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An observed, spectacular and puzzling distinctive feature of wall-bounded flows
transitioning to/from turbulence is the large-scale ordered coexistence of laminar and
turbulent flow over a wide range of Reynolds numbers. In their article, Chantry et al.
(J. Fluid Mech., vol. 791, 2016, R8) circumvent the problem of turbulence modulation
in genuine plane Couette flow by replacing no-slip boundary conditions at the walls
with effective stress-free conditions constraining the interior part of the flow only.
In so doing, they are able to collect relevant information on the laminar—turbulent
patterning. The approach is then adapted to plane Poiseuille and pipe flow, giving to
it a more universal value. Taking advantage of the stress-free conditions, they derive
reduced models efficient at capturing the laminar—turbulent coexistence. Such models
would be useful to interpret recent findings in the large-aspect-ratio limit.
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1. Context

Transitional wall-bounded flows are characterized by the presence of domains filled
with turbulence separated from laminar flow by fluctuating interfaces. This coexistence,
dubbed global subcriticality, is implied by the linear stability of the base flow at
Reynolds numbers sufficiently high that non-trivial nonlinear solutions to the Navier—
Stokes equations are equally possible. Remarkably, this property persists in different
forms over a finite range of Reynolds numbers, R € [R,, R,], where R, is the threshold
below which the base flow is unconditionally stable, and R, is another threshold above
which a regime of uniform, featureless, turbulence prevails. Even more remarkably, in
this intermediate R regime, the laminar—turbulent alternation is spatially organized, a
feature well described as ‘barber pole turbulence’ by Feynman reporting on earlier
observations of a turbulent helix by Coles (1962) in cylindrical Couette flow.

How and when flows of this kind become turbulent and acquire their pattern
has already been highlighted in the Focus on Fluids section. The earliest notice
is that of Mullin (2010) pointing to experiments on plane Couette flow under
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rotation generalizing those of (Prigent 2001; Prigent et al. 2003), who first reported
on multiple turbulent helices (bands) in cylindrical (plane) Couette flow. These
experiments were performed at large aspect ratio, i.e. with streamwise and spanwise
dimensions very large when compared to the gap. In contrast, most theoretical
efforts have been exerted on flow configurations just large enough to allow for
the development of chaotic flow, the so-called ‘minimal flow unit’ paradigm. On
that basis, turbulence can be envisioned as a wandering of trajectories in the
abstract phase space of the dynamical system to which the flow is assimilated,
as emphasized by Cvitanovi¢ (2013). The approach however fails to account for the
spatiotemporal behaviour observed in large-aspect-ratio systems since, by assumption,
it cannot include large-scale modulations. The search for localized states in laterally
unconstrained geometries highlighted by Eckhardt (2014) would be a step in the right
direction, except that the laminar—turbulent alternation cannot be seen as a periodic
arrangement of such weakly chaotic states while bands are much wider and filled
with much more active turbulence.

The most obvious way to improve our empirical knowledge of pattern formation
below R, is by performing numerical simulations of Navier—Stokes equations, but the
large-aspect-ratio limit of interest to experiments readily makes them prohibitively
expensive (Duguet, Schlatter & Henningson 2010). Much effort has thus been
dedicated to reduce their cost. The earliest successful attempt was by Barkley &
Tuckerman (2005), who considered plane Couette flow in a narrow but oblique domain
aligned with the pattern’s wavevector. Another way to reduce the computational load
is to reduce the resolution in the non-extended directions. This possibility was first
explored in pipe flow by Willis & Kerswell (2009), who succeeded in capturing
the essentials of its dynamics by restricting the number of azimuthal modes. A
similar approach was later proposed by us and further systematically scrutinized
in Manneville & Rolland (2011) for plane Couette flow. There, a reduction of the
wall-normal resolution proved efficient in reproducing the patterns and most of their
qualitative properties.

The relative insensitivity of the patterning to small-scale dynamics then suggests the
design of models in terms of Galerkin expansions of the primitive problem on a small
enough set of well-chosen representative modes. Taking convection as an example,
Lord Rayleigh (1916) explicitly introduced the recourse to stress-free boundary
conditions to be able to solve the linearized problem without the cumbersome
numerical computation of the no-slip case, which was done years later. His solution,
in turn, served as a starting point for nonlinear Galerkin-type modelling of tremendous
importance since it led to the Lorenz (1963) model focusing on chaotic temporal
dynamics, on the one hand, and to the Swift & Hohenberg (1977) model as a
paradigm of pattern-forming systems. What worked for convection, the archetype of
globally supercritical transition to turbulence, can also be tried to grasp the global
subcriticality of transitioning wall-bounded flows, plane Couette flow to begin with.
Rayleigh’s analytical simplification was indeed chosen by Waleffe (1997) to introduce,
via Galerkin expansion, his Lorenz-like model of eight nonlinear coupled ordinary
differential equations governing the flow in minimal flow unit conditions, to which
we proposed a Swift-Hohenberg like partial differential extension appropriate for
patterns; see Manneville (2005) which also reviews the experimental background and
the theoretical context.

