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Abstract

The definitions of the functions used to describe Doppler broadened
Breit Wigner contours are extended to the complex domain. The properties
of the analytic functions are then used to evaluate a number of integrals
by the theory of residues.

1. Introduction

The Doppler broadened contour functions, otherwise known as Voigt
profiles, can be defined for a real variable x in terms of integrals, as:

1 r°° udu

where t is a parameter. These functions were investigated in the early
part of the century in connection with the anomalous dispersion of light
and have been the subject of intensive study in recent years because of
their importance in the estimation of the temperature coefficients of
reactivity of reactor systems. The functions also make their appearance
in the investigation of certain astrophysical problems. A review of the
literature related to the functions particularly as they apply to the resonance
absorption of neutrons has been given by Dresner ([4]; 1960).

Born ([1]; 1933) considered the function

x{x, t) = y,(x, t)+i</>(x, t),

and discussed some of its properties as a complex function of the real
variable x. Using as a variable the complex quantity w = l—ix he was
able to perform the integration in Equation (1) and express x(x> 0 m

terms of the complex error function. He also derived the asymptotic ex-
pansion valid for large |1—ix\. More recently Cook ([3]; 1958) drew at-
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tention to this work of Born and considered the integral of ]f(x, t) over
the real axis. Without giving a valid proof he stated the correct value of the
integral.

Buckler and Pull ([2]; 1962) have introduced the function

F(w) =
Jo

' wdu
exp (—ua) •

which is proportional to and provides an alternative expression for the
function %{p, t) as given by Born. They have used this equation to define
F(w) when w is a complex variable. This definition is not completely
satisfactory since the integral is undefined for Re (w) = 0 and furthermore
it is implied that y> and j> are not analytic but are the real and imaginary
parts of F(w).

It is perhaps most convenient to extend the Doppler broadened
contour functions over the complex domain by defining them as the solu-
tions of a pair of first order differential equations. This approach is adopted
in the next section where the properties of the functions are described.
In the final section the extended definition of these functions is used in
applying the theory of residues to the evaluation of a number of integrals
on the real axis.

2. The functions tp and <p in the complex plane

It is well known that for real values of z the functions y> and <f> defined
in Equation (1) satisfy the pair of first order differential equations:

dip2t / = 4>-zy,,
az

(2)
dd>

2t^-= l—y>—z<f>
az

with the initial conditions:

V(O, t) = iV(*/0 exp (l/4<) erfc (1/2^0

HO, t) = 0.

We will use the equations (2) and (3) to define y>(z, t) and <f>(z, t) in the
complex 2-plane.

Introducing %{z> 0 = V>iz> 0+*#(*» 0> ** *s s e e n t o satisfy the equation

21 S
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which has no singular points in the z-plane and can be solved readily
with the aid of an integration factor to give:

Z(*. t) = WW) exP {(!•-«)•/«} erfc {(l~iz)/2Vt}.

This equation was obtained by Born ([1]; 1933) for real z by an alternative
method. Straightforward manipulation leads to the simpler expression

(4) x(*. *) = f" exp (-fH-p+ifiz)dp,
Jo

showing that x(z> 0 is a solution of the partial differential equation

dz2 U'

It is immediately deducible from Equation (4) that %{z, t) is an in-
tegral function of the complex variable z and consequently has an isolated
essential singularity at infinity. In the range 5JT/4 < arg {z+i) < 7n/4
the function is unbounded while, provided —?r/4 < arg (z+i) < &r/4 it
tends asymptotically to 1/(1—iz) for large \z\. The asymptotic expansions
in these two regions are easily obtained from the integral in Equation (4) as:

(5) X (*. *) 2 1 £ ^ j ^ . - » / * < arg (z+i)

00 tn d%n

*(*. t) ~ V(»/0 exp {(l-«)2/4<}+ 2 -y
/gv n-0 »!

arg
Outside the region 5TT/4 < arg (z+i) < 7w/4 in the lower half plane, the
exponential term in Equation (6) is of lesser order than any other term.
Hence the expansion (6) is valid over the whole of the lower half plane.

The unbounded behaviour of x(z) in the region 5J*/4 < arg (z+*)<77i/4
is clearly seen if z is replaced by x+iy in the integrand of Equation (4)
when it may be shown that:

exp (-x*/4t) erfc (-ix\2y/t), y =

From these equations the real and imaginary part of x(z, t) may be ob-
tained. In particular, when z is a pure imaginary, that is, z = iy, then
£(z, t) is real, and
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(7) = W(*l*)> y = - l

^ V (°> ( I ^ j i ) + V W ) exp {(l+y)*/4t}t y < - 1 .

Alternatively, on starting from Equations (2) and (3) we could have
defined a function S?(z, t) = y>(z, t)—i<f>(z, t) and followed through a similar
argument to obtain in place of Equation (4),

(8) y(g, t) = r exp (-pH-fi-ij>z)dfi.
Jo

Comparing Equations (8) and (4) it is obvious that £f(z, t) = #(—z, t),
so that

(9) x(-z, t) = y(i, t)-i+{z, t).

