i (t) c o s Trt& + «Ai (0 sin -nxt) dt
Jo

with cf>1 (t), i/-! (t) each L* and Cx (r) = ar. Then

«o = P 4>x (t) dt, a'+a-r = f ^ (f) CoS wrt (ft, ffir~"a-'- = f ^ (0 sin
Jo Z Jo 2 Jo

1 Cf. Hobson. Functions of a Real Variable (2nd Ed.), p. 576. That (a) implies
the existence of a 0(x) of the form (/3) such that C(r) = ar is in fact the Riesz-Fischer
theorem.
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and by Parseval's theorem the series

«o2+ 2 £ («r+ a_rf+ I v (ar- a_r)
2= £ ar

2

r = l 7-=l r = -oo

is convergent, its sum being the sum of the integrals of <f>-f(t), >pi2(t)-
Thus by the first part of Theorem 2, which has just been proved, the
cardinal series converges absolutely to a function

C (x) = {<f> (t) cos nxt + if, (t) sin nxt} dt.
Jo

Then Ct (r) = C (r) for all integral values of r, and on applying
Parseval's theorem to the function C\ (x) — C (x) we deduce that
<f)t (t) — <f> (t), I[J1 (t) — ift (t) are equivalent to zero, and thus that
Ct (x) = C (x) for all values of x.

Added 19th Feb. 1927. 4. It was shown by Professor Whittaker
that if {ar} is bounded as r -> ± x , the cardinal series is equivalent to
the Gauss interpolation series. This connection was afterwards
investigated by Ferrar who proved that in all cases the convergence
of the cardinal series (in the form (3)) implies that of the Gauss series
(with the terms bracketed in pairs) to the same sum; while that the
convergence of the Gauss series implies that the cardinal series is
summable by the method of de la Vallee Poussin, to the same sum.
Professor Whittaker's theorem is a corollary of this. For if the
cardinal series is summable (V.P.) it is also summable by Abel's
limit.1 But if {ar} is bounded it is clear that

\arvr{x) + a^rv^(x) j =j =(
\ r

and so by Littlewood's converse of Abel's theorem,2 the series (3)
is convergent. Moreover we have

. . , . . sin 77.1- / a,- , a_,
arvr(x) + a.rv_r(x) = ( — !) '(x — r

r \r21 !

so that the series (3) converges and diverges with

1) ,..:_!«,- — a_,

1 By a theorem due to Gromvall. Cf. de la Vallee Poussin in The Bice Institute
Pamphlet XII (1925), p. 117.

2 Hobson. loc. dt., p. 184.
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If this series converges its sum is C"(0), as may be verified by
differentiating the series (3) and putting x = 0 in the result.

Combining this result with Professor Whittaker's we have
THEOEEM 3. / / {ar} is bounded, the series

(i) ^ ( -

(ii) aovo(x) + 2 {arvr(x) + a.rv.r(x
r = \

. . . . . i ~ X \X

(in) a ' ' - s - '
2! •" ' 3! '

+ _ §4,

are either all divergent (for non integral values of x), or else all
convergent.

In the latter case the series (ii), (iii) have the same sum C (x) and
the sum of (i) is C"(0).
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