The work of Chantry, Tuckerman & Barkley (2016) under focus here (§2) deals
with the construction of realistic but economical representations of wall-bounded flows
in transitional conditions, leading to reduced models of the kind sketched above,
in view of really understanding pattern formation and decay in large-aspect-ratio
subcritical systems (§ 3).
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2. Overview

Relying on simulations of the flow configuration considered by Waleffe (1997), i.e.
a shear flow between stress-free plates driven by a sinusoidal body force, Chantry
et al. (2016) first observe a transition to turbulence via an oblique laminar—turbulent
pattern strikingly similar to that of plane Couette flow. They further demonstrate that
this qualitative analogy can be made more quantitative by placing effective stress-free
boundary conditions at a strategic position inside the genuine plane Couette flow
driven by the no-slip wall motion. This position corresponds to an empirically
determined optimal matching of mean deviations from base flow in both systems,
apart from boundary layers close to the plates where the physical no-slip condition
applies. They support their proposal by detailed statistics on both flows within the
Barkley—Tuckerman oblique domain framework. The programme is next completed by
a standard Galerkin modelling stage truncated to contain seven fields, and numerical
simulations showing that the so-obtained model also renders the bands. The authors
then apply the same basic procedure to plane Poiseuille flow and Hagen—Poiseuille
pipe flow: simulations in the featureless regime of the considered flows, localization
of the strategic points in the turbulent mean flow profiles yielding the new relevant
scales, and simulation of the corresponding appropriately forced stress-free interior
flows. Additional symmetry conditions are however imposed in order to keep the
base flow stable while competing with non-trivial solutions. Encouraging quantitative
results are obtained from numerical simulations of these generalizations of Waleffe
flow, for both the transitional-range width and the flow statistics.

3. Perspectives

Obtaining reliable information on the transition to turbulence in large-aspect-ratio
wall-bounded flows is a delicate matter. The approach developed by Chantry et al.
(2016) sketched above suggests that the flow in the no-slip boundary layers is enslaved
to the dynamics in the interior flow. It confirms that, for Reynolds numbers well
within the transitional range [R,, R;], hydrodynamic fields are still sufficiently coherent
to be described by a few amplitudes solely functions of the in-plane coordinates
(on-axis in the pipe flow case). In turn, this strongly supports modelling attempts
by truncation of wall-normal Galerkin expansions. Since models derived from the
Navier-Stokes equations by such systematic expansions, including those of Chantry
et al., already all have the same structure (Seshasayanan & Manneville 2015),
introducing the notion of ‘interior flow’ explicitly gives the theory more physical
content. On the one hand, this should be a invitation to play with the coefficients in
the generic model to get insight into what controls the pattern’s main characteristics,
i.e. angle, wavelength and width of the laminar—turbulent coexistence range. On the
other hand, we should also try to understand the role of what is left out by the
interior-flow assumption — the dynamics inside the boundary layers — and can be
restored on a case-by-case basis by an increase of the order of truncation.

In any case, optimally reduced models could also be used to further explore the
whole transitional-range span. The computational parsimony of such models would
permit the study of the ‘thermodynamic limit’ (wide systems, long times) in view
of addressing some open questions: (i) Accounting for wavelength selection of
the emerging pattern below R, and its orientational fluctuations. Direct numerical
simulations in the quasi-two-dimensional case (plane Couette or Poiseuille flow) can
constrain the pattern away from a possibly optimal configuration if the domain is too
small and it may be difficult to achieve statistical equilibrium in the long-time limit.
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(ii) Determining whether the turbulent fraction for decay at R, varies continuously or
discontinuously. At present, the best evidence that this behaviour is continuous with
exponents, i.e. ‘critical’ in the sense of statistical physics, in a quasi-one-dimensional
Couette geometry (Lemoult ef al. 2016) whereas under-resolved numerics in the
quasi-two-dimensional case speak in favour of a discontinuous transition (Manneville
2011).

Finally, on the analytical side, simplifying the models from their generic expressions
could help us better understand wall-bounded transitional mechanisms. Demonstrating
the general relevance of the reaction—diffusion scheme (Barkley 2011; Manneville
2012) by systematic approaches based on the Galerkin approximation would be of
much interest in this respect.
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