It is now possible to obtain the Doppler broadened contour functions
y>(z, f) and <f>(z, t) from the relations:

which, combined with Equation (4) give:

y>(z, t) = exp (—p—p3i) cos pz dp
(10) J o

0(^, t) = exp (-p—p2t) sin £z # .
Jo

Thus y>(«, t) is an even function of z while ^(2, <) is odd.
In view of the asymptotic behaviour of the function x(z> 0 it is evident

that both tp(z, t) and <f>(z, t) are unbounded for TI/4 < arg (z—i) < 3?r/4
and 5TI/4 < arg (z-\-i) < 7JI/4. Their asymptotic expansions in the upper
half plane are:

00 t" din 1

n±b»

while in the lower half plane:
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To «! dz2B l+za

(12)

.

3. General theorems

The extension of the range of definition of the Doppler broadened
contour functions to the whole complex plane leads to the possibility of
using Cauchy Residue Theory for the evaluation of integrals involving the
functions. In the present section a number of general theorems are developed
which can be used to evaluate a variety of such integrals involving products
of the contour functions with themselves and with other elementary func-
tions.

In proving the theorems we integrate around a contour C consisting
of the real axis from — R to R and the semi-circle F of radius R in the
upper half plane with this axis as diameter. In the limit as R tends to
infinity this allows conversion of an integral along the real axis to another
integral around the semicircle F in which the integrand may be replaced
by the leading term in its asymptotic expansion.

THEOREM 1.

« = 1
»> 1.

(13) p {v(x,t)+i+{*,t)Yd*=\n-
J —oo V " <

PROOF. Consider §cX"(z> tfd* where n is an integer. Since %(zt t) is
analytic in the upper half plane we have:

f ° z»(z, t)dz a - l in t f *•(*, t)dz

dz

On the semicircle F, z = Reif, so that:

dz .. r iRe0
** _ r f" iR

^ r ~i™ Jo ( i -o
—n if n = 1,
0 if n > 1,

which proves the theorem.
The trend of the proof is not altered if the integrand in Equation (13)

is multiplied by any function of the complex variable z which is analytic
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in the upper half plane. This allows us to generalise the theorem in a number
of ways of which two are:

r 17t, n —

0, n>
and

(15) I {y>(%, t)-\-i</>(x, t)}n{y>(x, x)-\-i<f>(x, r)}mdx = 0, n-\-m > 1.
J-oo

Equations (13), (14), and (15) provide a large number of equalities
between integrals involving powers of y> and <j> of which two particular
examples are:

{x, t)dx = 3 I x*y>(x, t)<f>2(x, t)dx—n,

and

THEOREM 2.

*«OO / w « = = I

(16) [y(—*, 0 — v'CW*) exp {(l+w:)2/4<}]Bia; = j ' ~"
J-oo vyi> \ o, «> 1.

PROOF. Although #(—z, ̂ ) is unbounded in the upper half plane it
follows from Equation (6) that in this region the function %{—z, t) —
\/(nl() exp {(l+tz)2/4/} will be bounded and well behaved, tending asymp-
totically to l/(l+tz) for large \z\. Hence by considering the integral

we obtain
J c

J-oo

Since z = i?e'fl on the semicircle f the result follows as in Theorem 1.
By a slight extension of the above argument we obtain:

(17)
J —i

ix = 0, if
J—OO

and
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Particular results which may be deduced from this theorem are:

J_eo

and

f°° [*•(*, <)+*»(*. *)]** = P *(*. *)V(*I*)
J—00 J—OO

= 2nX(i, 2t)

= mp(0, t/2).

THEOREM 3.

where *J denotes a Cauchy Principal Value.

PROOF. The function tf(z, t)/(z—a) has a simple pole at z = a, so that:

1ZXZL rfa; = _ lim ?_LLJ ^ + T O - [Residue at z = a].
J_oo x—a K-OO J r 2—«

Since

(Reie~a)(l-iReie)n

= 0, for n > 0,
and

lim ( * - « ) * ^ =*»(«,*),

the result follows.
In particular when « = 1 the theorem gives:

J_oo x—a
(20) and

x, t)
-

a

1 *f°° Atx,

x J-oo x—

showing that the functions y>(x, t) and <j>(x, t) are a Hilbert transform
pair. This result could alternatively have been deduced from the fact that
x{z, f) is analytic in the upper half plane (see for example Tricomi ([5];
1957)).
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Using a combination of the proofs of Theorems (2) and (3) we obtain
the further result:

T (-*. 0-V(*/
(21) J

= jn[v(«> <)-»*(«. 0 -V(» /0 exP

giving, when » = 1,

{(l+«»)V«>-2ar(-fl, t)].

This provides alternative expressions for ip(x, t) and (̂a;, t).

THEOREM 4.

J-co *2+«2 «(l+«)" \ (1+«)V

PROOF. If we consider §cXn(z> t)l{z*-\-a*)dz which has a simple pole
at z — ia within the contour C, then we obtain:

dx = — lim 1- 2ni [Residue a t z = ia}.
J ( 2 a + « 2 ) ( l « ) "

The integral around J1 vanishes and the residue at z = *a is given by:

which produces the required result on employing Equation (7).
Since the first term of the asymptotic expansion of x(z, t) in the upper

half plane is 1/(1— iz) and is thus independent of t, all the above theorems
may be generalised by replacing xn{x> 0 by the product
similar remark applies to theorems involving

A complementary set of theorems can be obtained by considering in-
tegrals around the semicircle in the lower half plane, while extension to
integrals containing additional poles is obvious. The method is not restricted
to integrands containing only positive powers of %(z, t) but may be gener-
alised to obtain the values of a variety of integrals involving functions
of X(*. *)•
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